This Thesis Has Been Submitted in Fulfilment of the Requirements for a Postgraduate Degree (E.G

Total Page:16

File Type:pdf, Size:1020Kb

This Thesis Has Been Submitted in Fulfilment of the Requirements for a Postgraduate Degree (E.G This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use: • This work is protected by copyright and other intellectual property rights, which are retained by the thesis author, unless otherwise stated. • A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. • This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author. • The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author. • When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Mid-Late Holocene environmental change in northern Sweden: an investigation using fossil insect remains Sara Khorasani Thesis submitted in fulfilment of the degree of Doctor of Philosophy School of GeoSciences The University of Edinburgh September 2013 Declaration The work presented in this thesis is the author‘s own, and, except where specifically stated otherwise, is not based on the published or unpublished work of others. The work has not previously been submitted for any other degree or professional qualification. Signature: Date: Abstract For the first time, Mid-Late Holocene insect fossil assemblages were studied from inland northern Sweden, producing new evidence relating to both natural environmental changes and human impacts. The insect fossil assemblages from natural deposits indicated extensive woodland with old and dead wood and a deep litter layer of decaying matter. Human impacts became apparent from the 1st millennium AD, when the landscape around many sites became more open, with elements of heath. It is difficult to determine whether these changes were driven purely by human activity, indicating subtle landscape change as a result of periodic exploitation, or if natural influences were significant in creating this landscape structure. If connected with human use, then the impacts of periodic exploitation can be seen to be subtle and localised, but notable enough to leave tell- tale signs in the insect fossil record. These relatively subtle changes in the environment can be compared with the more severe effects found during periods of historically known permanent settlement, where extensively open and disturbed habitats are suggested in the insect fossil record. Species associated with arable and pasture land are restricted to the last few hundred years, in association with settled occupation. The climate signal in the insect fossil record has been weak, and use of the Mutual Climatic Range method (MCR) has not revealed evidence of climatic fluctuations during the Late Holocene period. i Acknowledgements This research was funded by the Leverhulme Trust as part of the multidisciplinary project ‗Footsteps on the edge of Thule‘. Thanks go to my main supervisor Eva Panagiotakopulu, who has helped to guide and support me through the process, and to my other supervisors, Ian Ralston and Roger Engelmark, for their input. Further thanks to staff at the University of Umeå, including Phil Buckland for providing the samples taken from the site of Sorsele. Paul Buckland is thanked for his help during fieldwork in northern Sweden. The help and patience of Emma Tetlow and Kim Vickers were extremely valuable in the lab, and their willingness to share their knowledge is much appreciated. Gratitude is extended to Dr Graham Rotheray and Richard Lyszkowski for making great efforts to help me to identify rogue species during consultation of the National Museum of Scotland‘s insect collection. Finally, I would like thank my family, friends and office mates for their ongoing support and encouragement, without which the completion of this thesis would not have been possible. ii Contents 1 Introduction .................................................................................................... 1 1.1 Aims of thesis ................................................................................................ 2 2 The Study Area ............................................................................................... 4 2.1 Terminology ................................................................................................... 4 3 Modern Ecological Setting ............................................................................ 6 3.1 Topography .................................................................................................... 6 3.2 Soils................................................................................................................ 6 3.3 Peatland .......................................................................................................... 6 3.4 Vegetation ...................................................................................................... 8 3.5 Climate ......................................................................................................... 12 3.6 Flora and fauna ............................................................................................ 13 3.6.1 Invertebrates ....................................................................................... 13 3.6.2 Vertebrates ......................................................................................... 15 4 Environmental History of Northern Sweden ............................................. 18 4.1 Natural environmental change ..................................................................... 18 4.2 Vegetation development and climate ........................................................... 22 5 Cultural Setting ............................................................................................ 31 5.1 The archaeological evidence ........................................................................ 31 5.2 Human impacts in the palaeoecological record ........................................... 36 5.2.1 Early evidence for human impacts –hunters and herders .................. 36 5.2.2 Early agriculture ................................................................................. 42 5.2.2.1 South and Central Sweden...................................................... 42 5.2.2.2 Northern Sweden .................................................................... 44 6 Previous Palaeoentomological Work in Scandinavia................................ 49 6.1 The development of palaeoentomology in Scandinavia – an introduction .. 49 6.2 Southern Sweden ......................................................................................... 50 6.3 Northern Sweden ......................................................................................... 54 6.4 Norway ......................................................................................................... 55 6.5 Denmark ....................................................................................................... 57 6.6 Finland ......................................................................................................... 58 7 Methodology ................................................................................................. 60 7.1 Site selection ................................................................................................ 60 7.2 Sampling ...................................................................................................... 61 7.3 Taphonomy and preservation ....................................................................... 62 7.4 Sample processing ....................................................................................... 64 7.4.1 Insects ................................................................................................ 64 7.4.2 Plant macrofossils .............................................................................. 65 7.4.3 Charcoal ............................................................................................. 65 7.5 Radiocarbon dating ...................................................................................... 66 7.6 Interpretation ................................................................................................ 67 iii 7.7 Mutual Climatic Range ................................................................................ 69 7.8 Quantitative analysis .................................................................................... 71 7.8.1 Ecological groupings ......................................................................... 72 7.8.2 Statistical analysis .............................................................................. 72 8 Norrheden ..................................................................................................... 77 8.1 Site description............................................................................................. 77 8.2 Sampling ...................................................................................................... 80 8.3 Dating ........................................................................................................... 82 8.4 Preservation.................................................................................................. 82 8.5 Results .......................................................................................................... 82 8.5.1 Phase I (0-8cm: Samples 2a
Recommended publications
  • Coleoptera, Carabidae) 517 Doi: 10.3897/Zookeys.100.1543 Research Article Launched to Accelerate Biodiversity Research
    A peer-reviewed open-access journal ZooKeys 100: 517–532What (2011)do we know about winter active ground beetles (Coleoptera, Carabidae) 517 doi: 10.3897/zookeys.100.1543 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research What do we know about winter active ground beetles (Coleoptera, Carabidae) in Central and Northern Europe? Radomir Jaskuła, Agnieszka Soszyńska-Maj Department of Invertebrate Zoology & Hydrobiology, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland Corresponding authors: Radomir Jaskuła ([email protected]), Agnieszka Soszyńska-Maj ([email protected]) Academic editor: J. Noordijk | Received 26 November 2009 | Accepted 8 April 2010 | Published 20 May 2011 Citation: Jaskuła R, Soszyńska-Maj A (2011) What do we know about winter active ground beetles (Coleoptera, Carabidae) in Central and Northern Europe? In: Kotze DJ, Assmann T, Noordijk J, Turin H, Vermeulen R (Eds) Carabid Beetles as Bioindicators: Biogeographical, Ecological and Environmental Studies. ZooKeys 100: 517–532. doi: 10.3897/ zookeys.100.1543 Abstract This paper summarizes the current knowledge on winter active Carabidae in Central and Northern Eu- rope. In total 73 winter active species are listed, based on literature and own observations. Ground beetles are among the three most numerous Coleoptera families active during the autumn to spring period. The winter community of Carabidae is composed both of larvae (mainly autumn breeding species) and adults, as well as of epigeic species and those inhabiting tree trunks. Supranivean fauna is characterized by lower species diversity than the subnivean fauna. The activity of ground beetles decreases in late autumn, is lowest during mid-winter and increases in early spring.
    [Show full text]
  • Green-Tree Retention and Controlled Burning in Restoration and Conservation of Beetle Diversity in Boreal Forests
    Dissertationes Forestales 21 Green-tree retention and controlled burning in restoration and conservation of beetle diversity in boreal forests Esko Hyvärinen Faculty of Forestry University of Joensuu Academic dissertation To be presented, with the permission of the Faculty of Forestry of the University of Joensuu, for public criticism in auditorium C2 of the University of Joensuu, Yliopistonkatu 4, Joensuu, on 9th June 2006, at 12 o’clock noon. 2 Title: Green-tree retention and controlled burning in restoration and conservation of beetle diversity in boreal forests Author: Esko Hyvärinen Dissertationes Forestales 21 Supervisors: Prof. Jari Kouki, Faculty of Forestry, University of Joensuu, Finland Docent Petri Martikainen, Faculty of Forestry, University of Joensuu, Finland Pre-examiners: Docent Jyrki Muona, Finnish Museum of Natural History, Zoological Museum, University of Helsinki, Helsinki, Finland Docent Tomas Roslin, Department of Biological and Environmental Sciences, Division of Population Biology, University of Helsinki, Helsinki, Finland Opponent: Prof. Bengt Gunnar Jonsson, Department of Natural Sciences, Mid Sweden University, Sundsvall, Sweden ISSN 1795-7389 ISBN-13: 978-951-651-130-9 (PDF) ISBN-10: 951-651-130-9 (PDF) Paper copy printed: Joensuun yliopistopaino, 2006 Publishers: The Finnish Society of Forest Science Finnish Forest Research Institute Faculty of Agriculture and Forestry of the University of Helsinki Faculty of Forestry of the University of Joensuu Editorial Office: The Finnish Society of Forest Science Unioninkatu 40A, 00170 Helsinki, Finland http://www.metla.fi/dissertationes 3 Hyvärinen, Esko 2006. Green-tree retention and controlled burning in restoration and conservation of beetle diversity in boreal forests. University of Joensuu, Faculty of Forestry. ABSTRACT The main aim of this thesis was to demonstrate the effects of green-tree retention and controlled burning on beetles (Coleoptera) in order to provide information applicable to the restoration and conservation of beetle species diversity in boreal forests.
    [Show full text]
  • QQR 7 Information Pack
    7th Quinquennial Review of Schedules 5 and 8 of the Wildlife and Countryside Act (1981) Information Pack (version 2.21) 14 May 2021 1 Version 2.2: Four reptiles and two seals removed from the EPS list (Annex 1); one EPS amphibian and two EPS reptiles that are all Endangered removed from Annex 2 – these species were included in Version 2 and/or 2.1 in error. See Annex 1 and Annex 2 for further information. 1. Introduction Every five years, the country nature conservation bodies (Natural England, Natural Resources Wales and NatureScot), working jointly through the UK Joint Nature Conservation Committee (JNCC), review Schedules 5 and 8 of the Wildlife and Countryside Act (WCA) 1981. The review will provide recommendations to the Secretary of State for the Environment, Food and Rural Affairs and to Ministers for the Environment in the Scottish Government and Welsh Government for changes to these schedules2. This is known as the Quinquennial Review (QQR). As part of the QQR, stakeholders are provided with the opportunity to propose changes to the species on the schedules. This Information Pack has been produced for the 7th QQR (QQR 7). It is important to note that this QQR differs from previous ones. The Information Pack explains the new selection criteria, provides a timetable, and explains the process to be used by stakeholders. Contact details of the QQR Inter-agency Group who are managing QQR 7, are listed in Section 5. In addition, the Information Pack provides details of how to complete the online survey through which stakeholders propose new species for inclusion on, or removal of existing species from Schedules 5 and 8, or propose a change to how species are protected on the schedules.
    [Show full text]
  • The Compositional and Configurational Heterogeneity of Matrix Habitats Shape Woodland Carabid Communities in Wooded-Agricultural Landscapes
    The compositional and configurational heterogeneity of matrix habitats shape woodland carabid communities in wooded-agricultural landscapes Article Accepted Version Neumann, J. L., Griffiths, G. H., Hoodless, A. and Holloway, G. J. (2016) The compositional and configurational heterogeneity of matrix habitats shape woodland carabid communities in wooded-agricultural landscapes. Landscape Ecology, 31 (2). pp. 301-315. ISSN 0921-2973 doi: https://doi.org/10.1007/s10980-015-0244-y Available at http://centaur.reading.ac.uk/46912/ It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing . To link to this article DOI: http://dx.doi.org/10.1007/s10980-015-0244-y Publisher: Springer All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading’s research outputs online The compositional and configurational heterogeneity of matrix habitats shape woodland carabid communities in wooded- agricultural landscapes. Jessica L. Neumann1,3*, Geoffrey H. Griffiths1, Andrew Hoodless2 and Graham J. Holloway3 1 Department of Geography and Environmental Science, University of Reading, Reading, UK 2 Game and Wildlife Conservation Trust, Fordingbridge, Hampshire, UK 3 Centre for Wildlife Assessment and Conservation, Department of Biological Sciences, University of Reading, Reading, UK Abstract Context Landscape heterogeneity (the composition and configuration of matrix habitats) plays a major role in shaping species communities in wooded-agricultural landscapes.
    [Show full text]
  • Ohara\Catalogues\World Genera\Tach
    WORLD GENERA OF THE TACHINIDAE (DIPTERA) AND THEIR REGIONAL OCCURRENCE by James E. O’Hara1 23 February 2005 Version 1.0 ________________________ 1 Invertebrate Biodiversity, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario, Canada, K1A 0C6. E-mail: [email protected]. TABLE OF CONTENTS Click on a page number to go to the page indicated Foreword ............................................................................................................................... 2 Biogeographic summary ....................................................................................................... 3 Acknowledgements ............................................................................................................... 3 Table of genera and their regional occurrence ...................................................................... 4 References ........................................................................................................................... 66 Select a letter to go directly to corresponding genus in list of world genera A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z FOREWORD The following table is a listing of the tachinid genera of the world with their regional occurrence. It was compiled from the generic names and distributions given in the most recent regional catalogues, as listed here, and brought up-to-date using information from subsequently published papers. Regional catalogues Nearctic Region O’Hara & Wood (2004) Neotropical
    [Show full text]
  • Urbanization Effects on Carabid Diversity in Boreal Forests
    Eur. J. Entomol. 100: 73-80, 2003 ISSN 1210-5759 Urbanization effects on carabid diversity in boreal forests Stephen J. VENN*, D. Johan KOTZE and Ja ri NIEMELA Department ofEcology and Systematics, Division ofPopulation Biology, PO Box 65 (Viikinkaari 1), FIN-00014, University of Helsinki, Helsinki, Finland Key words. Boreal forest, carabid beetles, urbanization, urban forests, urban green space and urban-rural gradient Abstract. Carabid abundance, species richness and diversity were compared along an urban-rural gradient in Helsinki, Finland. Increased urbanization was found to result in significant reductions in species richness, though the reductions in abundance and diversity were not statistically significant. Forest habitat-specialist species were scarce in rural sites and virtually absent from urban and suburban sites. There was no evidence of higher diversity at intermediate disturbance levels (suburban sites), as predicted by the intermediate disturbance hypothesis. Species with flight ability and the ability to utilize open habitat were more predominant in urban and suburban sites. Flightless species were more predominant in rural and suburban sites. Carabid abundance data were suffi­ cient to reveal the negative impact of urbanization, so similar studies could be conducted in regions where carabid taxonomy is poorly known. Species composition patterns do, however, provide invaluable information. To conclude, if biodiversity is to be main­ tained in urban areas, priority must be given to the provision of those habitat features which are essential for sensitive species, such as decaying wood and wet microhabitats. These must be incorporated into urban green networks in particular, if biodiversity and species other than common generalists are to benefit from them.
    [Show full text]
  • Disturbance and Recovery of Litter Fauna: a Contribution to Environmental Conservation
    Disturbance and recovery of litter fauna: a contribution to environmental conservation Vincent Comor Disturbance and recovery of litter fauna: a contribution to environmental conservation Vincent Comor Thesis committee PhD promotors Prof. dr. Herbert H.T. Prins Professor of Resource Ecology Wageningen University Prof. dr. Steven de Bie Professor of Sustainable Use of Living Resources Wageningen University PhD supervisor Dr. Frank van Langevelde Assistant Professor, Resource Ecology Group Wageningen University Other members Prof. dr. Lijbert Brussaard, Wageningen University Prof. dr. Peter C. de Ruiter, Wageningen University Prof. dr. Nico M. van Straalen, Vrije Universiteit, Amsterdam Prof. dr. Wim H. van der Putten, Nederlands Instituut voor Ecologie, Wageningen This research was conducted under the auspices of the C.T. de Wit Graduate School of Production Ecology & Resource Conservation Disturbance and recovery of litter fauna: a contribution to environmental conservation Vincent Comor Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Monday 21 October 2013 at 11 a.m. in the Aula Vincent Comor Disturbance and recovery of litter fauna: a contribution to environmental conservation 114 pages Thesis, Wageningen University, Wageningen, The Netherlands (2013) With references, with summaries in English and Dutch ISBN 978-94-6173-749-6 Propositions 1. The environmental filters created by constraining environmental conditions may influence a species assembly to be driven by deterministic processes rather than stochastic ones. (this thesis) 2. High species richness promotes the resistance of communities to disturbance, but high species abundance does not.
    [Show full text]
  • Boreal Forest Fertilization Leads to Functional Homogenization of Ground Beetle Assemblages
    Received: 10 September 2020 | Accepted: 19 February 2021 DOI: 10.1111/1365-2664.13877 RESEARCH ARTICLE Boreal forest fertilization leads to functional homogenization of ground beetle assemblages Antonio Rodríguez1 | Anne- Maarit Hekkala1 | Jörgen Sjögren1 | Joachim Strengbom2 | Therese Löfroth1 1Department of Wildlife, Fish, and Environmental Studies, Swedish University Abstract of Agricultural Sciences (SLU), Umeå, 1. Intensive fertilization of young spruce forest plantations (i.e. ‘nutrient optimiza- Sweden tion’) has the potential to meet increasing demands for carbon sequestration and 2Department of Ecology, Swedish University of Agricultural Sciences (SLU), Uppsala, biomass production from boreal forests. However, its effects on biodiversity, other Sweden than the homogenization of ground- layer plant communities, are widely unknown. Correspondence 2. We sampled ground beetles (Coleoptera: Carabidae) in young spruce forest plan- Antonio Rodríguez tations of southern Sweden, within a large- scale, replicated ecological experiment Email: [email protected] initiated in 2012, where half of the forest stands were fertilized every second year. Funding information We assessed multi- scale effects of forest fertilization on ground beetle diversity Formas; Carl Tryggers Foundation for Scientific Research and community assembly, 4 years after commencement of the experiment. 3. We found that nutrient optimization had negative effects on ground beetle diver- Handling Editor: Júlio Louzada sity at multiple spatial scales, despite having negligible effects on species richness. At the local scale, ground beetle species had lower variation in body size at fer- tilized sites, resulting in within- site functional homogenization. At the landscape scale, fertilized sites, with higher basal area and lower bilberry cover, filtered carabid traits composition to larger body sizes, generalist predators and summer breeding species.
    [Show full text]
  • Laboratory Methods for Rearing Soil Beetles (Coleoptera)
    ZOOLOGICA Bolesław Burakowski Laboratory methods for rearing soil beetles (Coleoptera) Polska Akademia Nauk Muzeum i Instytut Zoologii Warszawa 1993 http://rcin.org.pl POLSKA AKADEMIA NAUK MUZEUM I INSTYTUT ZOOLOGII MEMORABILIA ZOOLOGICA 46 Bolesław Burakowski Laboratory methods for rearing soil beetles (Coleopter a) WARSZAWA 1993 http://rcin.org.pl MEMORABILIA ZOOLOGICA, 46, 1993 World-list abbreviation: Memorabilia Zool. EDITORIAL STAFF Editor — in — chief — Bohdan Pisarski Asistant editor — Wojciech Czechowski Secretary — Katarzyna Cholewicka-Wiśniewska Editor of the volume — Wojciech Czechowski Publisher Muzeum i Instytut Zoologii PAN ul. Wilcza 64, 00-679 Warszawa PL ISSN 0076-6372 ISBN 83-85192-12-3 © Copyright by Muzeum i Instytut Zoologii PAN Warszawa 1993 Nakład 1000 egz. Ark. wyd. 5,5. Ark. druk 4 Druk: Zakład Poligraficzno-Wydawniczy „StangraF’ http://rcin.org.pl Bolesław Bu r a k o w sk i Laboratory methods for rearing soil beetles ( Coleoptera) INTRODUCTION Beetles are the most numerous group of insects; nearly 300,000 species have been described up till now, and about 6,000 of these occur in Poland. The morphological variability and different modes of life result from beetle ability to adapt to all kinds of habitats. Terrestrial and soil living forms dominate. Beetles undergo a complete metamorphosis and most species live in soil during at least one of the stages. They include predators, herbivores, parasites and sapro- phagans, playing a fairly significant role in nature and in man’s economy. Our knowledge of beetles, even of the common species, is insufficient. In spite of the fact that the beetle fauna of Central Europe has been studied relatively well, the knowledge accumulated is generally limited to the adults, while the immature stages have not been adequately studied.
    [Show full text]
  • Integrating Cultural Tactics Into the Management of Bark Beetle and Reforestation Pests1
    DA United States US Department of Proceedings --z:;;-;;; Agriculture Forest Service Integrating Cultural Tactics into Northeastern Forest Experiment Station the Management of Bark Beetle General Technical Report NE-236 and Reforestation Pests Edited by: Forest Health Technology Enterprise Team J.C. Gregoire A.M. Liebhold F.M. Stephen K.R. Day S.M.Salom Vallombrosa, Italy September 1-3, 1996 Most of the papers in this publication were submitted electronically and were edited to achieve a uniform format and type face. Each contributor is responsible for the accuracy and content of his or her own paper. Statements of the contributors from outside the U.S. Department of Agriculture may not necessarily reflect the policy of the Department. Some participants did not submit papers so they have not been included. The use of trade, firm, or corporation names in this publication is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the U.S. Department of Agriculture or the Forest Service of any product or service to the exclusion of others that may be suitable. Remarks about pesticides appear in some technical papers contained in these proceedings. Publication of these statements does not constitute endorsement or recommendation of them by the conference sponsors, nor does it imply that uses discussed have been registered. Use of most pesticides is regulated by State and Federal Law. Applicable regulations must be obtained from the appropriate regulatory agencies. CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish and other wildlife - if they are not handled and applied properly.
    [Show full text]
  • New and Unpublished Data About Bulgarian Ground Beetles from the Tribes Pterostichini, Sphodrini, and Platynini (Coleoptera, Carabidae)
    Acta Biologica Sibirica 7: 125–141 (2021) doi: 10.3897/abs.7.e67015 https://abs.pensoft.net RESEARCH ARTICLE New and unpublished data about Bulgarian ground beetles from the tribes Pterostichini, Sphodrini, and Platynini (Coleoptera, Carabidae) Teodora Teofilova1 1 Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd., 1000, Sofia, Bulgaria. Corresponding author: Teodora Teofilova ([email protected]) Academic editor: R. Yakovlev | Received 6 April 2021 | Accepted 22 April 2021 | Published 20 May 2021 http://zoobank.org/53E9E1F4-2338-494C-870D-F3DA4AA4360B Citation: Teofilova T (2021) New and unpublished data about Bulgarian ground beetles from the tribes Pterostichini, Sphodrini, and Platynini (Coleoptera, Carabidae). Acta Biologica Sibirica 7: 125–141. https://doi. org/10.3897/abs.7.e67015 Abstract Bulgarian ground beetle (Coleoptera, Carabidae) fauna is relatively well studied but there are still many species and regions in the country which are not well researched. The present study aims at complementing the data about the distribution of the carabids from the tribes Pterostichini, Spho- drini, and Platynini, containing many diverse, interesting, and endemic species. It gives new records for 67 species and 23 zoogeographical regions in Bulgaria. The material was collected in the period from 1926 to 2021 through different sampling methods. Twenty-three species are recorded for the first time in different regions. Six species are reported for the second time in the regions where they were currently collected. Thirty-one species have not been reported for more than 20 years in Eastern and Middle Stara Planina Mts., Kraishte region, Boboshevo-Simitli valley, Sandanski-Petrich valley, Lyulin Mts., Vitosha Mts., Rila Mts., Pirin Mts., Slavyanka Mts., Thracian Lowland, and Sakar-Tundzha re- gion.
    [Show full text]
  • Two New Fossil Species of Omaliinae from Baltic Amber
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Arthropod Systematics and Phylogeny Jahr/Year: 2016 Band/Volume: 74 Autor(en)/Author(s): Zanetti Adriano, Perreau Michel, Solodovnikov Alexey Yurevitsh Artikel/Article: Two new fossil species of Omaliinae from Baltic amber (Coleoptera: Staphylinidae) and their significance for understanding the Eocene-Oligocene climate 53-64 74 (1): 53 – 64 14.6.2016 © Senckenberg Gesellschaft für Naturforschung, 2016. Two new fossil species of Omaliinae from Baltic amber (Coleoptera: Staphylinidae) and their significance for understanding the Eocene-Oligocene climate Adriano Zanetti 1, Michel Perreau *, 2 & Alexey Solodovnikov 3 1 Museo Civico di Storia Naturale, Lungadige Porta Vittoria 9, I-37129 Verona, Italy; Adriano Zanetti [[email protected]] — 2 Université Paris Diderot, Sorbonne Paris Cité, IUT Paris Diderot, case 7139, 5, rue Thomas Mann, F-75205 Paris cedex 13 France; Michel Perreau * [michel. [email protected]] — 3 Department of Entomology, Zoological Museum, Natural History Museum of Denmark, Universitetsparken 15, Copenhagen 2100, Denmark; Alexey Solodovnikov [[email protected]] — * Correspond ing author Accepted 23.ii.2016. Published online at www.senckenberg.de/arthropod-systematics on 03.vi.2016. Editor in charge: Christian Schmidt. Abstract Two fossil species, Paraphloeostiba electrica sp.n. and Phyllodrepa antiqua sp.n. (Staphylinidae, Omaliinae), are described from Baltic amber. Their external and relevant internal structures are illustrated using propagation phase contrast synchrotron microtomography. The palaeobiogeogaphy of the two genera, the thermophilous Paraphloeostiba, the temperate Phyllodrepa, as well as palaeoenvironment of the amber forest are discussed in light of the new findings. Key words Omaliini, Eusphalerini, synchrotron microtomography, temperate, thermophilous.
    [Show full text]