A New Perspective on Decarbonising the Global Energy System
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Oil Depletion Protocol
1 THE RIMINI PROTOCOL an Oil Depletion Protocol ~ Heading Off Economic Chaos and Political Conflict During the Second Half of the Age of Oil As proposed at the 2003 Pio Manzu Conference, and to be the central theme of the next Pio Manzu Conference, Rimini, Italy on October 28-30, 2005 2 INTRODUCTION Soaring oil prices have drawn attention to the issue of the relative supply and demand for crude oil, which is the World’s premier fuel, having a central place in the modern economy. Knowledge of petroleum geology has made great advances in recent years, such that the conditions under which this resource was formed in Nature are now well understood. In fact, it transpires that the bulk of the World’s current production comes from deposits formed in two brief and exceptional epochs, 90 and 150 million years ago. This fact alone tells us that oil is a finite resource, which in turn means that it is subject to depletion. People ask: Are we running out of oil ? The simple answer is: Yes, we started doing that when we produced the first barrel. But Running Out is not the main issue as the resource will not be finally exhausted for very many years. The much more relevant question is: When will production reach a peak and begin to decline? Depletion: Growth, Peak and Decline Much debate and study has focused on the calculation of the date of peak, but this too misses the main point. It is not an isolated or pronounced peak but merely the highest point on a long and gentle production curve. -
Secure Fuels from Domestic Resources ______Profiles of Companies Engaged in Domestic Oil Shale and Tar Sands Resource and Technology Development
5th Edition Secure Fuels from Domestic Resources ______________________________________________________________________________ Profiles of Companies Engaged in Domestic Oil Shale and Tar Sands Resource and Technology Development Prepared by INTEK, Inc. For the U.S. Department of Energy • Office of Petroleum Reserves Naval Petroleum and Oil Shale Reserves Fifth Edition: September 2011 Note to Readers Regarding the Revised Edition (September 2011) This report was originally prepared for the U.S. Department of Energy in June 2007. The report and its contents have since been revised and updated to reflect changes and progress that have occurred in the domestic oil shale and tar sands industries since the first release and to include profiles of additional companies engaged in oil shale and tar sands resource and technology development. Each of the companies profiled in the original report has been extended the opportunity to update its profile to reflect progress, current activities and future plans. Acknowledgements This report was prepared by INTEK, Inc. for the U.S. Department of Energy, Office of Petroleum Reserves, Naval Petroleum and Oil Shale Reserves (DOE/NPOSR) as a part of the AOC Petroleum Support Services, LLC (AOC- PSS) Contract Number DE-FE0000175 (Task 30). Mr. Khosrow Biglarbigi of INTEK, Inc. served as the Project Manager. AOC-PSS and INTEK, Inc. wish to acknowledge the efforts of representatives of the companies that provided information, drafted revised or reviewed company profiles, or addressed technical issues associated with their companies, technologies, and project efforts. Special recognition is also due to those who directly performed the work on this report. Mr. Peter M. Crawford, Director at INTEK, Inc., served as the principal author of the report. -
Three Essays on Oil Scarcity, Global Warming and Energy Prices Matthew Riddle University of Massachusetts Amherst, [email protected]
University of Massachusetts Amherst ScholarWorks@UMass Amherst Open Access Dissertations 5-2012 Three essays on oil scarcity, global warming and energy prices Matthew Riddle University of Massachusetts Amherst, [email protected] Follow this and additional works at: https://scholarworks.umass.edu/open_access_dissertations Part of the Economics Commons Recommended Citation Riddle, Matthew, "Three essays on oil scarcity, global warming and energy prices" (2012). Open Access Dissertations. 596. https://scholarworks.umass.edu/open_access_dissertations/596 This Open Access Dissertation is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Open Access Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. THREE ESSAYS ON OIL SCARCITY, GLOBAL WARMING AND ENERGY PRICES A Dissertation Presented by MATTHEW RIDDLE Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2012 Department of Economics © Copyright by Matthew Riddle 2012 All Rights Reserved THREE ESSAYS ON OIL SCARCITY, GLOBAL WARMING AND ENERGY PRICES A Dissertation presented by MATTHEW RIDDLE Approved as to style and content by: __________________________________________________________ James K. Boyce, Chair __________________________________________________________ Michael Ash, Member __________________________________________________________ Erin Baker, Member ________________________________________________ Michael Ash, Department Chair Economics ACKNOWLEDGEMENTS I would like to thank my dissertation chair, James Boyce for his guidance and support throughout my time at UMass, and my committee members Michael Ash and Erin Baker for their thoughtful suggestions. I would also like to thank my wife, Allison, for her ideas and support. -
Oil Depletion and the Energy Efficiency of Oil Production
Sustainability 2011, 3, 1833-1854; doi:10.3390/su3101833 OPEN ACCESS sustainability ISSN 2071-1050 www.mdpi.com/journal/sustainability Article Oil Depletion and the Energy Efficiency of Oil Production: The Case of California Adam R. Brandt Department of Energy Resources Engineering, Green Earth Sciences 065, 367 Panama St., Stanford University, Stanford, CA 94305-2220, USA; E-Mail: [email protected]; Fax: +1-650-724-8251 Received: 10 June 2011; in revised form: 1 August 2011 / Accepted: 5 August 2011 / Published: 12 October 2011 Abstract: This study explores the impact of oil depletion on the energetic efficiency of oil extraction and refining in California. These changes are measured using energy return ratios (such as the energy return on investment, or EROI). I construct a time-varying first-order process model of energy inputs and outputs of oil extraction. The model includes factors such as oil quality, reservoir depth, enhanced recovery techniques, and water cut. This model is populated with historical data for 306 California oil fields over a 50 year period. The model focuses on the effects of resource quality decline, while technical efficiencies are modeled simply. Results indicate that the energy intensity of oil extraction in California increased significantly from 1955 to 2005. This resulted in a decline in the life-cycle EROI from ≈6.5 to ≈3.5 (measured as megajoules (MJ) delivered to final consumers per MJ primary energy invested in energy extraction, transport, and refining). Most of this decline in energy returns is due to increasing need for steam-based thermal enhanced oil recovery, with secondary effects due to conventional resource depletion (e.g., increased water cut). -
Peak Oil Theory in Canada's Globe and Mail
Document generated on 09/30/2021 3:37 p.m. Scientia Canadensis Canadian Journal of the History of Science, Technology and Medicine Revue canadienne d'histoire des sciences, des techniques et de la médecine Peak Oil Theory in Canada’s Globe and Mail: A Case Study of the Construction of Ignorance Eda Kranakis Énergie et société au Canada Article abstract Volume 37, Number 1-2, 2014 Scientific knowledge is essential to understand problems confronting society, and the mass media have become the main source of this knowledge for most URI: https://id.erudit.org/iderudit/1030643ar people. However, the mass media filter scientific information, leading DOI: https://doi.org/10.7202/1030643ar sometimes to what has been termed “the construction of ignorance.” This article offers a case study of this process. It explains how Canada’s leading See table of contents newspaper, the Globe and Mail, has depicted oil depletion theory (or “peak oil” theory). By contrasting the history of oil depletion theory with its representation in the Globe and Mail since the turn of the millennium, the article reveals the contours of this constructed ignorance. Comparison with Publisher(s) coverage of meteorological and climate change science further refines the CSTHA/AHSTC analysis. Finally, the article investigates the underlying causes for the Globe and Mail’s treatment of peak oil theory and how it relates to the Canadian context. ISSN 1918-7750 (digital) Explore this journal Cite this article Kranakis, E. (2014). Peak Oil Theory in Canada’s Globe and Mail: A Case Study of the Construction of Ignorance. Scientia Canadensis, 37(1-2), 133–189. -
Climate Change: Answers to Common Questions
Climate change: Answers to common questions Cameron Hepburn Moritz Schwarz December 2020 Oxford Smith School of Enterprise and the Environment Smith School of Enterprise and Institute for New Economic the Environment / Institute Thinking at the Oxford Martin for New Economic Thinking, School (INET Oxford) University of Oxford The Institute for New Economic Thinking The Smith School of Enterprise and the at the Oxford Martin School (INET Environment (SSEE) was established Oxford) is a multidisciplinary research with a benefaction by the Smith family centre dedicated to applying leading in 2008 to tackle major environmental edge thinking from the social and challenges by bringing public and physical sciences to global economic private enterprise together with the Uni challenges. versity of Oxford’s worldleading INET Oxford has over 75 affili ated teaching and research. scholars from disciplines that include Research at the Smith School shapes economics, mathematics, computer business practices, gov ernment policy science, physics, biology, ecology, geo and strategies to achieve netzero graphy, psychology, sociology, anthro emissions and sustainable development. pology, philosophy, history, political We offer innovative evidencebased science, public policy, business, and law solutions to the environmental challenges working on its various programmes. facing humanity over the coming INET Oxford is a research centre within decades. We apply expertise in eco the University of Oxford’s Martin nomics, finance, business and law School, a community of over 300 scholars to tackle environmental and social chal working on the major challenges of lenges in six areas: water, climate, the 21st century. It has partnerships energy, bio diversity, food and the cir with nine academic departments cular economy. -
Fossil Fuels, Alternative Energy and Economic Growth We Present A
Fossil fuels, alternative energy and economic growth We present a theoretical framework that incorporates energy within an endogenous growth model. The model explicitly allows for the interaction and substitution between fossil fuels, defined as a non-renewable resource derived from some fixed initial stock, and alternative energy, defined as renewable resource whose production requires capital input. The dynamics of the model depict a unique balance growth to a saddle point. The consumption path temporarily peaks, when fossil fuels are plentiful and cheap, followed by a fall, as fossil fuel become more scarce and alternative energy production has yet to take over, until finally the steady state is reached where alternative energy production fuels the entire economy. The model depicts a sort of energy rich heyday when fossil fuels are plentiful and cheap. As oil stocks fall, alternative energy sources become increasingly more viable until a time when alternative energy has almost completed replaced oil. Graphically, the model generates a hump in the growth path of consumption such that a short run “peak oil” heyday may be compared to the long run renewable energy dependent steady state. October 2014 (Work in progress!!!) Keywords: Endogenous growth, non-renewable resources, renewable resources, energy, oil, fossil fuels, alternative energy, peak oil JEL Classifications: O41, Q21, Q31 Raul A. Barreto University of Adelaide Adelaide, Australia A. Introduction The modern economy requires energy to produce its goods. Although alternatives exist, fossil fuels are still its cheapest source. Unfortunately, fossil fuels are non- renewable and can therefore run out. More colourful extensions of this line of thought gave birth to “peak oil” within popular vernacular. -
The Oil Crisis and Its Impact on the Air Cargo Industry
The Oil Crisis and its Impact on the Air Cargo Industry Gal Luft, PhD Executive director, Institute for the Analysis of Global security April 2006 The Institute for the Analysis of Global Security is a Washington based non-profit public educational organization dedicated to research and public debate on issues related to energy security. IAGS seeks to promote public awareness to the strong impact energy has on the world economy and security and to the myriad of technological and policy solutions that could help nations strengthen their energy security. WWW.IAGS.ORG 2 Introduction The first five years of the 21st century have brought a great deal of turmoil and instability to the global oil market. In November 2001, oil prices stood at under $20 a barrel. By April 2006, they crossed the $75 mark. Many reasons brought to the steep rise in oil prices among them growing demand in developing Asia, the collapse of major Russian oil company Yukos, lack of sufficient investment, terrorism and political instability in several oil producing countries, fear of military confrontation with Iran and increased hurricane activity in the U.S. This sudden rise in oil prices has already taken a toll on the global economy. The International Monetary Fund suggests that the recent oil price increases were the primary factor behind the decline of global GDP growth by 0.7–0.8 percentage points in 2005–06 relative to 2004. While oil prices impact global economy at large they impose a particular burden on energy intensive industries like the transportation and petrochemical industries. -
Envisioning Climate Change Using a Global Climate Model
Envisioning Climate Change Using a Global Climate Model Betsy Youngman, Mark Chandler, Linda Sohl, Mark Hafen, Tamara Ledley, Steve Ackerman, and Steve Kluge The Earth Exploration Toolbook is a collection in the National Science Digital Library (http://nsdl.org) and the Digital Library for Earth System Education (http://www.dlese.org). The National Science Foundation provides funding for the development of the collection under NSF Award #0226199. Permission to reuse and disseminate Earth Exploration Toolbook material for educational, non-commercial purposes is offered as long as attribution is retained, as per the terms of Creative Commons License Attribution - NonCommercial-ShareAlike 1.0 (http://creativecommons.org/licenses/by-nc-sa/1.0/). * * * * * The EdGCM software suite was developed under the auspices of the EdGCM Project of Columbia University and NASA’s Goddard Institute for Space Studies. © 2003-2010 Columbia University. All rights reserved. The EdGCM Project acknowledges the support of the National Science Foundation, Division of Atmospheric Science—Paleoclimate Program (NSF Award #0231400), and by NASA’s Climate Programs (NASA Award #NNG04GP65G). Contents 1. Envisioning Climate Change Using a Global Climate Model 1 2. Teaching Notes 3 3. Case Study 15 4. Step-by-Step Instructions 19 Part 1 - Download Software and Data 22 Part 2 - Climate Models 27 Part 3 - Generate a Time Series Plot of Temperature 31 Part 4 - Generate Temperature Maps Using EVA 37 Part 5 - Generate Snow and Ice Coverage Maps 43 Part 6 - Explore Climate Change -
Social Cost of Carbon: a Closer Look at Uncertainty
SEI Oxford Office 266 Banbury Road, Suite 193 Oxford OX2 7DL Tel: 01865 426316 Fax: 01865 421898 [email protected] Social Cost of Carbon: A Closer Look at Uncertainty Final project report November 2005 Final revision August 2005 Authors Thomas E Downing Stockholm Environment Institute, Oxford Office David Anthoff Environmental Change Institute, Oxford Ruth Butterfield Stockholm Environment Institute Megan Ceronsky Environmental Change Institute, Oxford Michael Grubb Imperial College Jiehan Guo Environmental Change Institute, Oxford Cameron Hepburn University of Oxford Chris Hope University of Cambridge Alistair Hunt Metroeconomica, Bath Ada Li Environmental Change Institute, Oxford Anil Markandya Metroeconomica, Bath Scott Moss Centre for Policy Modelling, MMU Anthony Nyong University of Jos Richard S.J. Tol University of Hamburg Paul Watkiss AEA Technology Environment Department for Environment, Food and Rural Affairs Nobel House 17 Smith Square London SW1P 3JR Telephone 020 7238 6000 Website: www.defra.gov.uk © Queen’s Printer and Controller of HMSO 2005 This document/publication is value added. If you wish to re-use, please apply for a Click-Use Licence for value added material at http://www.opsi.gov.uk/click-use/system/online/pLogin.asp. Alternatively applications can be sent to: Office of Public Sector Information Information Policy Team St Clements House 2-16 Colegate Norwich NR3 1BQ Fax: 01603 723000 e-mail: [email protected] Information about this publication and further copies are available from: Environment Policy Economics Defra Ashdown House 123 Victoria Street London SW1E 6DE Tel: 020 7082 8593 This document is also available on the Defra website. -
World Energy Outlook 2020
Acknowledgements This study was prepared by the World Energy Outlook (WEO) team in the Directorate of Sustainability, Technology and Outlooks (STO) in co-operation with other directorates and offices of the International Energy Agency. The study was designed and directed by Laura Cozzi, Chief Energy Modeller and Head of Division for Energy Demand Outlook, and Tim Gould, Head of Division for Energy Supply and Investment Outlooks. Stéphanie Bouckaert led on end-use modelling and analysis. Daniel Crow co-led the climate and environment analysis and led the behaviour analysis. Tae-Yoon Kim co-led the fuel supply analysis. Christophe McGlade co-led the climate and environment analysis, and the analysis of fuel supply. Paweł Olejarnik co-ordinated the oil, natural gas and coal supply modelling. Brent Wanner led the power sector modelling and analysis. Daniel Wetzel co- led the energy demand analysis. Key contributions from across the WEO team were from: Zakia Adam (lead on data management, contributed to fossil fuel subsidies), Lucila Arboleya Sarazola (investment and finance), Yasmine Arsalane (lead economic outlook, power), Simon Bennett (energy technology), Arthur Contejean (lead on energy access and developing countries), Davide D'Ambrosio (lead on data science, power), Amrita Dasgupta (energy access, climate and environment), Thibault Deletombe (industry), John Connor Donovan (power and data management), Musa Erdogan (industry and data management), Eric Fabozzi (power and electricity networks), Pablo Gonzalez (investment and finance), -
Linus Mattauch
Linus Mattauch Robert Bosch Juniorprofessor for Sustainable Use of Natural Resources, Technical University of Berlin and FutureLab Leader \Inequality, Human Well-Being and Development", Potsdam-Institute for Climate Impact Research. Sekretariat H 51, Straße des 17. Juni, D-10623 Berlin, Germany [email protected] • +49 (0) 30 314 25 466 • https://www.linusmattauch.info/ Education 2010-2015 PhD in Economics Technical University of Berlin, Fak. VI, Department \Economics of Climate Change", Mercator Research Institute on Global Commons and Climate Change (MCC) and Potsdam-Institute of Climate Impact Research (PIK) Advisors: Prof. Dr. Ottmar Edenhofer, Dr. Felix Creutzig Title of Dissertation: \Rent and Redistribution. The welfare implications of financing low-carbon public investment", summa cum laude 2009{2010 Pre-doctoral studies Technical University of Berlin 2008{2009 Visiting Student in Mathematics Ecole Normale Sup´erieure, Paris Courses in advanced probability theory and mathematical methods for economics 2004{2008 Master of Mathematics and Philosophy (MMathPhil) St. Hugh's College, University of Oxford. Specialisations: Probability theory, stochastic analysis, measure theory, philosophy of mathematics. Undergraduate dissertation: \The Brownian web" Overall grade of all parts of the Final Examinations and of the Honorary Moderations: \First class" 2003 Abitur [German A-level equivalent] Gymnasium Martino-Katharineum, Braunschweig Mathematics, French, Biology, History (1,0) Professional Experience since 4/2021 Technical University