The Human Ear Terms and Definitions

Total Page:16

File Type:pdf, Size:1020Kb

The Human Ear Terms and Definitions The Human Ear Terms and definitions anvil (also called the incus) a tiny bone that passes vibrations from the hammer to the stirrup. cochlea a spiral-shaped, uid-lled, inner ear structure; it is lined with cilia (tiny hairs) that move when vibrated and cause a nerve impulse to form. ear canal the tube through which sound travels to the ear drum. ear drum (also called the tympanic membrane) a thin membrane that vibrates when sound waves reach it. Eustachian tube a tube that connects the middle ear to the back of the nose; it equalizes the pressure between the middle ear and the air outside. When you “pop” your ears as you change altitude (going up a mountain or in an airplane), you are equalizing the air pressure in your middle ear. hammer (also called the malleus) a tiny bone that passes vibrations from the eardrum to the anvil. nerves these carry electro-chemical signals from the inner ear (the cochlea) to the brain. pinna (also called the auricle) the external part of the ear that collects soundwaves. semicircular canals three loops of uid-lled tubes that are attached to the cochlea in the inner ear; they help us maintain our sense of balance. stirrup (also called the stapes) a tiny, U-shaped bone that passes vibrations from the stirrup to the cochlea; this is the smallest bone in the human body (0.25 to 0.33 cm long). Protect your ears. If the noise is too loud, walk away, turn it down (Turn it to the Left), or use ear plugs. www.TurnItToTheLeft.com.
Recommended publications
  • The Posterior Muscles of the Auricle: Anatomy and Surgical Applications
    Central Annals of Otolaryngology and Rhinology Research Article *Corresponding author Christian Vacher, Department of Maxillofacial Surgery & Anatomy, University of Paris-Diderot, APHP, 100, The Posterior Muscles of the Boulevard Général Leclerc, 92110 Clichy, France, Tel: 0033140875671; Email: Submitted: 19 December 2014 Auricle: Anatomy and Surgical Accepted: 16 January 2015 Published: 19 January 2015 Applications Copyright © 2015 Vacher et al. Rivka Bendrihem1, Christian Vacher2* and Jacques Patrick Barbet3 OPEN ACCESS 1 Department of Dentistry, University of Paris-Descartes, France Keywords 2 Department of Maxillofacial Surgery & Anatomy, University of Paris-Diderot, France • Auricle 3 Department of Pathology and Cytology, University of Paris-Descartes, France • Anatomy • Prominent ears Abstract • Muscle Objective: Prominent ears are generally considered as primary cartilage deformities, but some authors consider that posterior auricular muscles malposition could play a role in the genesis of this malformation. Study design: Auricle dissections of 30 cadavers and histologic sections of 2 fetuses’ ears. Methods: Posterior area of the auricle has been dissected in 24 cadavers preserved with zinc chlorure and 6 fresh cadavers in order to describe the posterior muscles and fascias of the auricle. Posterior auricle muscles from 5 fresh adult cadavers have been performed and two fetal auricles (12 and 22 weeks of amenorhea) have been semi-serially sectioned in horizontal plans. Five µm-thick sections were processed for routine histology (H&E) or for immuno histochemistry using antibodies specific for the slow-twitch and fast-twich myosin heavy chains in order to determine which was the nature of these muscles. Results: The posterior auricular and the transversus auriculae muscles looked in most cases like skeletal muscles and they were made of 75% of slow muscular fibres.
    [Show full text]
  • CONGENITAL MALFORMATIONS of the INNER EAR Malformaciones Congénitas Del Oído Interno
    topic review CONGENITAL MALFORMATIONS OF THE INNER EAR Malformaciones congénitas del oído interno. Revisión de tema Laura Vanessa Ramírez Pedroza1 Hernán Darío Cano Riaño2 Federico Guillermo Lubinus Badillo2 Summary Key words (MeSH) There are a great variety of congenital malformations that can affect the inner ear, Ear with a diversity of physiopathologies, involved altered structures and age of symptom Ear, inner onset. Therefore, it is important to know and identify these alterations opportunely Hearing loss Vestibule, labyrinth to lower the risks of all the complications, being of great importance, among others, Cochlea the alterations in language development and social interactions. Magnetic resonance imaging Resumen Existe una gran variedad de malformaciones congénitas que pueden afectar al Palabras clave (DeCS) oído interno, con distintas fisiopatologías, diferentes estructuras alteradas y edad Oído de aparición de los síntomas. Por lo anterior, es necesario conocer e identificar Oído interno dichas alteraciones, con el fin de actuar oportunamente y reducir el riesgo de las Pérdida auditiva Vestíbulo del laberinto complicaciones, entre otras —de gran importancia— las alteraciones en el área del Cóclea lenguaje y en el ámbito social. Imagen por resonancia magnética 1. Epidemiology • Hyperbilirubinemia Ear malformations occur in 1 in 10,000 or 20,000 • Respiratory distress from meconium aspiration cases (1). One in every 1,000 children has some degree • Craniofacial alterations (3) of sensorineural hearing impairment, with an average • Mechanical ventilation for more than five days age at diagnosis of 4.9 years. The prevalence of hearing • TORCH Syndrome (4) impairment in newborns with risk factors has been determined to be 9.52% (2).
    [Show full text]
  • ANATOMY of EAR Basic Ear Anatomy
    ANATOMY OF EAR Basic Ear Anatomy • Expected outcomes • To understand the hearing mechanism • To be able to identify the structures of the ear Development of Ear 1. Pinna develops from 1st & 2nd Branchial arch (Hillocks of His). Starts at 6 Weeks & is complete by 20 weeks. 2. E.A.M. develops from dorsal end of 1st branchial arch starting at 6-8 weeks and is complete by 28 weeks. 3. Middle Ear development —Malleus & Incus develop between 6-8 weeks from 1st & 2nd branchial arch. Branchial arches & Development of Ear Dev. contd---- • T.M at 28 weeks from all 3 germinal layers . • Foot plate of stapes develops from otic capsule b/w 6- 8 weeks. • Inner ear develops from otic capsule starting at 5 weeks & is complete by 25 weeks. • Development of external/middle/inner ear is independent of each other. Development of ear External Ear • It consists of - Pinna and External auditory meatus. Pinna • It is made up of fibro elastic cartilage covered by skin and connected to the surrounding parts by ligaments and muscles. • Various landmarks on the pinna are helix, antihelix, lobule, tragus, concha, scaphoid fossa and triangular fossa • Pinna has two surfaces i.e. medial or cranial surface and a lateral surface . • Cymba concha lies between crus helix and crus antihelix. It is an important landmark for mastoid antrum. Anatomy of external ear • Landmarks of pinna Anatomy of external ear • Bat-Ear is the most common congenital anomaly of pinna in which antihelix has not developed and excessive conchal cartilage is present. • Corrections of Pinna defects are done at 6 years of age.
    [Show full text]
  • Anatomy of the Ear ANATOMY & Glossary of Terms
    Anatomy of the Ear ANATOMY & Glossary of Terms By Vestibular Disorders Association HEARING & ANATOMY BALANCE The human inner ear contains two divisions: the hearing (auditory) The human ear contains component—the cochlea, and a balance (vestibular) component—the two components: auditory peripheral vestibular system. Peripheral in this context refers to (cochlea) & balance a system that is outside of the central nervous system (brain and (vestibular). brainstem). The peripheral vestibular system sends information to the brain and brainstem. The vestibular system in each ear consists of a complex series of passageways and chambers within the bony skull. Within these ARTICLE passageways are tubes (semicircular canals), and sacs (a utricle and saccule), filled with a fluid called endolymph. Around the outside of the tubes and sacs is a different fluid called perilymph. Both of these fluids are of precise chemical compositions, and they are different. The mechanism that regulates the amount and composition of these fluids is 04 important to the proper functioning of the inner ear. Each of the semicircular canals is located in a different spatial plane. They are located at right angles to each other and to those in the ear on the opposite side of the head. At the base of each canal is a swelling DID THIS ARTICLE (ampulla) and within each ampulla is a sensory receptor (cupula). HELP YOU? MOVEMENT AND BALANCE SUPPORT VEDA @ VESTIBULAR.ORG With head movement in the plane or angle in which a canal is positioned, the endo-lymphatic fluid within that canal, because of inertia, lags behind. When this fluid lags behind, the sensory receptor within the canal is bent.
    [Show full text]
  • Balance and Equilibrium, I: the Vestibule and Semicircular Canals
    Anatomic Moment Balance and Equilibrium, I: The Vestibule and Semicircular Canals Joel D. Swartz, David L. Daniels, H. Ric Harnsberger, Katherine A. Shaffer, and Leighton Mark In this, our second temporal bone installment, The endolymphatic duct arises from the en- we will emphasize the vestibular portion of the dolymphatic sinus and passes through the ves- labyrinth, that relating to balance and equilib- tibular aqueduct of the osseous labyrinth to rium. Before proceeding, we must again remind emerge from an aperture along the posterior the reader of the basic structure of the labyrinth: surface of the petrous pyramid as the endolym- an inner membranous labyrinth (endolym- phatic sac. phatic) surrounded by an outer osseous laby- The utricle and saccule are together referred rinth with an interposed supportive perilym- to as the static labyrinth, because their function phatic labyrinth. We recommend perusal of the is to detect the position of the head relative to first installment before continuing if there are gravity (5–7). They each have a focal concen- any uncertainties in this regard. tration of sensory receptors (maculae) located The vestibule, the largest labyrinthine cavity, at right angles to each other and consisting of measures 4 to 6 mm maximal diameter (1–3) ciliated hair cells and tiny crystals of calcium (Figs 1–3). The medial wall of the vestibule is carbonate (otoliths) embedded in a gelatinous unique in that it contains two distinct depres- mass. These otoliths respond to gravitational sions (Fig 4). Posterosuperiorly lies the elliptical pull; therefore, changes in head position distort recess, where the utricle is anchored.
    [Show full text]
  • VESTIBULAR SYSTEM (Balance/Equilibrium) the Vestibular Stimulus Is Provided by Earth's Gravity, and Head/Body Movement. Locate
    VESTIBULAR SYSTEM (Balance/Equilibrium) The vestibular stimulus is provided by Earth’s gravity, and head/body movement. Located in the labyrinths of the inner ear, in two components: 1. Vestibular sacs - gravity & head direction 2. Semicircular canals - angular acceleration (changes in the rotation of the head, not steady rotation) 1. Vestibular sacs (Otolith organs) - made of: a) Utricle (“little pouch”) b) Saccule (“little sac”) Signaling mechanism of Vestibular sacs Receptive organ located on the “floor” of Utricle and on “wall” of Saccule when head is in upright position - crystals move within gelatinous mass upon head movement; - crystals slightly bend cilia of hair cells also located within gelatinous mass; - this increases or decreases rate of action potentials in bipolar vestibular sensory neurons. Otoconia: Calcium carbonate crystals Gelatinous mass Cilia Hair cells Vestibular nerve Vestibular ganglion 2. Semicircular canals: 3 ring structures; each filled with fluid, separated by a membrane. Signaling mechanism of Semicircular canals -head movement induces movement of endolymph, but inertial resistance of endolymph slightly bends cupula (endolymph movement is initially slower than head mvmt); - cupula bending slightly moves the cilia of hair cells; - this bending changes rate of action potentials in bipolar vestibular sensory neurons; - when head movement stops: endolymph movement continues for slightly longer, again bending the cupula but in reverse direction on hair cells which changes rate of APs; - detects “acceleration”
    [Show full text]
  • The Nervous System: General and Special Senses
    18 The Nervous System: General and Special Senses PowerPoint® Lecture Presentations prepared by Steven Bassett Southeast Community College Lincoln, Nebraska © 2012 Pearson Education, Inc. Introduction • Sensory information arrives at the CNS • Information is “picked up” by sensory receptors • Sensory receptors are the interface between the nervous system and the internal and external environment • General senses • Refers to temperature, pain, touch, pressure, vibration, and proprioception • Special senses • Refers to smell, taste, balance, hearing, and vision © 2012 Pearson Education, Inc. Receptors • Receptors and Receptive Fields • Free nerve endings are the simplest receptors • These respond to a variety of stimuli • Receptors of the retina (for example) are very specific and only respond to light • Receptive fields • Large receptive fields have receptors spread far apart, which makes it difficult to localize a stimulus • Small receptive fields have receptors close together, which makes it easy to localize a stimulus. © 2012 Pearson Education, Inc. Figure 18.1 Receptors and Receptive Fields Receptive Receptive field 1 field 2 Receptive fields © 2012 Pearson Education, Inc. Receptors • Interpretation of Sensory Information • Information is relayed from the receptor to a specific neuron in the CNS • The connection between a receptor and a neuron is called a labeled line • Each labeled line transmits its own specific sensation © 2012 Pearson Education, Inc. Interpretation of Sensory Information • Classification of Receptors • Tonic receptors
    [Show full text]
  • Effectiveness of Ear Molding in the Treatment of Congenital Auricular Deformity
    CHINA CLINIcaL STUDIES IV ORIGINAL ARTICLE Effectiveness Of Ear Molding In the Treatment Of Congenital Auricular Deformity Corresponding authors: CHEN Peiwei 1 LI Jie 2 ZHAO Abstract Objective: To evaluate the short-term efficacy of ear molding in the treatment of congenital Shouqin 1 YANG Jingsong 1 DOU auricular deformity. Jingmin 1 WEI Chenyi 1 Methods: 24 infants (28 ears) were treated with ear molding device (EarWell Infant Ear Correction System). Doctors and parents were surveyed 1 month after treatment. Results: All cases were treated successfully without severe complications. 25 ears (89%) and 26 ears (92%) were rated as very satisfied or satisfied by doctors and parents, respectively. Conclusion: Ear molding is a noninvasive treatment, and effectively corrects congenital auricular deformity. Key words: Ear Disease; Deformity; Retrospective Study; Ear Molding. INFORMATION Exclusion Criteria Auricular deformities are classified into structural malformation and Age over 3 months; premature delivery; weight less than 2.5 kg; morphological malformation [1]. The former usually refers to the hypo- pathological jaundice, pneumonia and other systemic diseases. plasia of the auricle caused by the coloboma of skin and cartilage. The latter is the abnormal morphology of the well-developed auricle, which Overall 24 sick children (28 ears) were recruited for this treatment, could cause negative effects to the psychological development and so- including 14 males, 10 females, 16 right ears and 12 left ears. The age cial activities of children. Unlike structural malformations, such as mi- range for the recruited patients is 17-77 days, with a median age of 40.5 crotia, which must be corrected by auricle reconstruction, the auricle days.
    [Show full text]
  • 22 Stapes Surgery Holger Sudhoff, Henning Hildmann
    112 Chapter 22 22 Stapes Surgery Holger Sudhoff, Henning Hildmann Stapes surgery can be performed using local or general anaesthesia. The major- ity of patients are operated on under a combination of local anaesthesia and ade- quate sedation. There is less bleeding with local anaesthesia and the surgeon can ask the patient about hearing improvement intraoperatively. Many experienced surgeons use a transcanal technique. We prefer an endaural approach, which we believe provides a better overview in difficult situations. The nurse assists with the incision, retracting the auricle posterior-superiorly. This straightens the incision line and keeps and protects the cartilage of the anterior helix (Fig. 22.1). The lateral portion of the ear canal is opened using a nasal speculum. The surgeon gains a good view over the superior opening of the external ear canal between the helical and the tragal cartilage. The intercartilaginous incision starts with a No. 10 blade with permanent contact to the bony external ear canal. To reduce tension a parallel incision to the anterior portion of the helix upwards in a smoothly curved line is performed. This procedure reduces the risk of cutting the superficial temporal vein and avoids bleeding. A second skin medial circumferential incision is placed 4–5 mm medial to the opening of the external bony ear canal between the 1 and 5 o’clock positions for the left ear and is extended to the intercartilaginous incision. The underlying soft tis- sue and periosteum are pushed laterally using a raspatory, revealing the supra- meatal spine and tympanomastoid suture. A small portion of the mastoid plane will be exposed as well.
    [Show full text]
  • Myoclonus of the Auricular Muscles As the Cause of Objective Tympanophonia
    Otolaryngology Open Access Journal ISSN: 2476-2490 Myoclonus of the Auricular Muscles as the Cause of Objective Tympanophonia 1 1 2 2 Boiko NV , Stagnieva IV , Doykov I and Vicheva D * Editorial 1Department of Otorhinolaryngology, Rostov State Medical University, Russia Volume 3 Issue 2 2Department of Otorhinolaryngology, Plovdiv Medical University, Bulgaria Received Date: July 17, 2018 Published Date: July 19, 2018 *Corresponding author: Dilyana Vicheva, Department of Otorhinolaryngology, DOI: 10.23880/OOAJ-16000173 Plovdiv Medical University, Bulgaria, Tel: +359 888223675; Email: [email protected] Abstract The objective of the present article was to systematize the available data on the etiology, pathogenesis, clinical features, diagnostics and treatment of muscular tympanophonia. The common sourse of muscular tympanophonia is the tremor (myoclonus) of the soft palate or muscles of auditory ossicles. Sometimes this condition can be a consequence of myoclonus of the external ear muscles. Pharmacotherapy of muscular tympanophonia does not invariably result in the favourable outcome. The authors describe a rare observation of objective tympanophonia attributable to myoclonus of auricular muscle. Keywords: Objective tympanophonia; Myoclonus Abbreviations: MEM: Middle Ear Myoclonus. vascular tympanophony may also be attributed to drug administration, arterial hypertension, anemia, or inter Introduction current diseases like browache [6]. Tympanophony, or tinnitus, is a phantom auditory Objective muscle tympanophony is based upon perception without any outer sound stimulation 1]. consensual spastic muscle activity (myoclonus) perceived Tympanophony is subdivided into two categories: as ear clicks. The PubMed database of 1955 to 2016offers subjective and objectively perceived noises. Most patients 104 publications describing cases of objective suffer from subjective tympanophony since statistically it tympanophony caused by myoclonus of various muscle occurs to 5-15% of the population [2], while objective groups.
    [Show full text]
  • The Neural Basis of Speech and Language
    © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION CHAPTER © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC The NeuralNOT FOR SALE Basis OR DISTRIBUTION of NOT FOR SALE OR DISTRIBUTION Speech and Language 2 © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION Introduction © Jones & BartlettThis section Learning, gives the LLC reader a brief overview ©of Joneswhat takes & Bartlett place neurally Learning, when LLCa per- son starts a conversation by saying, “Hello. How are you? How was your vacation NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION trip?” to another individual whom the person meets on the street. Simply put, the steps involved would be as follows: 1. Basic vision: seeing a person on the street 2. Visual perception: recognizing the person as someone the speaker knows 3. Cognition:© theJones desire & to Bartlett speak with Learning, this person LLC about a trip that the speaker© Jones may & Bartlett Learning, LLC want to takeNOT in FORthe future SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION 4. Language: searching for the right sounds, syllables, words, and sentences, all pre- sented in the right order, with meaning properly related to the greeting and the subject matter, to be expressed with a positive attitude © Jones5. Motor & Bartlettprogramming Learning, or planning: LLC readying the speech© mechanism Jones & Bartlettjust prior Learning, to LLC NOT speakingFOR SALE so that OR the DISTRIBUTION production is correct NOT FOR SALE OR DISTRIBUTION 6. Motor production or execution: speaking 7.
    [Show full text]
  • How Ears Work Q
    152_09Kids_Ears 4/28/09 4:47 PM Page 152 152 How Ears Work THE OUTER EAR—the part you see—catches sound waves. It’s shaped like a funnel, catching noise and q Crickets use organs in their knees to listen. sending it down the ear canal Fish respond to sound through ridges on their to the eardrum. Sound waves bodies, and snakes use their cause the eardrum to vibrate. tongues. Humans, Three small bones in the of course, have middle ear then pass these ears. vibrations on to the cochlea, a fluid-filled structure of the inner ear. The cochlea contains liquid that moves like a wave in response to sounds. The cochlea is also lined with microscopic hairs that move, creating nerve signals that are sent to the brain, which makes sense of the sounds we hear. FACTSWAX The skin cells of the outer ear contain tiny glands that produce wax that protects the ears by trapping dirt and other things in the ear. The wax slowly works its way out of the ear. 152_09Kids_Ears 4/28/09 11:22 AM Page 153 153 ANATOMY OF THE EAR HEALTH INNER MIDDLE OUTER EAR G B I ND H SOU F E C D A A external auditory canal F eustachian tube B eardrum G semicircular canals that house the C hammer receptors for equilibrium D anvil H cochlea (houses the receptors for hearing) E stapes (stirrup) I nerve that transmits impulses to the brain The hammer, anvil, and stirrup pass along vibrations. q Did You Know? approx. actual size The smallest bone in the human body is the stapes, or stirrup.
    [Show full text]