Transmission Media
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Retrospective on Development of Radio and Wire Data Communication
March, 2006 IEEE P802.15-06-0107-00-wng0 IEEE P802.15 Wireless Next Generation Networks Project IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Title Retrospective on Development of Radio and Wire Data Communication Date 4 March 2006 Submitted Source Chandos A. Rypinski Voice: +1.415.435.0642 consultant Fax: [- ] Tiburon, CA 94920 USA E-mail: [email protected] Re: Call for contributions for 15WNG Erik Schylander, 13 Feb 2006 Abstract An account of: the development of phase shift keying and orthogonal frequency division multiplex with carriers positioned at spectral null of the adjacent carrier at Collins Radio 1954-58, the early development of 802.3 CSMA, 802.4 Token bus and 802.5 Token ring and the 802.4L radio PHY for token bus, the 802.6 and 802.9 committee’s working on voice-data integration, the start of 802.11 from 802.4L, the original functional targets and the DFW MAC adopted as a starting point the circumstances for the development 11A and 11B. Purpose The intent is show the effect of early and current decision-making as influenced by function goals and obscure design considerations. Possibly some future choices may be better made with knowledge of these examples. Notice This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. -
Ethernet/Category 5 Network Cabling Guide Prepared by SJ Wilkinson (August 2002) Based on Steve Derose’S Guide to CAT5 Network Wiring (See Later Web Reference)
Ethernet/Category 5 Network Cabling Guide Prepared by SJ Wilkinson (August 2002) Based on Steve DeRose’s Guide to CAT5 Network Wiring (See later Web Reference) Networks A Local Area Network (LAN) can be as simple as two computers, each having a network interface card (NIC) or network adapter and running network software, connected together with a crossover cable. Here the crossover cable would have a plug at either end to connect into the NIC socket at the back of each computer. The next step up would be a network consisting of three or more computers and a hub. Each of the computers is plugged into the hub with a straight-thru cable (the crossover function is performed by the hub). For a small network the straight-thru cables would have plugs at either end – one to connect to the computer and one to the hub. For larger networks wall cabling, wall sockets and patch cables are used. A CAT5 "patch panel" is used at the hub end where all your wires come together and provides a group of sockets for further cables. Straight-thru patch cables connect computers to sockets (jacks). Straight-thru wall cables connect sockets to the patch panel. Straight-thru patch cables connect the patch panel to the hub. Patch panels often make network cabling neater but are not essential as (a) wiring a plug is no harder than wiring a panel; (b) you still need cables to go from the panel to the hub; and (c) it adds extra connections, so lowers reliability. 1 Planning your Network Pick a location for your hub, preferably centred to keep cable runs shorter. -
Dodea FACILITIES MANAGEMENT GUIDE
DoDEA FACILITIES MANAGEMENT GUIDE: TECHNOLOGY SYSTEMS DESIGN GUIDELINES DoDEA-NETWORK VERSION 2.0 DEPARTMENT OF DEFENSE EDUCATION ACTIVITY APRIL 14, 2016 UPDATED DRAFT DoDEA Technology Systems Design Guide – DoDEA Network Requirements TABLE OF CONTENTS Acronyms ........................................................................................................................................ 3 1.0 Purpose ........................................................................................................................ 5 2.0 Applicability ................................................................................................................. 5 3.0 References ................................................................................................................... 5 4.0 Responsibilities ............................................................................................................ 7 5.0 Data/Telecommunications Systems Summary ............................................................. 8 5.1 Outside Cable Plant .................................................................................................... 10 5.2 System Requirements ................................................................................................ 11 5.2.A Main Telecommunications Room (TR1) ........................................................................... 11 5.2.B Secondary Telecommunications Room (TR2) ................................................................... 13 5.2.C Video Distribution ............................................................................................................ -
Short-Range Wireless Communication This Page Intentionally Left Blank Short-Range Wireless Communication
Short-range Wireless Communication This page intentionally left blank Short-range Wireless Communication Alan Bensky Newnes is an imprint of Elsevier The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States © 2019 Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions. This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). Notices Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility. To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein. -
Lecture 2 Physical Layer - Transmission Media
9/17/2013 DATA AND COMPUTER COMMUNICATIONS Lecture 2 Physical Layer - Transmission Media Mei Yang Based on Lecture slides by William Stallings 1 OVERVIEW transmission medium is the physical path between transmitter and receiver guided - wire / optical fiber unguided - wireless characteristics and quality determined by medium and signal in unguided media - bandwidth produced by the antenna is more important in guided media - medium is more important key concerns are data rate and distance 2 CpE400/ECG600 Spring 2013 1 9/17/2013 DESIGN FACTORS DETERMINING DATA RATE AND DISTANCE bandwidth • higher bandwidth gives higher data rate transmission impairments • impairments, such as attenuation, limit the distance interference • overlapping frequency bands can distort or wipe out a signal number of receivers • more receivers introduces more attenuation 3 ELECTROMAGNETIC SPECTRUM 4 CpE400/ECG600 Spring 2013 2 9/17/2013 TRANSMISSION CHARACTERISTICS OF GUIDED MEDIA Frequency Typical Typical Repeater Range Attenuation Delay Spacing Twisted pair 0 to 3.5 kHz 0.2 dB/km @ 50 µs/km 2 km (with 1 kHz loading) Twisted pairs 0 to 1 MHz 0.7 dB/km @ 5 µs/km 2 km (multi-pair 1 kHz cables) Coaxial cable 0 to 500 MHz 7 dB/km @ 4 µs/km 1 to 9 km 10 MHz Optical fiber 186 to 370 0.2 to 0.5 5 µs/km 40 km THz dB/km 5 TRANSMISSION CHARACTERISTICS OF GUIDED MEDIA 6 CpE400/ECG600 Spring 2013 3 9/17/2013 TWISTED PAIR Twisted pair is the least expensive and most widely used guided transmission medium. • consists of two insulated copper wires arranged in a regular spiral pattern • a wire pair acts as a single communication link • pairs are bundled together into a cable • most commonly used in the telephone network and for communications within buildings 7 TWISTED PAIR -TRANSMISSION CHARACTERISTICS analog digital limited: needs can use amplifiers either analog distance every 5km to or digital 6km signals needs a repeater bandwidth every 2km to (1MHz) susceptible to 3km interference and data rate (100MHz) noise 8 CpE400/ECG600 Spring 2013 4 9/17/2013 UNSHIELDED VS. -
Cabling Network, Wireless & Fiber Optics Installation Standards
PDHonline Course E449 (10 PDH) _____________________________________________________ Cabling Network, Wireless & Fiber Optics Installation Standards Instructor: Jurandir Primo, PE 2014 PDH Online | PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.PDHonline.org www.PDHcenter.com An Approved Continuing Education Provider www.PDHcenter.com PDHonline Course E449 www.PDHonline.org CABLING NETWORK, WIRELESS & FIBER OPTICS INSTALLATION STANDARDS CONTENTS: I. INTRODUCTION II. ELECTRIC TRANSMISSION LINES III. WIRES AND CABLES IV. DEFINITIONS OF WIRES, CONDUCTORS AND CABLES V. INDUSTRIAL AND POWER CABLES VI. NETWORK CABLING SYSTEMS VII. TELEPHONE CABLING SYSTEMS VIII. DATA CENTERS INFRASTRUCTURE IX. WIRELESS NETWORK TECHNOLOGY X. CABLING AND WIRELESS STANDARDS XI. CABLING INSTALLATIONS & TESTING STANDARDS XII. INSTRUMENTATION CABLES XIII. VIDEO, TRAFFIC, RAILWAY & SUBSEA CABLES XIV. FIBER OPTICS OR OPTICAL FIBER CABLES XV. FIBER OPTICS TESTING STANDARDS XVI. FTTH SYSTEMS XVII. LINKS & REFERENCES ©2014 Jurandir Primo Page 1 of 111 www.PDHcenter.com PDHonline Course E449 www.PDHonline.org I. INTRODUCTION: Network, according to Thesaurus Dictionary is “any complex, interlocking system”. According to the Dictionary web, for radio and television, “is a group of tramsmitting stations linked by wire or microwaves so that the same program can be broadcast”, for electricity, “is an arrangement of con- ducting elements, as resistors,capacitors, or inductors, connected by conducting wire”. In telecommunications, network is a system containing any combination of computers, printers, terminals, audio, visual display devices and telephones, interconnected by cables to transmit or receive information. A network can consist of two computers, or millions of computers connected with cables or optical fibers, that are spread over a large geographical area, such as telephone lines, active equipment, radio, television and all visual or communication devices. -
Getting Physical with Ethernet
ETHERNET GETTING PHYSICAL STANDARDS • The Importance of Standards • Standards are necessary in almost every business and public service entity. For example, before 1904, fire hose couplings in the United States were not standard, which meant a fire department in one community could not help in another community. The transmission of electric current was not standardized until the end of the nineteenth century, so customers had to choose between Thomas Edison’s direct current (DC) and George Westinghouse’s alternating current (AC). IEEE 802 STANDARD • IEEE 802 is a family of IEEE standards dealing with local area networks and metropolitan area networks. • More specifically, the IEEE 802 standards are restricted to networks carrying variable-size packets. By contrast, in cell relay networks data is transmitted in short, uniformly sized units called cells. Isochronous , where data is transmitted as a steady stream of octets, or groups of octets, at regular time intervals, are also out of the scope of this standard. The number 802 was simply the next free number IEEE could assign,[1] though “802” is sometimes associated with the date the first meeting was held — February 1980. • The IEEE 802 family of standards is maintained by the IEEE 802 LAN/MAN Standards Committee (LMSC). The most widely used standards are for the Ethernet family, Token Ring, Wireless LAN, Bridging and Virtual Bridged LANs. An individual working group provides the focus for each area. Name Description Note IEEE 802.1 Higher Layer LAN Protocols (Bridging) active IEEE 802.2 -
Cat 6 Cable: Copper's Last Stand?
Cat 6 Cable: Copper’s Last Stand? Cat 6 Cable is craft intensive! Advanced Installation & service skills are a MUST. 1 Cat6 Cable: Copper's Last Stand? Nope, Not yet! 10Gig IP to the rescue! What is Category 6? Unlike earlier cabling standards Category 6 is a 200MHz classification. The Category 6 standard is an integral part of the 2nd editions of the ISO 11801, TIA 568A and En5017. Initially there were only two parameters proposed for Category 6. These were that any Category 6 solution must use the existing RJ45 plug and jack format. The second was that the Powersum ACR must be positive to 200 MHz. As the standards have developed, additional parameters have been added. These standards continue to be developed and represent the pinnacle of performance for structured cabling systems. The intention behind the Category 6 standard is to provide the state-of-the-art 4-pair cabling system. The different and more stringent handling requirements for Category 6 components demand additional training, even for installers well used to the demands of Category 5e installation practices. Time, care and a high level of technical expertise are essential when installing Category 6. Even slight variations in the termination of links can have a massive effect on the overall performance of the system. It is for these reasons, that it is essential to select an installer who has an existing track record of successfully installing Category 6. With the comprehensive backing of Molex, under the Certified Installer (CI) program, SMT has the experience and track record you need to be sure that your Category 6 solution will perform for you now and in the future. -
In Tro Duc Tion Glossary of High Speed Terminology
Connectors High-Speed Glossary of High Speed Terminology Auto-MDIX A protocol which allows two Ethernet devices to negotiate their use of the Ethernet Transmit (Tx) and Receive (Rx) cable pairs. This allows two Ethernet devices with MOl or MDI-X connectors to connect without using a cross-over Introduction cable. Baud A unit of measurement that denotes the number of bits that can be transmitted per second. For example, if a mo- dem is rated at 9600 baud it is capable of transmitting data at a rate of 9600 bits per second. Bandwidth The maximum capacity of a newark channel. Usually expressed in bits per second (bps). Ethernet channels have bandwidths of 10,100, and 1000 Mbps (Gigabit). bps Bits Per Second is the unit used for measuring line speed, the number of information units transmitted per second. Broadcast A transmission initiated by one station and sent to all stations on the network. Byte The amount of memory needed to store one character such as a letter or a number. Equal to 8 bits of digital infor- mation. The standard measurement unit of a file size. Category 5 A performance classification for twisted pair cables, connectors and systems. Specified to 100 MHz. Suitable for voice and data applications up to 155 Mbps. Category 5e Also called Enhanced Category 5. A performance classification for twisted pair cables, connectors and systems. Specified to 100 MHz. Suitable for voice and data applications up to 1000 Mbps. Category 6 A performance classification for twisted pair cables, connectors and systems. Specified up to 250 MHz. -
Chapter 9: Communications Systems
GCE A level Electronics – Chapter 9: Communications systems Chapter 9: Communications systems Learning Objectives: At the end of this topic you will be able to: • recall that communication is the transfer of meaningful information from one location to another • recall the structure of a simple communication system consisting of: • information source • transmitter/encoder • transmission medium • amplifier/regenerator • receiver/decoder • information destination • recall and explain the relationship between: • bandwidth • data rate • information-carrying capacity • select and apply the equations: available bandwidth • NCH = channel bandwidth • maximum date rate = 2 × available bandwidth • explain the need to multiplex a number of signals onto one transmission medium and describe the principles of frequency and time division multiplexing • describe the role of filters in communication systems • use the decibel scale to express power gain in amplifiers and attenuation in transmission media • select and apply the equation: POUT • G = 10 log = dB 10 P IN • differentiate between noise and distortion • calculate the total gain in a communication system given the power gain or attenuation of its component parts • state what is meant by signal-to-noise ratio • select and apply the equations: PS VS • SNR = 10 log = = 20 log = dB 10 P 10 V N N • state what is meant by signal attenuation and describe the significance of signal attenuation (in dB) for the signal-to-noise ratio 282 © WJEC CBAC Ltd 2018 GCE A level Electronics – Chapter 9: Communications systems Introduction to information transfer Communication is defined as the transfer of meaningful information from one location to another. Over time, many ways of communicating information have evolved, allowing us to transfer information both faster and over greater distances. -
RF Video and Ethernet, Telephone Or Remote Control on Cat 5 Or Cat 6
Television and Ethernet on Cat 5 or Cat 6 Cable The Lynx® Video and Data Network Delivers television and data or phone Simplifies cable requirements on a shared Cat 5 or Cat 6 cable Increases flexibility for moves, Distributes up to 134 analog or HDTV adds and changes channels (or 402 standard definition Improves reliability digital channels) Creates a technology bridge to IPTV The Lynx Video and Data Network The Lynx Video and Data Network increases simultaneously delivers up to 134 channels system flexibility because new TVs can of television (RF) on a single twisted pair of a be added in any location where Cat 5 is Category 5 cable. The remaining three pairs available. can transmit Ethernet or telephone signals. A homerun wiring design improves reliability The Lynx Video and Data Hub converts because there are no taps or splitters coaxial television signals into balanced between the distribution hub and the TV. signals transmitted on pair four of a Cat 5 The Lynx Video and Data Network also or Cat 6 cable. Ethernet or phone signals provides a “technology bridge” to IPTV by enter the back of the hub via RJ-45 ports using the same infrastructure that IPTV will and pass through to the cable on pairs use. one, two, or three. A patented broadband balun is the At the point of use a Lynx converter changes centerpiece of the Lynx design. A pair of the television signals back to coaxial signals send/receive baluns deliver a clean RF accessible via an F connector. The Ethernet signal to each TV (on pair four). -
Computer Ports
Computer Ports In computer hardware, a port serves as an interface between the computer and other computers or peripheral devices. Physically, a port is a specialized outlet on a piece of equipment to which a plug or cable connects. Electronically, the several conductors making up the outlet provide a signal transfer between devices. The term "port" is derived from a Dutch word "poort" meaning gate, entrance or door. ETHERNET PORTS: Ethernet is a family of computer networking technologies for local area networks (LANs) commercially introduced in 1980. Standardized in IEEE 802.3, Ethernet has largely replaced competing wired LAN technologies. Systems communicating over Ethernet divide a stream of data into individual packets called frames. Each frame contains source and destination addresses and error-checking data so that damaged data can be detected and re-transmitted. The standards define several wiring and signaling variants. The original 10BASE5 Ethernet used coaxial cable as a shared medium. Later the coaxial cables were replaced by twisted pair and fiber optic links in conjunction with hubs or switches. Data rates were periodically increased from the original 10 megabits per second, to 100 gigabits per second. Since its commercial release, Ethernet has retained a good degree of compatibility. Features such as the 48-bit MAC address and Ethernet frame format have influenced other networking protocols. HISTORY OF ETHERNET: Ethernet was developed at Xerox PARC between 1973 and 1974.[1][2] It was inspired by ALOHAnet, which Robert Metcalfe had studied as part of his PhD dissertation.[3] The idea was first documented in a memo that Metcalfe wrote on May 22, 1973.[1][4] In 1975, Xerox filed a patent application listing Metcalfe, David Boggs, Chuck Thacker and Butler Lampson as inventors.[5] In 1976, after the system was deployed at PARC, Metcalfe and Boggs published a seminal paper.