Global Oil Depletion
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Prediction and Inference in the Hubbert-Deffeyes Peak Oil Model ∗
Prediction and Inference in the Hubbert-Deffeyes Peak Oil Model ∗ John R. Boycey Department of Economics University of Calgary July 2012 Abstract World oil production has grown at an annual rate of 4.86% since 1900. Yet, the Hubbert-Deffeyes `peak oil' (HDPO) model predicts that world oil production is about to enter a sustained period of decline. This paper investigates the empirical robustness of these claims. I document that the data for the HDPO model shows that the ratio of production-to-cumulative-production is decreasing in cumulative production, and that the rate of decrease is itself decreasing. The HDPO model attempts to fit a linear curve through this data. To do so, Hubbert and Deffeyes are forced to either exclude early data or to discount the validity of discoveries and reserves data. I show that an HDPO model which includes early data systematically under-predicts actual cumulative production and that the data also rejects the hypothesis that the fit is linear. These findings undermine claims that the HDPO model is capable of yielding meaningful measures of ultimately recoverable reserves. Key Words: Peak Oil, Exhaustible Resources, Exploration and Development JEL Codes: L71, Q31, Q41, O33 ∗I thank Chris Auld, Diane Bischak, Chris Bruce, Bob Cairns, Robin Carter, Ujjayant Chakravorty, Eugene Choo, Herb Emery, G´erardGaudet, Dan Gordon, James Hamilton, Mike Horn, Lutz Kilian, Dean Lueck, John Rowse, and Scott Taylor. I also thank the associate editor, James L. Smith, and two anonymous referees for helpful comments. All remaining errors are my own. yProfessor of Economics, Department of Economics, University of Calgary, 2500 University Drive, N.W., Calgary, Alberta, T2N 1N4, Canada. -
The Oil Depletion Protocol
1 THE RIMINI PROTOCOL an Oil Depletion Protocol ~ Heading Off Economic Chaos and Political Conflict During the Second Half of the Age of Oil As proposed at the 2003 Pio Manzu Conference, and to be the central theme of the next Pio Manzu Conference, Rimini, Italy on October 28-30, 2005 2 INTRODUCTION Soaring oil prices have drawn attention to the issue of the relative supply and demand for crude oil, which is the World’s premier fuel, having a central place in the modern economy. Knowledge of petroleum geology has made great advances in recent years, such that the conditions under which this resource was formed in Nature are now well understood. In fact, it transpires that the bulk of the World’s current production comes from deposits formed in two brief and exceptional epochs, 90 and 150 million years ago. This fact alone tells us that oil is a finite resource, which in turn means that it is subject to depletion. People ask: Are we running out of oil ? The simple answer is: Yes, we started doing that when we produced the first barrel. But Running Out is not the main issue as the resource will not be finally exhausted for very many years. The much more relevant question is: When will production reach a peak and begin to decline? Depletion: Growth, Peak and Decline Much debate and study has focused on the calculation of the date of peak, but this too misses the main point. It is not an isolated or pronounced peak but merely the highest point on a long and gentle production curve. -
Peak Oil, Peak Energy Mother Nature Bats Last
Peak Oil, Peak Energy Mother Nature Bats Last Martin Sereno 1 Feb 2011 (orig. talk: Nov 2004) Oil is the Lifeblood of Industrial Civilization • 80 million barrels/day, 1000 barrels/sec, 1 cubic mile/year • highly energy-dense • easy to transport, store • moves goods and people • allows us to fly (there will never be a battery-operated jet plane) • digs huge holes and puts up huge buildings • ballooned our food supply (fertilize, cultivate, irrigate, transport) • our 'stuff' is made from it (iPods to the roads themselves) • we're not "addicted to oil" -- that's like saying a person has an "addiction to blood" Where Oil Comes From • raw organic material for oil (e.g., from plankton) is present in low concentrations in ‘all’ sedimentary rocks, but esp. from two warm periods 90 million and 140 million years ago • temperature rises with depth (radioactivity, Kelvin’s mistake) • oil is generated in rocks heated to 60-120 deg Celsius • rocks at this temp. occur at different depths in different places (N.B.: water depth doesn't count) • oil is ‘cracked’ to natural gas at higher temps (deeper) • abiotic oil from “crystalline basement” is negligible, if it exists • exhausted oil fields do not refill Recoverable Oil • oil must collect in a “trap” to be practically recoverable • a trap is a permeable layer capped by an impermeable one • obvious traps: anticlines, domes (“oil in those hills”) • less obvious traps found by seismic imaging: turned up edges of salt domes, near buried meteorite crater (Mexico) • harder-to-get-at traps: shallow continental shelf (GOM) • even-harder-to-get-at traps: edge continental slope (Macondo, resevoir pressure: 12,000 pounds [6 tons] per sq inch) • essentially no oil in basaltic ocean floor or granitic basement (Used to be!) Second Largest Oilfield Cantarell used to supply 2% of world oil (water) Guzman, A.E. -
FULLTEXT01.Pdf
http://uu.diva-portal.org This is an author produced version of a paper published in Natural Resources Research. This paper has been peer-reviewed but does not include the final publisher proof-corrections or journal pagination. Citation for the published paper: Höök, M., Söderbergh, B., Jakobsson, K. & Aleklett, K. ”The evolution of giant oil field production behaviour” Natural Resources Research, 2009, Vol. 18, Issue 1: 39-56 URL: http://dx.doi.org/10.1007/s11053-009-9087-z Access to the published version may require subscription. Published in Natural Resources Research Volume 18, Number 1, March 2009, Pages 39-56 http://www.springerlink.com/content/142004322x2885nk/ The evolution of giant oil field production behaviour Mikael Höök*, Bengt Söderbergh*, Kristofer Jakobsson*, Kjell Aleklett* Contact e-mail: [email protected] * Uppsala University, Global Energy Systems, Department of physics and astronomy, Box 535, SE-751 21, Uppsala, Sweden http://www.fysast.uu.se/ges Abstract The giant oil fields of the world are only a small fraction of the total number of fields, but their importance is huge. Over 50% of the world oil production came from giants by 2005 and more than haft of the worlds ultimate reserves are found in giants. Based on this it is reasonable to assume that the future development of the giant oil fields will have a significant impact on the world oil supply. In order to better understand the giant fields and their future behaviour one must first understand their history. This study has used a comprehensive database on giant oil fields in order to determine their typical parameters, such as the average decline rate and life-times of giants. -
A Comparative History of Oil and Gas Markets and Prices: Is 2020 Just an Extreme Cyclical Event Or an Acceleration of the Energy Transition?
April 2020 A Comparative History of Oil and Gas Markets and Prices: is 2020 just an extreme cyclical event or an acceleration of the energy transition? Introduction Natural gas markets have gone through an unprecedented transformation. Demand growth for this relatively clean, plentiful, versatile and now relatively cheap fuel has been increasing faster than for other fossil fuels.1 Historically a `poor relation’ of oil, gas is now taking centre stage. New markets, pricing mechanisms and benchmarks are being developed, and it is only natural to be curious about the direction these developments are taking. The oil industry has had a particularly rich and well recorded history, making it potentially useful for comparison. However, oil and gas are very different fuels and compete in different markets. Their paths of evolution will very much depend on what happens in the markets for energy sources with which they compete. Their history is rich with dominant companies, government intervention and cycles of boom and bust. A common denominator of virtually all energy industries is a tendency towards natural monopoly because they have characteristics that make such monopolies common. 2 Energy projects tend to require multibillion – often tens of billions of - investments with long gestation periods, with assets that can only be used for very specific purposes and usually, for very long-time periods. Natural monopolies are generally resolved either by new entrants breaking their integrated market structures or by government regulation. Historically, both have occurred in oil and gas markets.3 As we shall show, new entrants into the oil market in the 1960s led to increased supply at lower prices, and higher royalties, resulting in the collapse of control by the major oil companies. -
Secure Fuels from Domestic Resources ______Profiles of Companies Engaged in Domestic Oil Shale and Tar Sands Resource and Technology Development
5th Edition Secure Fuels from Domestic Resources ______________________________________________________________________________ Profiles of Companies Engaged in Domestic Oil Shale and Tar Sands Resource and Technology Development Prepared by INTEK, Inc. For the U.S. Department of Energy • Office of Petroleum Reserves Naval Petroleum and Oil Shale Reserves Fifth Edition: September 2011 Note to Readers Regarding the Revised Edition (September 2011) This report was originally prepared for the U.S. Department of Energy in June 2007. The report and its contents have since been revised and updated to reflect changes and progress that have occurred in the domestic oil shale and tar sands industries since the first release and to include profiles of additional companies engaged in oil shale and tar sands resource and technology development. Each of the companies profiled in the original report has been extended the opportunity to update its profile to reflect progress, current activities and future plans. Acknowledgements This report was prepared by INTEK, Inc. for the U.S. Department of Energy, Office of Petroleum Reserves, Naval Petroleum and Oil Shale Reserves (DOE/NPOSR) as a part of the AOC Petroleum Support Services, LLC (AOC- PSS) Contract Number DE-FE0000175 (Task 30). Mr. Khosrow Biglarbigi of INTEK, Inc. served as the Project Manager. AOC-PSS and INTEK, Inc. wish to acknowledge the efforts of representatives of the companies that provided information, drafted revised or reviewed company profiles, or addressed technical issues associated with their companies, technologies, and project efforts. Special recognition is also due to those who directly performed the work on this report. Mr. Peter M. Crawford, Director at INTEK, Inc., served as the principal author of the report. -
Co2 Storage in Depleted Oilfields: Global Application Criteria for Carbon Dioxide Enhanced Oil Recovery
CO2 STORAGE IN DEPLETED OILFIELDS: GLOBAL APPLICATION CRITERIA FOR CARBON DIOXIDE ENHANCED OIL RECOVERY Technical Report Report Number: 2009-12 Date: December This document has been prepared for the Executive Committee of the IEA GHG Programme. It is not a publication of the Operating Agent, International Energy Agency or its Secretariat. INTERNATIONAL ENERGY AGENCY The International Energy Agency (IEA) was established in 1974 within the framework of the Organisation for Economic Co- operation and Development (OECD) to implement an international energy programme. The IEA fosters co-operation amongst its 26 member countries and the European Commission, and with the other countries, in order to increase energy security by improved efficiency of energy use, development of alternative energy sources and research, development and demonstration on matters of energy supply and use. This is achieved through a series of collaborative activities, organised under more than 40 Implementing Agreements. These agreements cover more than 200 individual items of research, development and demonstration. The IEA Greenhouse Gas R&D Programme is one of these Implementing Agreements. DISCLAIMER This report was prepared as an account of work sponsored by the IEA Greenhouse Gas R&D Programme. The views and opinions of the authors expressed herein do not necessarily reflect those of the IEA Greenhouse Gas R&D Programme, its members, the International Energy Agency, the organisations listed below, nor any employee or persons acting on behalf of any of them. In addition, none of these make any warranty, express or implied, assumes any liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed or represents that its use would not infringe privately owned rights, including any party’s intellectual property rights. -
The Politics of Oil
SYLLABUS PS 399 (CRN 58533): The Politics of Oil Oregon State University, School of Public Policy Spring 2012 (4 credits) Tue & Thur 4-5:50pm, Gilkey 113 Instructor: Tamas Golya Office: Gilkey 300C Office Hours: Tue & Thur 10-11am Phone (during office hours): 541-737-1352 Email: [email protected] “The American Way of Life is not negotiable.” Dick Cheney, Former US Vice President “The species Homo sapiens is not going to become extinct. But the subspecies Petroleum Man most certainly is.” Colin Campbell, Founder of the Association for the Study of Peak Oil Course Description The world’s economic and political developments of the last century played out against the backdrop of a steadily rising supply of energy, especially oil. There are signs that this period of “easy energy” is coming to an end, turning energy into a major economic and political issue in its own right. Peak Oil is a term used by geologists to describe the point in time at which the world’s annual conventional oil production reaches a maximum after which it inevitably declines. Recent evidence suggests that we may pass this peak in this decade. In a broader sense, Peak Oil also stands for the economic, political, and societal effects of a dramatically changing energy supply. These effects will create unprecedented problems, risks and opportunities for policy makers as well as for consumers and businesses. In part due to higher oil prices, the US has begun to catch up to this issue, as evidenced by the founding of a Peak Oil Caucus in the House of Representatives in 2005 and by the demand of former President Bush to find ways to cure “America’s addiction to oil”. -
Three Essays on Oil Scarcity, Global Warming and Energy Prices Matthew Riddle University of Massachusetts Amherst, [email protected]
University of Massachusetts Amherst ScholarWorks@UMass Amherst Open Access Dissertations 5-2012 Three essays on oil scarcity, global warming and energy prices Matthew Riddle University of Massachusetts Amherst, [email protected] Follow this and additional works at: https://scholarworks.umass.edu/open_access_dissertations Part of the Economics Commons Recommended Citation Riddle, Matthew, "Three essays on oil scarcity, global warming and energy prices" (2012). Open Access Dissertations. 596. https://scholarworks.umass.edu/open_access_dissertations/596 This Open Access Dissertation is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Open Access Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. THREE ESSAYS ON OIL SCARCITY, GLOBAL WARMING AND ENERGY PRICES A Dissertation Presented by MATTHEW RIDDLE Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2012 Department of Economics © Copyright by Matthew Riddle 2012 All Rights Reserved THREE ESSAYS ON OIL SCARCITY, GLOBAL WARMING AND ENERGY PRICES A Dissertation presented by MATTHEW RIDDLE Approved as to style and content by: __________________________________________________________ James K. Boyce, Chair __________________________________________________________ Michael Ash, Member __________________________________________________________ Erin Baker, Member ________________________________________________ Michael Ash, Department Chair Economics ACKNOWLEDGEMENTS I would like to thank my dissertation chair, James Boyce for his guidance and support throughout my time at UMass, and my committee members Michael Ash and Erin Baker for their thoughtful suggestions. I would also like to thank my wife, Allison, for her ideas and support. -
The Impact of the Decline in Oil Prices on the Economics, Politics and Oil Industry of Venezuela
THE IMPACT OF THE DECLINE IN OIL PRICES ON THE ECONOMICS, POLITICS AND OIL INDUSTRY OF VENEZUELA By Francisco Monaldi SEPTEMBER 2015 B | CHAPTER NAME ABOUT THE CENTER ON GLOBAL ENERGY POLICY The Center on Global Energy Policy provides independent, balanced, data-driven analysis to help policymakers navigate the complex world of energy. We approach energy as an economic, security, and environmental concern. And we draw on the resources of a world-class institution, faculty with real-world experience, and a location in the world’s finance and media capital. Visit us atenergypolicy. columbia.edu facebook.com/ColumbiaUEnergy twitter.com/ColumbiaUEnergy ABOUT THE SCHOOL OF INTERNATIONAL AND PUBLIC AFFAIRS SIPA’s mission is to empower people to serve the global public interest. Our goal is to foster economic growth, sustainable development, social progress, and democratic governance by educating public policy professionals, producing policy-related research, and conveying the results to the world. Based in New York City, with a student body that is 50 percent international and educational partners in cities around the world, SIPA is the most global of public policy schools. For more information, please visit www.sipa.columbia.edu THE IMPACT OF THE DECLINE IN OIL PRICES ON THE ECONOMICS, POLITICS AND OIL INDUSTRY OF VENEZUELA By Francisco Monaldi* SEPTEMBER 2015 *Francisco Monaldi is Baker Institute Fellow in Latin American Energy Policy and Adjunct Professor of Energy Economics at Rice University, Belfer Center Associate in Geopolitics of Energy at the Harvard Kennedy School, Professor at the Instituto de Estudios Superiores de Administracion (IESA) in Caracas, Venezuela, and Founding Director of IESA’s Center on Energy and the Environment. -
The Current Peak Oil Crisis
PEAK ENERGY, CLIMATE CHANGE, AND THE COLLAPSE OF GLOBAL CIVILIZATION _______________________________________________________ The Current Peak Oil Crisis TARIEL MÓRRÍGAN PEAK E NERGY, C LIMATE C HANGE, AND THE COLLAPSE OF G LOBAL C IVILIZATION The Current Peak Oil Crisis TARIEL MÓRRÍGAN Global Climate Change, Human Security & Democracy Orfalea Center for Global & International Studies University of California, Santa Barbara www.global.ucsb.edu/climateproject ~ October 2010 Contact the author and editor of this publication at the following address: Tariel Mórrígan Global Climate Change, Human Security & Democracy Orfalea Center for Global & International Studies Department of Global & International Studies University of California, Santa Barbara Social Sciences & Media Studies Building, Room 2006 Mail Code 7068 Santa Barbara, CA 93106-7065 USA http://www.global.ucsb.edu/climateproject/ Suggested Citation: Mórrígan, Tariel (2010). Peak Energy, Climate Change, and the Collapse of Global Civilization: The Current Peak Oil Crisis . Global Climate Change, Human Security & Democracy, Orfalea Center for Global & International Studies, University of California, Santa Barbara. Tariel Mórrígan, October 2010 version 1.3 This publication is protected under the Creative Commons (CC) "Attribution-NonCommercial-ShareAlike 3.0 Unported" copyright. People are free to share (i.e, to copy, distribute and transmit this work) and to build upon and adapt this work – under the following conditions of attribution, non-commercial use, and share alike: Attribution (BY) : You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work). Non-Commercial (NC) : You may not use this work for commercial purposes. -
Oil Depletion and the Energy Efficiency of Oil Production
Sustainability 2011, 3, 1833-1854; doi:10.3390/su3101833 OPEN ACCESS sustainability ISSN 2071-1050 www.mdpi.com/journal/sustainability Article Oil Depletion and the Energy Efficiency of Oil Production: The Case of California Adam R. Brandt Department of Energy Resources Engineering, Green Earth Sciences 065, 367 Panama St., Stanford University, Stanford, CA 94305-2220, USA; E-Mail: [email protected]; Fax: +1-650-724-8251 Received: 10 June 2011; in revised form: 1 August 2011 / Accepted: 5 August 2011 / Published: 12 October 2011 Abstract: This study explores the impact of oil depletion on the energetic efficiency of oil extraction and refining in California. These changes are measured using energy return ratios (such as the energy return on investment, or EROI). I construct a time-varying first-order process model of energy inputs and outputs of oil extraction. The model includes factors such as oil quality, reservoir depth, enhanced recovery techniques, and water cut. This model is populated with historical data for 306 California oil fields over a 50 year period. The model focuses on the effects of resource quality decline, while technical efficiencies are modeled simply. Results indicate that the energy intensity of oil extraction in California increased significantly from 1955 to 2005. This resulted in a decline in the life-cycle EROI from ≈6.5 to ≈3.5 (measured as megajoules (MJ) delivered to final consumers per MJ primary energy invested in energy extraction, transport, and refining). Most of this decline in energy returns is due to increasing need for steam-based thermal enhanced oil recovery, with secondary effects due to conventional resource depletion (e.g., increased water cut).