WO 2019/094983 Al 16 May 2019 (16.05.2019) W 1P O PCT

Total Page:16

File Type:pdf, Size:1020Kb

WO 2019/094983 Al 16 May 2019 (16.05.2019) W 1P O PCT (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2019/094983 Al 16 May 2019 (16.05.2019) W 1P O PCT (51) International Patent Classification: (72) Inventors; and A61K 38/16 (2006.01) A61P 35/00 (2006.01) (71) Applicants: TIROSH, Itay [US/US]; c/o 415 Main Street, A61K 39/395 (2006.01) A61P 37/02 (2006.01) Cambridge, Massachusetts 02142 (US). MATHEWSON, A61P 29/00 (2006.01) C07K 14/05 (2006.01) Nathan [US/US]; c/o 450 Brookline Avenue, Boston, Massachusetts 02215 (US). (21) International Application Number: PCT/US20 18/060857 (72) Inventors: SUVA, Mario; c/o 55 Fruit Street, Boston, Massachusetts 021 14 (US). WUCHERPFENNIG, Kai; (22) International Filing Date: c/o 450 BROOKLINE AVENUE, Boston, Massachusetts 13 November 2018 (13. 11.2018) 02215 (US). REGEV, Aviv; c/o 415 Main Street, Cam¬ (25) Filing Language: English bridge, Massachusetts 02142 (US). (26) Publication Language: English (74) Agent: REY, Gertrud U. et al.; Johnson, Marcou & Isaacs, LLC, P.O. Box 691, Hoschton, Georgia 30548 (US). (30) Priority Data: 62/585,422 13 November 2017 (13. 11.2017) US (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, (71) Applicants: THE BROAD INSTITUTE, INC. [US/US]; AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, 415 Main Street, Cambridge, Massachusetts 02142 (US). CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, MASSACHUSETTS INSTITUTE OF TECHNOLO¬ DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, GY [US/US]; 77 Massachusetts Avenue, Cambridge, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, Massachusetts 02139 (US). THE GENERAL HOSPI¬ KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, TAL CORPORATION [US/US]; 55 Fruit Street, Boston, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, Massachusetts 021 14 (US). DANA-FARBER CANCER OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, INSTITUTE, INC. [US/US]; 450 Brookline Avenue, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, Boston, Massachusetts 02215 (US). TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (54) Title: METHODS AND COMPOSITIONS FOR TREATING CANCER BY TARGETING THE CLEC2D-KLRB 1 PATHWAY FIG. 1A < 2 (57) Abstract: Provided are methods and compositions for treating cancer in a subject in need thereof. One of the top gene products in glioblastoma multiforme (GBM) is KLRB 1 (also known as CD 161), a C-type lectin protein that binds to CLEC2D. Binding of CLEC2D to the KLRB 1 receptor inhibits the cytotoxic function of NK cells as well as cytokine secretion. KLRB 1 is only expressed by small as © subpopulations of human blood T cells, and consequently little is known about the function of this receptor in T cells. However, prelim¬ inary data demonstrate that KLRB 1 expression is induced in T cells within the GBM microenvironment. In an exemplary embodiment, a method is provided comprising administering an agent capable of blocking the interaction of KLRB 1 with its ligand. The agent may comprise an antibody or fragment thereof, which may bind KLRB 1 or CLEC2D. o [Continued on nextpage] W O 2019/094983 A l Illlll II lllll lllll lllll llll III III lllll lllll lllll lllll lllll llll llll llll llll (84) Designated States (unless otherwise indicated, for every kind of regional protection available) : ARJPO (BW, GH, GM, KE, LR, LS, MW, ML, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG). Published: — with international search report (Art. 21(3)) — with sequence listing part of description (Rule 5.2(a)) METHODS AND COMPOSITIONS FOR TREATING CANCER BY TARGETING THE CLEC2D-KLRB1 PATHWAY CROSS-REFERENCE TO RELATED APPLICATIONS [0001] This application claims the benefit of U.S. Provisional Application No. 62/585,422, filed November 13, 2017. The entire contents of the above-identified application are hereby fully incorporated herein by reference. REFERENCE TO AN ELECTRONIC SEQUENCE LISTING [0002] The contents of the electronic sequence listing (BROD-2355WP.ST25.txt"; Size is 8 Kilobytes and it was created on November 13, 2018) is herein incorporated by reference in its entirety. STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH [0003] This invention was made with government support under Grant No. CA173750 and Grant No. CA202820 awarded by the National Institutes of Health. The government has certain rights in the invention. TECHNICAL FIELD [0004] The subject matter disclosed herein is generally directed to compositions and methods for treating cancer. BACKGROUND [0005] Glioblastoma multiforme (GBM) is one of the most challenging human cancers. It is the most aggressive type of brain cancer, and there is no clear way to prevent the disease. [0006] Over the past few years novel immunosuppressive mechanisms have been identified in GBM patients, with a primary focus on scRNA-seq analysis of T cells directly isolated from surgically resected lesions. One of the top gene products identified is KLRBl (also known as CD161), a C-type lectin protein that binds to CLEC2D. Binding of CLEC2D to the KLRBl receptor inhibits the cytotoxic function of NK cells as well as cytokine secretion. KLRBl is only expressed by small subpopulations of human blood T cells, and consequently little is known about the function of this receptor in T cells. However, preliminary data demonstrate that KLRBl expression is induced in T cells within the GBM microenvironment. An immunohistochemistry study demonstrated that CLEC2D (also called LLT1) is expressed by human gliomas, with expression increasing with WHO grade of malignancy. In contrast, there was little labeling with a CLEC2D specific antibody in sections from normal human brain tissue. These conclusions are supported by an analysis of TCGA RNA-seq data performed in collaboration with Dr. Shirley Liu (DFCI) which demonstrated significantly increased expression of CLEC2D in GBM compared to normal brain tissue (p = 5.1 x 10 11) . This analysis also highlighted increased expression of CLEC2D relative to the corresponding normal tissue in many other cancer types, including all types of renal cancer (p <2 x 10 16 for KIRC), lung adenocarcinoma (p = 5.5 x 10 11), colon adenocarcinoma (p = 10 12) and other cancers. Accordingly, it seems that KLRB1 functions as an inhibitory receptor for human T cells by binding to the CLEC2D ligand on tumor cells. This hypothesis is supported by preliminary data from a humanized mouse model of GBM which demonstrate that inactivation of the KLRB1 gene in primary human T cells greatly enhances their cytotoxic function within tumors. SUMMARY [0007] In one aspect, the invention provides a method of treating a disease characterized by increased expression of killer cell lecting like receptor (KLRB1) in immune cells, comprising administering to a subject in need thereof one or more agents in an amount sufficient to either: (i) block binding of CD161 to one or more CD161 ligands; (ii) reduce expression of KLRB1 (the gene encoding CD 161); (iii) reduce expression of one or more CD161 ligands (iv) block binding of CLEC2D to a receptor of CLEC2D other than CD161, or any combination thereof. [0008] In some embodiments, the one or more agents may comprise an antibody, or fragment thereof, that binds CD161 . The one or more agents may comprise an antibody, or fragment thereof, that binds to the one or more CD161 ligands. Alternatively, the method comprises administering a soluble CD161 protein, or fragment thereof, that binds to one or more of the CD161 ligands. In some embodiments, the antibody may be a humanized or chimeric antibody. [0009] In some embodiments, reducing expression of KLRB1, or expression of one or more CD161 ligands, comprises administering a programmable nucleic acid modifying agent configured to reduce expression of KLRB1, or reduce expression of one or more CD161 ligands. [0010] In some embodiments, the programmable nucleic acid modifying agent may be a CRISPR-Cas, a zinc finger, a TALE, or a meganuclease. The CRISPR-Cas may be a CRISP-Cas9, a CRISPR-Casl2, a CRISPR-Casl3, or a CRISPR-Casl4. [0011] In some embodiments, the disease is cancer. The cancer may be characterized by increased expression of a CD161 ligand by cancer cells or other cells in the tumor microenvironment. Alternatively, one or more immune cell types in the tumor microenvironment may be characterized by increased expression of KLRB1. In some embodiments, the one or more CD161 ligands comprises CLEC2D. [0012] In some embodiments, the one or more immune cells are tumor infiltrating lymphocytes (TILs). [0013] In some embodiments, the cancer is a glioblastoma, melanoma, liver cancer, renal cancel, lung adenocarcinoma, or colon adenocarcinoma. [0014] In some embodiments, the one or more agents may be administered in a combination treatment regimen comprising checkpoint blockade therapy, vaccines, targeted therapies, radiation therapy, chemotherapy, and/or adoptive cell therapy (ACT). [0015] The checkpoint blockade therapy may comprise anti-PD-1, anti-CTLA4, anti-TIM-3 and/or anti-LAG3. [0016] The vaccine may be a neoantigen vaccine or other cancer vaccine. [0017] In some embodiments, the disease is an infectious disease. In some embodiments, the infectious disease is a chronic infectious disease.
Recommended publications
  • Killer-Like Receptors and GPR56 Progressive Expression Defines Cytokine Production of Human CD4+ Memory T Cells
    ARTICLE https://doi.org/10.1038/s41467-019-10018-1 OPEN Killer-like receptors and GPR56 progressive expression defines cytokine production of human CD4+ memory T cells Kim-Long Truong1,7, Stephan Schlickeiser1,2,7, Katrin Vogt1, David Boës1, Katarina Stanko1, Christine Appelt1, Mathias Streitz1, Gerald Grütz1,2, Nadja Stobutzki1, Christian Meisel1, Christina Iwert1, Stefan Tomiuk3, Julia K. Polansky2,4, Andreas Pascher5, Nina Babel2,6, Ulrik Stervbo 6, Igor Sauer 5, Undine Gerlach5 & Birgit Sawitzki1,2 1234567890():,; All memory T cells mount an accelerated response on antigen reencounter, but significant functional heterogeneity is present within the respective memory T-cell subsets as defined by CCR7 and CD45RA expression, thereby warranting further stratification. Here we show that several surface markers, including KLRB1, KLRG1, GPR56, and KLRF1, help define low, high, or exhausted cytokine producers within human peripheral and intrahepatic CD4+ memory T-cell populations. Highest simultaneous production of TNF and IFN-γ is observed in KLRB1+KLRG1+GPR56+ CD4 T cells. By contrast, KLRF1 expression is associated with T-cell exhaustion and reduced TNF/IFN-γ production. Lastly, TCRβ repertoire analysis and in vitro differentiation support a regulated, progressive expression for these markers during CD4+ memory T-cell differentiation. Our results thus help refine the classification of human memory T cells to provide insights on inflammatory disease progression and immunotherapy development. 1 Institute of Medical Immunology, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 13353 Berlin, Germany. 2 Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité – Universitätsmedizin Berlin, 13353 Berlin, Germany. 3 Milteny Biotec GmbH, 51429 Bergisch Gladbach, Germany.
    [Show full text]
  • Screening and Identification of Key Biomarkers in Clear Cell Renal Cell Carcinoma Based on Bioinformatics Analysis
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Screening and identification of key biomarkers in clear cell renal cell carcinoma based on bioinformatics analysis Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Clear cell renal cell carcinoma (ccRCC) is one of the most common types of malignancy of the urinary system. The pathogenesis and effective diagnosis of ccRCC have become popular topics for research in the previous decade. In the current study, an integrated bioinformatics analysis was performed to identify core genes associated in ccRCC. An expression dataset (GSE105261) was downloaded from the Gene Expression Omnibus database, and included 26 ccRCC and 9 normal kideny samples. Assessment of the microarray dataset led to the recognition of differentially expressed genes (DEGs), which was subsequently used for pathway and gene ontology (GO) enrichment analysis.
    [Show full text]
  • Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
    Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only.
    [Show full text]
  • NK Cell Memory to Cytomegalovirus: Implications for Vaccine Development
    Review NK Cell Memory to Cytomegalovirus: Implications for Vaccine Development Calum Forrest 1 , Ariane Gomes 1 , Matthew Reeves 1,* and Victoria Male 2,* 1 Institute of Immunity & Transplantation, UCL, Royal Free Campus, London NW3 2PF, UK; [email protected] (C.F.); [email protected] (A.G.) 2 Department of Metabolism, Digestion and Reproduction, Imperial College London, Chelsea and Westminster Campus, London SW10 9NH, UK * Correspondence: [email protected] (M.R.); [email protected] (V.M.) Received: 24 June 2020; Accepted: 15 July 2020; Published: 20 July 2020 Abstract: Natural killer (NK) cells are innate lymphoid cells that recognize and eliminate virally-infected and cancerous cells. Members of the innate immune system are not usually considered to mediate immune memory, but over the past decade evidence has emerged that NK cells can do this in several contexts. Of these, the best understood and most widely accepted is the response to cytomegaloviruses, with strong evidence for memory to murine cytomegalovirus (MCMV) and several lines of evidence suggesting that the same is likely to be true of human cytomegalovirus (HCMV). The importance of NK cells in the context of HCMV infection is underscored by the armory of NK immune evasion genes encoded by HCMV aimed at subverting the NK cell immune response. As such, ongoing studies that have utilized HCMV to investigate NK cell diversity and function have proven instructive. Here, we discuss our current understanding of NK cell memory to viral infection with a focus on the response to cytomegaloviruses. We will then discuss the implications that this will have for the development of a vaccine against HCMV with particular emphasis on how a strategy that can harness the innate immune system and NK cells could be crucial for the development of a vaccine against this high-priority pathogen.
    [Show full text]
  • The Inhibitory NKR-P1B:Clr-B Recognition Axis Facilitates Detection of Oncogenic Transformation and Cancer Immunosurveillance Miho Tanaka1,2, Jason H
    Published OnlineFirst April 24, 2018; DOI: 10.1158/0008-5472.CAN-17-1688 Cancer Tumor Biology and Immunology Research The Inhibitory NKR-P1B:Clr-b Recognition Axis Facilitates Detection of Oncogenic Transformation and Cancer Immunosurveillance Miho Tanaka1,2, Jason H. Fine1,2, Christina L. Kirkham1,2, Oscar A. Aguilar1,2, Antoaneta Belcheva1, Alberto Martin1, Troy Ketela3,4, Jason Moffat3,4, David S.J. Allan1,2, and James R. Carlyle1,2 Abstract Natural killer (NK) cells express receptors specific for MHC class in a primary lymphoma model despite preferential rejection of – – I (MHC-I) molecules involved in "missing-self" recognition of Clr-b / hematopoietic cells previously observed following adop- cancer and virus-infected cells. Here we elucidate the role of MHC- tive transfer into na€ve wild-type mice in vivo. Collectively, these I-independent NKR-P1B:Clr-b interactions in the detection of findings suggest that the inhibitory NKR-P1B:Clr-b axis plays a oncogenic transformation by NK cells. Ras oncogene overexpres- beneficial role in innate detection of oncogenic transformation sion was found to promote a real-time loss of Clr-b on mouse via NK-cell–mediated cancer immune surveillance, in addition fibroblasts and leukemia cells, mediated in part via the Raf/MEK/ to a pathologic role in the immune escape of primary lympho- ERK and PI3K pathways. Ras-driven Clr-b downregulation ma cells in Em-cMyc mice in vivo. These results provide a model occurred at the level of the Clrb (Clec2d) promoter, nascent Clr-b for the human NKR-P1A:LLT1 system in cancer immunosur- transcripts, and cell surface Clr-b protein, in turn promoting veillance in patients with lymphoma and suggest it may rep- missing-self recognition via the NKR-P1B inhibitory receptor.
    [Show full text]
  • New PDF Document
    888.267.4436 [email protected] www.origene.com Name:CLDN6 mouse monoclonal antibody, clone OTI3E3 (formerly 3E3) Catalog: TA507011 Product Data Sheet - TRUEMAB Components: • CLDN6 mouse monoclonal antibody, clone OTI3E3 (formerly 3E3) (TA507011) • WB positive control also available: 20ug myc-DDK tagged CLDN6 HEK293T over-expression lysate lyophilized in RIPA buffer (LC412034). (Reconstitute into 20ul of 1x SDS sample buffer before loading; load 5ul per lane as WB control or as desired) Amount: 100ul Immunogen: Full length human recombinant protein of human CLDN6(NP_067018) produced in HEK293T cell. Host: Mouse Isotype: IgG1 Species Reactivity: Human Guaranteed WB, IF Applications: Suggested WB 1:1000, IF 1:100, Dilutions: Concentration: 1 mg/ml Buffer: PBS (PH 7.3) containing 1% BSA, 50% glycerol and 0.02% sodium azide. Purification: Purified from mouse ascites fluids by affinity chromatography Storage Condition: Shipped at -20C or with ice packs. Upon delivery store at -20C. Dilute in PBS (pH7.3) if necessary. Stable for 12 months from date of receipt. Avoid repeated freeze-thaws. Target Target Name: Homo sapiens claudin 6 (CLDN6) Alternative Name: OTTHUMP00000159248; claudin 6 Database Link: NP_067018 Entrez Gene 9074 Human Function: Tight junctions represent one mode of cell-to-cell adhesion in epithelial or endothelial cell sheets, forming continuous seals around cells and serving as a physical barrier to prevent solutes and water from passing freely through the paracellular space. These junctions are comprised of sets of continuous networking strands in the outwardly facing cytoplasmic leaflet, with complementary grooves in the inwardly facing extracytoplasmic leaflet. This gene encodes a component of tight junction strands, which This product is to be used for laboratory only.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Molecular Characterization of 52K Protein of Bovine Adenovirus Type 3
    MOLECULAR CHARACTERIZATION OF 52K PROTEIN OF BOVINE ADENOVIRUS TYPE 3 A Thesis Submitted to the Faculty of Graduate Studies and Research in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Department of Veterinary Microbiology University of Saskatchewan Saskatoon By Carolyn Patricia Paterson © Copyright Carolyn P. Paterson, August 2010. All rights reserved. PERMISSION TO USE In presenting this thesis in partial fulfillment of the requirements for a postgraduate degree from the University of Saskatchewan, I agree that the libraries of this university may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, whole or in part, for scholarly purposes may be granted by the professors who supervised my thesis work or in their absence, the Head of the Department or the Dean of the college in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts therof for financial gain shall not be allowed without any written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Request for permission to copy or to make other use of material in this thesis in whole or part should be addressed to: Head of the Department of Veterinary Microbiology University of Saskatchewan Saskatoon, Saskatchewan, S7N 5B4 i ABSTRACT Bovine adenovirus (BAdV)-3 is a non-enveloped, icosahedral virus with a double-stranded DNA genome, and is being developed as a vector for vaccination of animals and humans (Rasmussen et al., 1999; Zakhartchouk et al., 1999).
    [Show full text]
  • Role of RUNX1 in Aberrant Retinal Angiogenesis Jonathan D
    Page 1 of 25 Diabetes Identification of RUNX1 as a mediator of aberrant retinal angiogenesis Short Title: Role of RUNX1 in aberrant retinal angiogenesis Jonathan D. Lam,†1 Daniel J. Oh,†1 Lindsay L. Wong,1 Dhanesh Amarnani,1 Cindy Park- Windhol,1 Angie V. Sanchez,1 Jonathan Cardona-Velez,1,2 Declan McGuone,3 Anat O. Stemmer- Rachamimov,3 Dean Eliott,4 Diane R. Bielenberg,5 Tave van Zyl,4 Lishuang Shen,1 Xiaowu Gai,6 Patricia A. D’Amore*,1,7 Leo A. Kim*,1,4 Joseph F. Arboleda-Velasquez*1 Author affiliations: 1Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford St., Boston, MA 02114 2Universidad Pontificia Bolivariana, Medellin, Colombia, #68- a, Cq. 1 #68305, Medellín, Antioquia, Colombia 3C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, 55 Fruit St., Boston, MA 02114 4Retina Service, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, 243 Charles St., Boston, MA 02114 5Vascular Biology Program, Boston Children’s Hospital, Department of Surgery, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115 6Center for Personalized Medicine, Children’s Hospital Los Angeles, Los Angeles, 4650 Sunset Blvd, Los Angeles, CA 90027, USA 7Department of Pathology, Harvard Medical School, 25 Shattuck St., Boston, MA 02115 Corresponding authors: Joseph F. Arboleda-Velasquez: [email protected] Ph: (617) 912-2517 Leo Kim: [email protected] Ph: (617) 912-2562 Patricia D’Amore: [email protected] Ph: (617) 912-2559 Fax: (617) 912-0128 20 Staniford St. Boston MA, 02114 † These authors contributed equally to this manuscript Word Count: 1905 Tables and Figures: 4 Diabetes Publish Ahead of Print, published online April 11, 2017 Diabetes Page 2 of 25 Abstract Proliferative diabetic retinopathy (PDR) is a common cause of blindness in the developed world’s working adult population, and affects those with type 1 and type 2 diabetes mellitus.
    [Show full text]
  • Functional Receptor Molecules Cd300lf and Cd300ld Within the CD300 Family Enable Murine Noroviruses to Infect Cells
    Functional receptor molecules CD300lf and CD300ld within the CD300 family enable murine noroviruses to infect cells Kei Hagaa,1, Akira Fujimotoa,1, Reiko Takai-Todakaa, Motohiro Mikia,b, Yen Hai Doana, Kosuke Murakamia, Masaru Yokoyamac, Kazuyoshi Muratad, Akira Nakanishie,2, and Kazuhiko Katayamaa,2 aDepartment of Virology II, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; bNew Business Planning Division, Innovative Diagnostics Research Center, Denka Innovation Center, Denka Company Limited, Tokyo 194-8560, Japan; cPathogen Genomics Center, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; dNational Institute for Physiological Sciences, Aichi 444-8585, Japan; and eSection of Gene Therapy, Department of Aging Intervention, National Center for Geriatrics and Gerontology, Aichi 474-8511, Japan Edited by Mary K. Estes, Baylor College of Medicine, Houston, Texas, and approved August 11, 2016 (received for review April 9, 2016) Norovirus is the leading cause of acute gastroenteritis worldwide. mice that were deficient in STAT1 and RAG2 (11). MNV repli- Since the discovery of human norovirus (HuNoV), an efficient and cates within the murine macrophage cell line RAW264.7 cells. reproducible norovirus replication system has not been established in MNV strains MNV-1, WU11, and S99 bind macrophages ex vivo cultured cells. Although limited amounts of virus particles can be through a terminal sialic acid on the ganglioside GD1a, which produced when the HuNoV genome is directly transfected into cells, has been suggested as a binding receptor (12). Another MNV the HuNoV cycle of infection has not been successfully reproduced in strain, CR3, binds a different glycan, and the difference in glycan any currently available cell-culture system.
    [Show full text]
  • Human Lectins, Their Carbohydrate Affinities and Where to Find Them
    biomolecules Review Human Lectins, Their Carbohydrate Affinities and Where to Review HumanFind Them Lectins, Their Carbohydrate Affinities and Where to FindCláudia ThemD. Raposo 1,*, André B. Canelas 2 and M. Teresa Barros 1 1, 2 1 Cláudia D. Raposo * , Andr1 é LAQVB. Canelas‐Requimte,and Department M. Teresa of Chemistry, Barros NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829‐516 Caparica, Portugal; [email protected] 12 GlanbiaLAQV-Requimte,‐AgriChemWhey, Department Lisheen of Chemistry, Mine, Killoran, NOVA Moyne, School E41 of ScienceR622 Co. and Tipperary, Technology, Ireland; canelas‐ [email protected] NOVA de Lisboa, 2829-516 Caparica, Portugal; [email protected] 2* Correspondence:Glanbia-AgriChemWhey, [email protected]; Lisheen Mine, Tel.: Killoran, +351‐212948550 Moyne, E41 R622 Tipperary, Ireland; [email protected] * Correspondence: [email protected]; Tel.: +351-212948550 Abstract: Lectins are a class of proteins responsible for several biological roles such as cell‐cell in‐ Abstract:teractions,Lectins signaling are pathways, a class of and proteins several responsible innate immune for several responses biological against roles pathogens. such as Since cell-cell lec‐ interactions,tins are able signalingto bind to pathways, carbohydrates, and several they can innate be a immuneviable target responses for targeted against drug pathogens. delivery Since sys‐ lectinstems. In are fact, able several to bind lectins to carbohydrates, were approved they by canFood be and a viable Drug targetAdministration for targeted for drugthat purpose. delivery systems.Information In fact, about several specific lectins carbohydrate were approved recognition by Food by andlectin Drug receptors Administration was gathered for that herein, purpose. plus Informationthe specific organs about specific where those carbohydrate lectins can recognition be found by within lectin the receptors human was body.
    [Show full text]
  • The Intestinal Virome of Malabsorption Syndrome-Affected and Unaffected
    Virus Research 261 (2019) 9–20 Contents lists available at ScienceDirect Virus Research journal homepage: www.elsevier.com/locate/virusres The intestinal virome of malabsorption syndrome-affected and unaffected broilers through shotgun metagenomics T ⁎ Diane A. Limaa, , Samuel P. Cibulskib, Caroline Tochettoa, Ana Paula M. Varelaa, Fabrine Finklera, Thais F. Teixeiraa, Márcia R. Loikoa, Cristine Cervac, Dennis M. Junqueirad, Fabiana Q. Mayerc, Paulo M. Roehea a Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil b Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil c Laboratório de Biologia Molecular, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Eldorado do Sul, RS, Brazil d Centro Universitário Ritter dos Reis - UniRitter, Health Science Department, Porto Alegre, RS, Brazil ARTICLE INFO ABSTRACT Keywords: Malabsorption syndrome (MAS) is an economically important disease of young, commercially reared broilers, Enteric disorders characterized by growth retardation, defective feather development and diarrheic faeces. Several viruses have Virome been tentatively associated to such syndrome. Here, in order to examine potential associations between enteric Broiler chickens viruses and MAS, the faecal viromes of 70 stool samples collected from diseased (n = 35) and healthy (n = 35) High-throughput sequencing chickens from seven flocks were characterized and compared. Following high-throughput sequencing, a total of 8,347,319 paired end reads, with an average of 231 nt, were generated. Through analysis of de novo assembled contigs, 144 contigs > 1000 nt were identified with hits to eukaryotic viral sequences, as determined by GenBank database.
    [Show full text]