Clinical Potential of SLAMF7 Antibodies – Focus on Elotuzumab in Multiple Myeloma

Total Page:16

File Type:pdf, Size:1020Kb

Clinical Potential of SLAMF7 Antibodies – Focus on Elotuzumab in Multiple Myeloma Journal name: Drug Design, Development and Therapy Article Designation: Review Year: 2017 Volume: 11 Drug Design, Development and Therapy Dovepress Running head verso: Friend et al Running head recto: Clinical potential of SLAMF7 antibodies open access to scientific and medical research DOI: http://dx.doi.org/10.2147/DDDT.S98053 Open Access Full Text Article REVIEW Clinical potential of SLAMF7 antibodies – focus on elotuzumab in multiple myeloma Reed Friend Abstract: Elotuzumab is one of the first monoclonal antibodies to be approved for the treatment Manisha Bhutani of multiple myeloma. It is a humanized immunoglobulin G kappa (IgGκ) antibody that targets Peter M Voorhees signaling lymphocytic activation molecule family member 7 (SLAMF7), a surface marker Saad Z Usmani that is highly expressed on normal and malignant plasma cells. This review summarizes the preclinical and clinical data that led to the approval of elotuzumab, along with a discussion on Department of Hematologic Oncology & Blood Disorders, Levine the ongoing and future clinical investigations. Cancer Institute, Carolinas Healthcare Keywords: multiple myeloma, relapsed, refractory, treatment, elotuzumab, SLAMF7, CS1 System, UNC School of Medicine, Charlotte, NC, USA Introduction Multiple myeloma (MM) is a clonal plasma cell malignancy that usually presents with a monoclonal protein in serum or urine, anemia, renal insufficiency and bone For personal use only. disease. Although MM represents ~10% of hematologic malignancies in the US with a median age of 69 years at diagnosis, the annual incidence of MM has been rising steadily over the past decade in the US, with a projected 30,000 new cases in 2016.1 This may be primarily driven by the increment in the proportion of the aging popula- tion coupled with an increased awareness about the disease due to the development of novel agents for treatment of MM. In comparison with the 1990s, the survival of MM patients has increased 4-fold, but many patients experience disease relapse and may eventually develop disease that is refractory to all approved agents.1 Therefore, there remains an impetus to understand drug resistance mechanisms and develop novel drug classes and treatment strategies based on disease biology. During relapse, patients may present with different burdens of disease and clinical symptoms that Drug Design, Development and Therapy downloaded from https://www.dovepress.com/ by 54.70.40.11 on 31-Dec-2018 may also be complicated by other co-morbidities (diabetes, heart disease, chronic obstructive pulmonary disease, etc.) – this adds another dimension to the intricacy of their care. Immunotherapy is a broad terminology applied to several strategies being employed in cancer medicine. These strategies include monoclonal antibodies (mAbs), antibody–drug conjugates and various adoptive cellular therapies (vaccines, natural killer [NK] cells, T cells, dendritic cells, etc.), with the last deemed as the most bona fide “immunotherapy” approach. The mAbs may target the cancer cell, its micro-environment or the immune system (eg, checkpoint inhibition). With the success of mAb therapy in the treatment of solid and hematologic malignancies, Correspondence: Saad Z Usmani several targets are now being explored in MM. In this review, we focus on signaling Levine Cancer Institute, Carolinas Healthcare System, UNC School of lymphocytic activation molecule family member 7 (SLAMF7) as a therapeutic target Medicine, Charlotte, NC, USA in MM and the relevant preclinical and clinical data of the approved anti-SLAMF7 Email saad.usmani@carolinashealthcare. org mAb elotuzumab (Elo). submit your manuscript | www.dovepress.com Drug Design, Development and Therapy 2017:11 893–900 893 Dovepress © 2017 Friend et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you http://dx.doi.org/10.2147/DDDT.S98053 hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). Powered by TCPDF (www.tcpdf.org) 1 / 1 Friend et al Dovepress SLAMF7 – expression on human cytogenetic abnormalities or molecular subgroup by gene cells and function expression profiling.4 It was with this in mind Hsi et al SLAMF7 is a signaling lymphocytic activation molecule F7, developed a panel of murine and humanized mAbs to human previously known as cell surface 1, CS1 (CCND3 subset 1, SLAMF7 to validate this protein as a potential target for the CD2-like receptor-activating cytotoxic cells [CRACC]). treatment of MM. SLAMF7 was analyzed by gene expression It is a cell surface protein and a member of the signaling profiling and immunohistochemistry of both normal and MM lymphocytic activation molecule family, which has been patient samples. Interestingly, it has been observed that the identified on NK cells and is critical for NK cell functions SLAMF7 gene is located on chromosome 1q, amplifications such as adhesion.2 By examining the expressed sequence of which are frequent in aggressive myeloma and linked to tag database for CD2-like molecules,3 a novel leukocyte early myeloma-related death in part due to overexpression cell surface receptor of the CD2 family called CRACC was of the cell cycle regulator CKS1B.6 identified. CRACC appears to trigger the NK cell-mediated cytotoxicity through a unique SLAM-associated protein- Elo – preclinical data independent extracellular signal-regulated kinase (ERK)- Elo is a humanized IgGκ mAb that targets SLMAF7. It dependent pathway.3 Hsi et al4 confirmed that other normal mediates MM cell killing via NK cell activation first dem- lymphocyte subsets, such as NK cells, NK-like T cells, CD8+ onstrated by Tai et al5 who showed that the novel humanized T cells, activated monocytes and dendritic cells, also express anti-SLAMF7 mAb HuLuc63 induced antibody-dependent SLAMF7, although at lower levels than normal plasma cells. cellular cytotoxicity (ADCC) against human MM cells In 2008, they showed that normal plasma cells and MM cells (Figure 1).5 The same group also found that gene expres- express high levels of SLAMF7 messenger RNA (mRNA) sion of SLAMF7 appears most highly in primary myeloma and protein. This observation eventually led to the develop- cells and cell lines and is not detected at significant levels in ment of a panel of murine and humanized mAbs to human normal tissues and nonmalignant cells. Elo showed in vivo efficacy in mouse xenograft models of MM by inhibition of For personal use only. SLAMF7 to validate this protein as a potential target for the treatment of MM.4 MM cell adhesion to bone marrow stromal cells.4,5 Although this activity was limited as a single agent in preclinical SLAMF7 – expression on malignant studies, immunomodulatory agents such as lenalidomide PCs appeared to enhance the preclinical efficacy of Elo through Both plasma cells and MM cells appear to express high levels their potentiation of NK-cell-mediated ADCC and immune of SLAMF7 mRNA and protein, an observation confirmed function. Furthermore, the combination of Elo with dif- in animal models, human cell lines and primary patient ferent classes of agents, such as the proteasome inhibitor samples.4,5 This high expression of SLAMF7 on human MM bortezomib, has been shown to enhance immune lysis of cells appears to be independent of the presence of metaphase myeloma by enhancing Elo-mediated antibody-dependent $ (ORWX]XPDE Drug Design, Development and Therapy downloaded from https://www.dovepress.com/ by 54.70.40.11 on 31-Dec-2018 'LUHFWDFWLYDWLRQ 1DWXUDONLOOHU FHOO % (ORWX]XPDE 6/$0) 0\HORPD FHOOGHDWK 7DJJLQJIRUUHFRJQLWLRQ 0\HORPDFHOO 0\HORPDFHOO Figure 1 Elotuzumab: proposed mechanism of action in myeloma. Notes: (A) Direct natural killer (NK) cell activation by elotuzumab. (B) Antibody-dependent NK cell-mediated cytotoxicity. Abbreviation: SLAMF7, signaling lymphocytic activation molecule family member 7. 894 submit your manuscript | www.dovepress.com Drug Design, Development and Therapy 2017:11 Dovepress Powered by TCPDF (www.tcpdf.org) 1 / 1 Dovepress Clinical potential of SLAMF7 antibodies cell-mediated cytotoxicity.6 Based on the preclinical ratio- on as-needed basis to subsequent cycles. Of the 34 patients nale mentioned earlier, Elo moved into early phase clinical treated, 25 completed the initial 8-week treatment. Eight went development. on to receive another 8 weeks of therapy. Findings revealed that SLAMF7 on bone marrow-derived plasma cells was reli- Elo – clinical data and Phases I, ably saturated ($95%) at the 10 and 20 mg/kg dose levels. II and III Nine patients (26.5%) had stable disease. Results from this In the first human Phase I, multicenter, open-label, dose study formed the framework for further investigation of Elo escalation study by Zonder et al,7 the safety of single-agent in combination with other MM therapies (Table 1).7 Elo was studied in relapsed and refractory MM patients. In parallel, another Phase I, multicenter, open-label, Thirty-five patients with relapsed/refractory MM were dose escalation trial was initiated to evaluate the MTD, enrolled into 6 escalating dose cohorts, with intravenous safety and efficacy of Elo in combination with bortezomib. Elo doses ranging from 0.5 to 20 mg/kg once every 14 days. Patients were required to have received 1–3 prior lines of MM Trial eligibility included adults aged $18 years with a diag- therapy. Bortezomib was given at 1.3 mg/m2 intravenously nosis of relapsed/refractory MM who had received at least (IV) on days 1, 4, 8 and 11 of a 21-day cycle along with Elo 2 prior MM therapies. No maximum tolerated dose (MTD) in 4 dose-escalating doses ranging from 2.5 to 20 mg/kg was identified up to the maximum planned dose (MPD) of IV within 30 minutes of bortezomib infusion on days 1 and 20 mg/kg.
Recommended publications
  • Genetic and Genomic Analysis of Hyperlipidemia, Obesity and Diabetes Using (C57BL/6J × TALLYHO/Jngj) F2 Mice
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Nutrition Publications and Other Works Nutrition 12-19-2010 Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P. Stewart Marshall University Hyoung Y. Kim University of Tennessee - Knoxville, [email protected] Arnold M. Saxton University of Tennessee - Knoxville, [email protected] Jung H. Kim Marshall University Follow this and additional works at: https://trace.tennessee.edu/utk_nutrpubs Part of the Animal Sciences Commons, and the Nutrition Commons Recommended Citation BMC Genomics 2010, 11:713 doi:10.1186/1471-2164-11-713 This Article is brought to you for free and open access by the Nutrition at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Nutrition Publications and Other Works by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Stewart et al. BMC Genomics 2010, 11:713 http://www.biomedcentral.com/1471-2164/11/713 RESEARCH ARTICLE Open Access Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P Stewart1, Hyoung Yon Kim2, Arnold M Saxton3, Jung Han Kim1* Abstract Background: Type 2 diabetes (T2D) is the most common form of diabetes in humans and is closely associated with dyslipidemia and obesity that magnifies the mortality and morbidity related to T2D. The genetic contribution to human T2D and related metabolic disorders is evident, and mostly follows polygenic inheritance. The TALLYHO/ JngJ (TH) mice are a polygenic model for T2D characterized by obesity, hyperinsulinemia, impaired glucose uptake and tolerance, hyperlipidemia, and hyperglycemia.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Datasheet: MCA4645FT Product Details
    Datasheet: MCA4645FT Description: MOUSE ANTI HUMAN CD319:FITC Specificity: CD319 Other names: CRACC Format: FITC Product Type: Monoclonal Antibody Clone: 162 Isotype: IgG2b Quantity: 25 µg Product Details Applications This product has been reported to work in the following applications. This information is derived from testing within our laboratories, peer-reviewed publications or personal communications from the originators. Please refer to references indicated for further information. For general protocol recommendations, please visit www.bio-rad-antibodies.com/protocols. Yes No Not Determined Suggested Dilution Flow Cytometry Where this product has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Suggested working dilutions are given as a guide only. It is recommended that the user titrates the product for use in their own system using appropriate negative/positive controls. Target Species Human Product Form Purified IgG conjugated to Fluorescein Isothiocyanate Isomer 1 (FITC) - liquid Max Ex/Em Fluorophore Excitation Max (nm) Emission Max (nm) FITC 490 525 Preparation Purified IgG prepared by affinity chromatography on Protein G from tissue culture supernatant Buffer Solution Phosphate buffered saline Preservative 0.09% Sodium Azide (NaN3) Stabilisers 1% Bovine Serum Albumin Approx. Protein IgG concentration 0.1mg/ml Concentrations Immunogen CD319 - HuIgG fusion protein. External Database Links UniProt: Q9NQ25 Related reagents Page 1 of 3 Entrez Gene: 57823 SLAMF7 Related reagents Synonyms CS1 Specificity Mouse anti Human CD319 antibody, clone 162 recognizes human CD319, otherwise known as CRACC (CD2-like receptor-activating cytotoxic cells), a type I transmembrane protein and member of the CD2 receptor family, expressed by natural killer (NK) cells, cytotoxic lymphocytes and activated B cells.
    [Show full text]
  • Restoring Natural Killer Cell Immunity Against Multiple Myeloma in the Era of New Drugs
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Institutional Research Information System University of Turin Restoring Natural Killer Cell immunity against Multiple Myeloma in the era of New Drugs Gianfranco Pittari1, Luca Vago2,3, Moreno Festuccia4,5, Chiara Bonini6,7, Deena Mudawi1, Luisa Giaccone4,5 and Benedetto Bruno4,5* 1 Department of Medical Oncology, National Center for Cancer Care and Research, HMC, Doha, Qatar, 2 Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milano, Italy, 3 Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy, 4 Department of Oncology/Hematology, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino, Italy, 5 Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy, 6 Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano, Italy, 7 Vita-Salute San Raffaele University, Milano, Italy Transformed plasma cells in multiple myeloma (MM) are susceptible to natural killer (NK) cell-mediated killing via engagement of tumor ligands for NK activating receptors or “missing-self” recognition. Similar to other cancers, MM targets may elude NK cell immunosurveillance by reprogramming tumor microenvironment and editing cell surface antigen repertoire. Along disease continuum, these effects collectively result in a pro- gressive decline of NK cell immunity, a phenomenon increasingly recognized as a critical determinant of MM progression. In recent years, unprecedented efforts in drug devel- opment and experimental research have brought about emergence of novel therapeutic interventions with the potential to override MM-induced NK cell immunosuppression.
    [Show full text]
  • Genetic and Functional Approaches to Understanding Autoimmune and Inflammatory Pathologies
    University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2020 Genetic And Functional Approaches To Understanding Autoimmune And Inflammatory Pathologies Abbas Raza University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Part of the Genetics and Genomics Commons, Immunology and Infectious Disease Commons, and the Pathology Commons Recommended Citation Raza, Abbas, "Genetic And Functional Approaches To Understanding Autoimmune And Inflammatory Pathologies" (2020). Graduate College Dissertations and Theses. 1175. https://scholarworks.uvm.edu/graddis/1175 This Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. GENETIC AND FUNCTIONAL APPROACHES TO UNDERSTANDING AUTOIMMUNE AND INFLAMMATORY PATHOLOGIES A Dissertation Presented by Abbas Raza to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Specializing in Cellular, Molecular, and Biomedical Sciences January, 2020 Defense Date: August 30, 2019 Dissertation Examination Committee: Cory Teuscher, Ph.D., Advisor Jonathan Boyson, Ph.D., Chairperson Matthew Poynter, Ph.D. Ralph Budd, M.D. Dawei Li, Ph.D. Dimitry Krementsov, Ph.D. Cynthia J. Forehand, Ph.D., Dean of the Graduate College ABSTRACT Our understanding of genetic predisposition to inflammatory and autoimmune diseases has been enhanced by large scale quantitative trait loci (QTL) linkage mapping and genome-wide association studies (GWAS). However, the resolution and interpretation of QTL linkage mapping or GWAS findings are limited.
    [Show full text]
  • Single-Cell Transcriptomes Reveal a Complex Cellular Landscape in the Middle Ear and Differential Capacities for Acute Response to Infection
    fgene-11-00358 April 9, 2020 Time: 15:55 # 1 ORIGINAL RESEARCH published: 15 April 2020 doi: 10.3389/fgene.2020.00358 Single-Cell Transcriptomes Reveal a Complex Cellular Landscape in the Middle Ear and Differential Capacities for Acute Response to Infection Allen F. Ryan1*, Chanond A. Nasamran2, Kwang Pak1, Clara Draf1, Kathleen M. Fisch2, Nicholas Webster3 and Arwa Kurabi1 1 Departments of Surgery/Otolaryngology, UC San Diego School of Medicine, VA Medical Center, La Jolla, CA, United States, 2 Medicine/Center for Computational Biology & Bioinformatics, UC San Diego School of Medicine, VA Medical Center, La Jolla, CA, United States, 3 Medicine/Endocrinology, UC San Diego School of Medicine, VA Medical Center, La Jolla, CA, United States Single-cell transcriptomics was used to profile cells of the normal murine middle ear. Clustering analysis of 6770 transcriptomes identified 17 cell clusters corresponding to distinct cell types: five epithelial, three stromal, three lymphocyte, two monocyte, Edited by: two endothelial, one pericyte and one melanocyte cluster. Within some clusters, Amélie Bonnefond, Institut National de la Santé et de la cell subtypes were identified. While many corresponded to those cell types known Recherche Médicale (INSERM), from prior studies, several novel types or subtypes were noted. The results indicate France unexpected cellular diversity within the resting middle ear mucosa. The resolution of Reviewed by: Fabien Delahaye, uncomplicated, acute, otitis media is too rapid for cognate immunity to play a major Institut Pasteur de Lille, France role. Thus innate immunity is likely responsible for normal recovery from middle ear Nelson L. S. Tang, infection. The need for rapid response to pathogens suggests that innate immune The Chinese University of Hong Kong, China genes may be constitutively expressed by middle ear cells.
    [Show full text]
  • Clinical Applications of Newly Approved Drugs
    INTERVIEWS Mikkael A. Sekeres, MD, MS: Clinical Applications of Newly Approved Drugs Lisa K. Hicks, MD, MSc: The Promise and the Pitfalls of Quality Measures CLINICAL NEWS Population Updates Elotuzumab First and Only Immunostimulatory Antibody FDA- Approved for Multiple Myeloma Differences in Treatment Patterns, Cost, and Quality Indicators by Site of Care ASH 2015 American Society of Hematology 57th Annual Meeting & Exposition December 5–8, 2015 Orlando, FL Highlights & Insights for Managed Care Pharmacy Professionals ASH 2015 American Society of Hematology 57th Annual Meeting & Exposition December 5–8, 2015 • Orlando, FL TABLE OF CONTENTS Clinical News 06 ASH by the Numbers 07 Make the Change You Want to See 08 Population Updates 10 Elotuzumab First and Only Immunostimula- tory Antibody FDA-Approved for MM 10 First Results from a Pilot Phase 2 Study in Children with Primary HLH 11 Differences in Treatment Patterns, Cost, and Quality Indicators by Site of Care 13 Benefits of Patient-Reported Outcomes (PROs) for Clinicians, Patients, and Industry Interviews 09 Mikkael A. Sekeres, MD, MS: Clinical Ap- plications of Newly Approved Drugs 12 Lisa K. Hicks, MD, MSc: Exploring the Promise and the Pitfalls of Quality Measures Media Highlights 08 Jill M. Johnson, MD: Guiding Hematologic Care with Genetic Testing 11 Griffin Rodgers, MD: Optimizing Therapy in Sickle Cell Disease PUBLISHER ART DIRECTOR Gene Conselyea Ari Mihos WRITER/EDITOR PROJECT DIRECTOR Manda Frederick Renee Napoli 630 Madison Avenue 2nd Floor EDITORIAL SUPPORT Manalapan, NJ 07726 Neal Learner ©2015 American Medical Communications, Inc, Manalapan, NJ 07726. PR15-026 Photo: © 2015 ASH NOW APPROVED in combination with Rd THE FIRST AND ONLY I UNO- STIMULATORY ANTIBODY INDICATED FOR THE TREATMENT OF ULTIPLE YELOMA in patients who had received 1 to 3 prior therapies INDICATION EMPLICITI is indicated in combination with lenalidomide and dexamethasone for the treatment of patients with multiple myeloma who have received one to three prior therapies.
    [Show full text]
  • Developmental Timing of Mutations Revealed by Whole-Genome Sequencing of Twins with Acute Lymphoblastic Leukemia
    Developmental timing of mutations revealed by whole-genome sequencing of twins with acute lymphoblastic leukemia Yussanne Maa,1, Sara E. Dobbinsa,1, Amy L. Sherbornea,1, Daniel Chubba, Marta Galbiatib, Giovanni Cazzanigab, Concetta Micalizzic, Rick Tearled, Amy L. Lloyda, Richard Haine, Mel Greavesf,2,3, and Richard S. Houlstona,2,3 aMolecular and Population Genetics, Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, Surrey SM2 5NG, United Kingdom; bCentro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo, 20900 Monza (Mi), Italy; cExperimental Clinical Hematology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) G. Gaslini, 16148 Genova, Italy; dComplete Genomics, Inc., Mountain View, CA 94043; ePaediatric Palliative Medicine, Children’s Hospital for Wales, University Hospital of Wales, Cardiff CF14 4XW, United Kingdom; and fHaemato-Oncology Research Unit, Division of Molecular Pathology, Institute of Cancer Research, Surrey SM2 5NG, United Kingdom Edited* by Max D. Cooper, Emory University, Atlanta, GA, and approved March 5, 2013 (received for review December 10, 2012) Acute lymphoblastic leukemia (ALL) is the major pediatric cancer. ETV6-RUNX1 fusion-negative ALL. Sequencing of matched tu- At diagnosis, the developmental timing of mutations contributing mor-normal (remission) samples from each patient was carried critically to clonal diversification and selection can be buried in the out using unchained combinatorial probe anchor ligation chem- leukemia’s covert natural history. Concordance of ALL in monozy- istry on arrays of self-assembling DNA nanoballs (11). Paired-end gotic, monochorionic twins is a consequence of intraplacental reads were aligned to the Human Genome [National Center for spread of an initiated preleukemic clone.
    [Show full text]
  • PP1-Associated Signaling and − B/AP-1 Κ Inhibition of NF- Tolerance
    Downloaded from http://www.jimmunol.org/ by guest on October 3, 2021 is online at: average * and − B/AP-1 κ The Journal of Immunology published online 26 February 2014 from submission to initial decision 4 weeks from acceptance to publication http://www.jimmunol.org/content/early/2014/02/26/jimmun ol.1301610 Identification of Two Forms of TNF Tolerance in Human Monocytes: Differential Inhibition of NF- PP1-Associated Signaling Johannes Günther, Nico Vogt, Katharina Hampel, Rolf Bikker, Sharon Page, Benjamin Müller, Judith Kandemir, Michael Kracht, Oliver Dittrich-Breiholz, René Huber and Korbinian Brand J Immunol Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2014/02/26/jimmunol.130161 0.DCSupplemental Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2014 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of October 3, 2021. Published February 26, 2014, doi:10.4049/jimmunol.1301610 The Journal of Immunology Identification of Two Forms of TNF Tolerance in Human Monocytes: Differential Inhibition of NF-kB/AP-1– and PP1-Associated Signaling Johannes Gunther,*€ ,1 Nico Vogt,*,1 Katharina Hampel,*,1 Rolf Bikker,* Sharon Page,* Benjamin Muller,*€ Judith Kandemir,* Michael Kracht,† Oliver Dittrich-Breiholz,‡ Rene´ Huber,* and Korbinian Brand* The molecular basis of TNF tolerance is poorly understood.
    [Show full text]
  • SLAMF7 and IL-6R Define Distinct Cytotoxic Versus Helper Memory CD8+ T Cells
    ARTICLE https://doi.org/10.1038/s41467-020-19002-6 OPEN SLAMF7 and IL-6R define distinct cytotoxic versus helper memory CD8+ T cells Lucie Loyal1,2, Sarah Warth2,3, Karsten Jürchott2,4,5, Felix Mölder 6, Christos Nikolaou 2,7, Nina Babel8, Mikalai Nienen5, Sibel Durlanik2, Regina Stark 9, Beate Kruse1,2, Marco Frentsch2, Robert Sabat7, ✉ Kerstin Wolk 7 & Andreas Thiel 1,2 The prevailing ‘division of labor’ concept in cellular immunity is that CD8+ T cells primarily 1234567890():,; utilize cytotoxic functions to kill target cells, while CD4+ T cells exert helper/inducer func- tions. Multiple subsets of CD4+ memory T cells have been characterized by distinct che- mokine receptor expression. Here, we demonstrate that analogous CD8+ memory T-cell subsets exist, characterized by identical chemokine receptor expression signatures and controlled by similar generic programs. Among them, Tc2, Tc17 and Tc22 cells, in contrast to Tc1 and Tc17 + 1 cells, express IL-6R but not SLAMF7, completely lack cytotoxicity and instead display helper functions including CD40L expression. CD8+ helper T cells exhibit a unique TCR repertoire, express genes related to skin resident memory T cells (TRM) and are altered in the inflammatory skin disease psoriasis. Our findings reveal that the conventional view of CD4+ and CD8+ T cell capabilities and functions in human health and disease needs to be revised. 1 Si-M/“Der Simulierte Mensch” a science framework of Technische Universität Berlin and Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany. 2 Regenerative Immunology and Aging, BIH Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany. 3 BCRT Flow Cytometry Lab, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany.
    [Show full text]
  • Targeted Therapies for Multiple Myeloma
    Journal of Personalized Medicine Review Targeted Therapies for Multiple Myeloma Christopher Chang-Yew Leow and Michael Sze Yuan Low * Monash Haematology, 246 Clayton Road, Clayton, VIC 3168, Australia; [email protected] * Correspondence: [email protected] Abstract: Multiple myeloma continues to be a challenging disorder to treat despite improved ther- apies and the widespread use of proteasome inhibitors and immunomodulatory drugs. Although patient outcomes have improved, the disease continues to invariably relapse, and in the majority of cases, a cure remains elusive. In the last decade, there has been an explosion of novel drugs targeting cellular proteins essential for malignant plasma cell proliferation and survival. In this review, we focus on novel druggable targets leading to the development of monoclonal antibodies and cellular therapies against surface antigens (CD38, CD47, CD138, BCMA, SLAMF7, GPRC5D, FcRH5), inhibitors of epigenetic regulators such as histone deacetylase (HDAC), and agents targeting anti-apoptotic (BCL-2), ribosomal (eEF1A2) and nuclear export (XPO1) proteins. Keywords: multiple myeloma; therapeutic targets; monoclonal antibody 1. Basic Biology of Plasma Cell Neoplasms Multiple myeloma (MM) is a neoplastic disorder characterised by the abnormal prolif- eration of antibody-secreting plasma cells (PCs). The malignancy is part of a heterogeneous spectrum of disorders ranging from the indolent pre-cursor condition, monoclonal gam- mopathy of undetermined significance (MGUS), to the highly aggressive plasma cell Citation: Leow, C.C.-Y.; Low, M.S.Y. leukaemia [1]. Whilst early stages of the disease are asymptomatic, progression is heralded Targeted Therapies for Multiple by end-organ symptoms, including hypercalcaemia, renal failure, anaemia and lytic lesions. Myeloma.
    [Show full text]
  • Antibody-Drug Conjugate Targeting CD46 Eliminates Multiple Myeloma Cells
    RESEARCH ARTICLE The Journal of Clinical Investigation Antibody-drug conjugate targeting CD46 eliminates multiple myeloma cells Daniel W. Sherbenou,1 Blake T. Aftab,1,2 Yang Su,3 Christopher R. Behrens,3 Arun Wiita,2,4 Aaron C. Logan,1,2 Diego Acosta-Alvear,5,6 Byron C. Hann,2 Peter Walter,5,6 Marc A. Shuman,1,2 Xiaobo Wu,7 John P. Atkinson,7 Jeffrey L. Wolf,1,2 Thomas G. Martin,1,2 and Bin Liu2,3 1Department of Medicine, UCSF, San Francisco, California, USA. 2UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA. 3Department of Anesthesia, 4Department of Laboratory Medicine, and 5Department of Biochemistry and Biophysics, UCSF, San Francisco, California, USA. 6The Howard Hughes Medical Institute, UCSF, California, USA. 7Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA. Multiple myeloma is incurable by standard approaches because of inevitable relapse and development of treatment resistance in all patients. In our prior work, we identified a panel of macropinocytosing human monoclonal antibodies against CD46, a negative regulator of the innate immune system, and constructed antibody-drug conjugates (ADCs). In this report, we show that an anti-CD46 ADC (CD46-ADC) potently inhibited proliferation in myeloma cell lines with little effect on normal cells. CD46-ADC also potently eliminated myeloma growth in orthometastatic xenograft models. In primary myeloma cells derived from bone marrow aspirates, CD46-ADC induced apoptosis and cell death, but did not affect the viability of nontumor mononuclear cells. It is of clinical interest that the CD46 gene resides on chromosome 1q, which undergoes genomic amplification in the majority of relapsed myeloma patients.
    [Show full text]