Mechanosensitive Channels: Multiplicity of Families and Gating Paradigms

Total Page:16

File Type:pdf, Size:1020Kb

Mechanosensitive Channels: Multiplicity of Families and Gating Paradigms R EVIEW Mechanosensitive Channels: Multiplicity of Families and Gating Paradigms Sergei Sukharev1* and David P. Corey2* (Published 10 February 2004) Mechanosensitive ion channels are the primary and comprise just a few GTP-binding protein (G protein)–cou- transducers that convert mechanical force into an pled receptor second-messenger pathways (1–3). Given these electrical or chemical signal in hearing, touch, and examples, should we be looking for universal mechanotransduc- other mechanical senses. Unlike vision, olfaction, tion mechanisms within these various systems and presume that and some types of taste, which all use similar kinds the primary receiver elements are essentially the same, but are of primary heterotrimeric GTP-binding protein–cou- tuned differently depending on the setting? If not, are there dif- pled receptors, mechanosensation relies on diverse ferent types of mechanoreceptors that use similar biophysical types of transducer molecules. Unrelated types of principles but dissimilar molecular mechanisms, which arose channels can be used for the perception of various independently many times in the course of evolution? The ex- mechanical stimuli, not only in distant groups of or- amples discussed below suggest that the latter scenario is more ganisms, but also in separate locations of the same likely. Although incomplete, the available molecular data sug- organism. The extreme sensitivity of the transduction gest a multiplicity of structural designs and mechanisms of mechanism in the auditory system, which relies on mechanoreceptors not only across the tree of life, but also with- an elaborate structure of rigid cilia, filamentous in single organisms. This diversity implies that careful analysis links, and molecular motors to focus force on trans- of individual systems will be required before generalizations duction channels, contrasts with that of the bacterial can be made. channel MscL, which is opened by high lateral ten- sion in the membrane and fulfills a safety-valve The Nature of the Primary Transducer rather than a sensory function. The spatial scales of Hearing, vestibular function, and touch—senses that involve conformational movement and force in these two specialized organs, such as the ear and the cutaneous tactile re- systems are described, and are shown to be consis- ceptors, and are present in both vertebrates and invertebrates— tent with a general physical description of mechani- represent the fastest and most sensitive mechanosensory sys- cal channel gating. We outline the characteristics of tems known. In addition to these specialized organs, free so- several types of mechanosensitive channels and the matosensory endings and visceral afferents are diffusely spread functional contexts in which they participate in sig- through many tissues; many possess substantial mechanosensi- naling and cellular regulation in sensory and non- tivity, which allows them to monitor cutaneous stretch and de- sensory cells. formation, limb position, vascular and alveolar distension, and the filling of the stomach or bladder. All of these functions are Introduction attributed to the presence of mechanosensitive ion channels Mechanosensation is ubiquitous and takes on many different (MS channels) embedded in the plasma membranes of sensory forms, as cells, tissues, and entire organisms constantly receive cells (4, 5). In contrast to second messenger–mediated transduc- and generate various mechanical stimuli. Sounds captured by tion in other senses, the ion channels in mechanosensors are be- the ear and static loads on bone represent two extreme examples lieved to be directly activated by mechanical forces, for the fol- of stimuli with vastly different magnitudes and time courses. Yet lowing reasons: (i) An electrical current through the sensory organisms can gauge these stimuli separately by using different cell membrane (receptor current), a consequence of ion channel receptors and integration schemes. Inputs to the central nervous opening, appears to be the earliest recorded event following the system (CNS) from specialized mechanosensory organs initiate mechanical stimulus and it precedes other sequelae of the stim- an array of homeostatic reflexes and behaviors. At the same ulus. (ii) Many mechanosensory responses occur on a submil- time, various physiological responses to force can be observed lisecond time scale, which is faster than that permitted by a sec- at the level of single cells, demonstrating that mechanoreceptors ond-messenger cascade (6). The receptor current in the sensory are indeed ubiquitous. cell or nerve ending causes a receptor potential, which—in all Because mechanosensory phenomena are so diverse, the but the smallest animals—is converted into action potentials in progress of unraveling the underlying molecular mechanisms afferent nerve fibers passing to the CNS. In addition to special has been slower than with studies of other senses. Indeed, in the sensory organs and nerve endings, MS channels are found in mechanisms of olfaction, vision, and some types of taste, the various somatic nonsensory cells, where they are presumed to sets of molecular players appear to be evolutionarily conserved modulate the processes of contraction and secretion in response to mechanical stress, or to regulate cell volume or turgor. 1Department of Biology, University of Maryland, College Park, MD Although they open rapidly and are easy to assay, MS chan- 20742, USA. 2Howard Hughes Medical Institute and Department of nels are not the only primary receptors for mechanical stimuli. Neurobiology, Harvard Medical School, Boston, MA 02115, USA. Neurotransmitter release dependent on mechanical stress (7), *Corresponding authors. E-mail: [email protected] (S.S), slow responses to static load such as cell and tissue remodeling [email protected] (D.P.C.) (8), and gene expression and proliferative reactions (9) may in- www.stke.org/cgi/content/full/sigtrans;2004/219/re4 Page 1 R EVIEW volve integrins and associated signaling pathways. It has been mechanistic paradigms of their gating: channels to which force proposed that in certain organs, stress-induced adenosine is conveyed by distinct cytoskeletal proteins (often in special- triphosphate (ATP) release may exert a paracrine action on ized sensory cells), and channels gated by tension in the lipid purinergic receptors in sensory fibers (10). Further studies will (best characterized in prokaryotes). clarify whether this purinergic stimulus causes afferent excita- tion directly or just modulates it. These related but mechanisti- Channel Gating by External Force cally separate processes will not be discussed here. Instead, we At its simplest, a MS channel is a specialized molecule—usual- focus on MS channels, which constitute a heterogeneous group ly a protein—in the cell membrane that can undergo a distortion of membrane proteins in their own right that are unified mostly in response to an external force, which either opens or closes a by function. conductive pathway through the molecule. The force can be ap- There are several systems for classifying MS channels, as plied either through cytoskeletal and extracellular matrix ele- outlined below. Conventionally, families of cloned channels are ments attached to the channel, or through the lipid bilayer itself assigned according to sequence homology. Grouping channels (11). Such a distortion can be described as a conformational according to the tissue of origin (for instance, sensory versus transition between inactive (closed) and active (open) states nonsensory) is historical and reflects two complementary ap- separated by a barrier (12, 13). In the simple case of a two-state proaches: genetic and electrophysiological. Genetic studies be- channel opened by linear force (Fig. 1A), the open probability gin with screens for mutations that affect sensory function and po is described by a Boltzmann relation: lead to identification of the chromosomal loci, genes, and even- tually proteins (not necessarily channels) responsible for the function of a specific sensory organ. The MS channels from the DEG/ENaC and TRP families were identified genetically. Elec- trophysiological surveys, in contrast, first identify conductance as a functional manifestation of the channel. This approach led (Eq. 1) to the identification of MS channel activity in neurons and also in numerous nonneural cells. Using electrophysiology, channel where f is the force acting on the channel, b is the distance it activities can be further characterized with pharmacological and moves when it opens (the swing of the gate), ∆u is an intrinsic biochemical tools that may suggest the type of molecule re- energy difference between open and closed states that biases the sponsible for the function. For example, the bacterial MS chan- probability distribution toward the closed state in the absence of −21 nel MscL was identified through a biochemical approach, using applied force, and kBT is thermal energy (~4 × 10 J at room patch-clamp as an assay technique. Genetic and electrophysio- temperature). The equation predicts a sigmoidal dependence of logical approaches complement each other and are often used in po on applied force with the midpoint (po = 0.5) at f = ∆u/b. To combination. The two-pore domain MS channels, for instance, open the channel, the product of f and b must be several times were cloned by homology to potassium channels and were iden- thermal energy; for instance, it requires a change of 6 kBT to go tified as mechanosensitive only upon
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Transcriptomic Analysis of Native Versus Cultured Human and Mouse Dorsal Root Ganglia Focused on Pharmacological Targets Short
    bioRxiv preprint doi: https://doi.org/10.1101/766865; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Transcriptomic analysis of native versus cultured human and mouse dorsal root ganglia focused on pharmacological targets Short title: Comparative transcriptomics of acutely dissected versus cultured DRGs Andi Wangzhou1, Lisa A. McIlvried2, Candler Paige1, Paulino Barragan-Iglesias1, Carolyn A. Guzman1, Gregory Dussor1, Pradipta R. Ray1,#, Robert W. Gereau IV2, # and Theodore J. Price1, # 1The University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, 800 W Campbell Rd. Richardson, TX, 75080, USA 2Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine # corresponding authors [email protected], [email protected] and [email protected] Funding: NIH grants T32DA007261 (LM); NS065926 and NS102161 (TJP); NS106953 and NS042595 (RWG). The authors declare no conflicts of interest Author Contributions Conceived of the Project: PRR, RWG IV and TJP Performed Experiments: AW, LAM, CP, PB-I Supervised Experiments: GD, RWG IV, TJP Analyzed Data: AW, LAM, CP, CAG, PRR Supervised Bioinformatics Analysis: PRR Drew Figures: AW, PRR Wrote and Edited Manuscript: AW, LAM, CP, GD, PRR, RWG IV, TJP All authors approved the final version of the manuscript. 1 bioRxiv preprint doi: https://doi.org/10.1101/766865; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • The Chondrocyte Channelome: a Novel Ion Channel Candidate in the Pathogenesis of Pectus Deformities
    Old Dominion University ODU Digital Commons Biological Sciences Theses & Dissertations Biological Sciences Summer 2017 The Chondrocyte Channelome: A Novel Ion Channel Candidate in the Pathogenesis of Pectus Deformities Anthony J. Asmar Old Dominion University, [email protected] Follow this and additional works at: https://digitalcommons.odu.edu/biology_etds Part of the Biology Commons, Molecular Biology Commons, and the Physiology Commons Recommended Citation Asmar, Anthony J.. "The Chondrocyte Channelome: A Novel Ion Channel Candidate in the Pathogenesis of Pectus Deformities" (2017). Doctor of Philosophy (PhD), Dissertation, Biological Sciences, Old Dominion University, DOI: 10.25777/pyha-7838 https://digitalcommons.odu.edu/biology_etds/19 This Dissertation is brought to you for free and open access by the Biological Sciences at ODU Digital Commons. It has been accepted for inclusion in Biological Sciences Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. THE CHONDROCYTE CHANNELOME: A NOVEL ION CHANNEL CANDIDATE IN THE PATHOGENESIS OF PECTUS DEFORMITIES by Anthony J. Asmar B.S. Biology May 2010, Virginia Polytechnic Institute M.S. Biology May 2013, Old Dominion University A Dissertation Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY BIOMEDICAL SCIENCES OLD DOMINION UNIVERSITY August 2017 Approved by: Christopher Osgood (Co-Director) Michael Stacey (Co-Director) Lesley Greene (Member) Andrei Pakhomov (Member) Jing He (Member) ABSTRACT THE CHONDROCYTE CHANNELOME: A NOVEL ION CHANNEL CANDIDATE IN THE PATHOGENESIS OF PECTUS DEFORMITIES Anthony J. Asmar Old Dominion University, 2017 Co-Directors: Dr. Christopher Osgood Dr. Michael Stacey Costal cartilage is a type of rod-like hyaline cartilage connecting the ribs to the sternum.
    [Show full text]
  • Multiple Modulation of Acid-Sensing Ion Channel 1A by the Alkaloid Daurisoline
    biomolecules Article Multiple Modulation of Acid-Sensing Ion Channel 1a by the Alkaloid Daurisoline Dmitry I. Osmakov 1,2,* , Sergey G. Koshelev 1, Ekaterina N. Lyukmanova 1, Mikhail A. Shulepko 1, Yaroslav A. Andreev 1,2, Peter Illes 3 and Sergey A. Kozlov 1 1 Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia 2 Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya str. 8, bld. 2, 119991 Moscow, Russia 3 Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, University of Leipzig, 04107 Leipzig, Germany * Correspondence: [email protected] Received: 26 June 2019; Accepted: 1 August 2019; Published: 2 August 2019 Abstract: Acid-sensing ion channels (ASICs) are proton-gated sodium-selective channels that are expressed in the peripheral and central nervous systems. ASIC1a is one of the most intensively studied isoforms due to its importance and wide representation in organisms, but it is still largely unexplored as a target for therapy. In this study, we demonstrated response of the ASIC1a to acidification in the presence of the daurisoline (DAU) ligand. DAU alone did not activate the channel, but in combination with protons, it produced the second peak component of the ASIC1a current. This second peak differs from the sustained component (which is induced by RF-amide peptides), as the second (DAU-induced) peak is completely desensitized, with the same kinetics as the main peak. The co-application of DAU and mambalgin-2 indicated that their binding sites do not overlap. Additionally,we found an asymmetry in the pH activation curve of the channel, which was well-described by a mathematical model based on the multiplied probabilities of protons binding with a pool of high-cooperative sites and a single proton binding with a non-cooperative site.
    [Show full text]
  • Ion Channels
    UC Davis UC Davis Previously Published Works Title THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels. Permalink https://escholarship.org/uc/item/1442g5hg Journal British journal of pharmacology, 176 Suppl 1(S1) ISSN 0007-1188 Authors Alexander, Stephen PH Mathie, Alistair Peters, John A et al. Publication Date 2019-12-01 DOI 10.1111/bph.14749 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology (2019) 176, S142–S228 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels Stephen PH Alexander1 , Alistair Mathie2 ,JohnAPeters3 , Emma L Veale2 , Jörg Striessnig4 , Eamonn Kelly5, Jane F Armstrong6 , Elena Faccenda6 ,SimonDHarding6 ,AdamJPawson6 , Joanna L Sharman6 , Christopher Southan6 , Jamie A Davies6 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 3Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 4Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, A-6020 Innsbruck, Austria 5School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 6Centre for Discovery Brain Science, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties.
    [Show full text]
  • Ion Channels Accelerated D1scovery
    Quality Antibodies · Quality Results $-GeneTex Your Expertise Our Antibod1es Ion Channels Accelerated D1scovery --------- www.genetex.com Potassium (K+ ) Sodium (Na+ ) Calcium (Ca2+ ) Ion channels are pore-forming, usually multimeric plasma membrane proteins that can open and close in response to chemical, temperature, or mechanical signals. An open channel allows specific ions to rapid ly traverse the transmembrane passageway a long an electrochemical gradient, generating an electrical signal that is propagated along excitable cells. Ion channels are of immense importance in clinical medicine as they are linked to a broad array of disorders and are targets of an ever-expanding, and commonly prescribed, armamentarium of pharmacologic agents. Nevertheless, there remains a great void in our understanding of ion channel biology, which limits our ability to develop more effective andmo re specific drugs. GeneTex offers an outstanding selection of antibodies to support ion channel research.Please see the highlighted antibodies in this flyer or review our complete list of related products on the GeneTex website. Highlighted products HCNl antibody (GTX131334} DPP6 antibody (GTX133338} IP3 Receptor I antibody (GTX133104} (...___ ___w _w _w_ ._G_e_n_e_T_e_x_._c_o_m_ _____,) ` a n a 匱 。 'ot I: . ·""·,, " . 鼴 丶•' · ,' , `> ,,, 丶 B -- ,:: ·-- o .i :' T. 、 冨 ,. \\.◄ .•}' r<• .. , -·•Jt.<_,,,, . ◄ · ◄ / .Jj -~~ 盆;i . '. ., CACNB4 (GTX100202) VGluTl antibody (GTX133148) P2X7一 antibody (GTX104288) Cavl.2 antibody (GTX54754) Cav2.1 antibody (GTX54753)
    [Show full text]
  • 1 1 2 3 Cell Type-Specific Transcriptomics of Hypothalamic
    1 2 3 4 Cell type-specific transcriptomics of hypothalamic energy-sensing neuron responses to 5 weight-loss 6 7 Fredrick E. Henry1,†, Ken Sugino1,†, Adam Tozer2, Tiago Branco2, Scott M. Sternson1,* 8 9 1Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 10 20147, USA. 11 2Division of Neurobiology, Medical Research Council Laboratory of Molecular Biology, 12 Cambridge CB2 0QH, UK 13 14 †Co-first author 15 *Correspondence to: [email protected] 16 Phone: 571-209-4103 17 18 Authors have no competing interests 19 1 20 Abstract 21 Molecular and cellular processes in neurons are critical for sensing and responding to energy 22 deficit states, such as during weight-loss. AGRP neurons are a key hypothalamic population 23 that is activated during energy deficit and increases appetite and weight-gain. Cell type-specific 24 transcriptomics can be used to identify pathways that counteract weight-loss, and here we 25 report high-quality gene expression profiles of AGRP neurons from well-fed and food-deprived 26 young adult mice. For comparison, we also analyzed POMC neurons, an intermingled 27 population that suppresses appetite and body weight. We find that AGRP neurons are 28 considerably more sensitive to energy deficit than POMC neurons. Furthermore, we identify cell 29 type-specific pathways involving endoplasmic reticulum-stress, circadian signaling, ion 30 channels, neuropeptides, and receptors. Combined with methods to validate and manipulate 31 these pathways, this resource greatly expands molecular insight into neuronal regulation of 32 body weight, and may be useful for devising therapeutic strategies for obesity and eating 33 disorders.
    [Show full text]
  • Naked Mole-Rat Acid-Sensing Ion Channel 3 Forms Nonfunctional Homomers, but Functional Heteromers
    bioRxiv preprint doi: https://doi.org/10.1101/166272; this version posted November 16, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Naked mole-rat ASIC3 is proton insensitive Naked mole-rat acid-sensing ion channel 3 forms nonfunctional homomers, but functional heteromers Laura-Nadine Schuhmacher1,2, Gerard Callejo1, Shyam Srivats1,3 and Ewan St. John Smith1* 1Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, United Kingdom 2Current address: Department of Cell & Developmental Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom 3Cero Therapeutics, Oyster Point Boulevard, South San Francisco, California 94080, USA Running title: Naked mole-rat ASIC3 is proton insensitive To whom correspondence should be addressed: Ewan St. John Smith, Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, United Kingdom, Tel.: +44 1223 334048; Fax: +44 1223 334100; E-mail: [email protected] Keywords: Acid sensing ion channel (ASIC), pain, ion channel, neuron, neurophysiology ABSTRACT underlie the proton insensitivity of nmrASIC3. Acid-sensing ion channels (ASICs) form both However, introducing nmrASIC3 differences into homotrimeric and heterotrimeric ion channels that rat ASIC3 (rASIC3) produced only minor are activated by extracellular protons and are differences in channel function, and replacing involved in a wide range of physiological and nmrASIC3 sequence with that of rASIC3 did not pathophysiological processes, including pain and produce a proton-sensitive ion channel.
    [Show full text]
  • ASIC1 and ASIC3 Contribute to Acidity-Induced EMT of Pancreatic Cancer Through Activating Ca2+/Rhoa Pathway
    Citation: Cell Death and Disease (2017) 8, e2806; doi:10.1038/cddis.2017.189 OPEN Official journal of the Cell Death Differentiation Association www.nature.com/cddis ASIC1 and ASIC3 contribute to acidity-induced EMT of pancreatic cancer through activating Ca2+/RhoA pathway Shuai Zhu1,4, Hai-Yun Zhou1,2,4, Shi-Chang Deng1,3,4, Shi-Jiang Deng1, Chi He1, Xiang Li1, Jing-Yuan Chen1, Yan Jin1, Zhuang-Li Hu2, Fang Wang2, Chun-You Wang1 and Gang Zhao*,1 Extracellular acid can have important effects on cancer cells. Acid-sensing ion channels (ASICs), which emerged as key receptors for extracellular acidic pH, are differently expressed during various diseases and have been implicated in underlying pathogenesis. This study reports that ASIC1 and ASIC3 are mainly expressed on membrane of pancreatic cancer cells and upregulated in pancreatic cancer tissues. ASIC1 and ASIC3 are responsible for an acidity-induced inward current, which is required for elevation of intracellular Ca2+ concentration ([Ca2+]i). Inhibition of ASIC1 and ASIC3 with siRNA or pharmacological inhibitor significantly decreased [Ca2+]i and its downstream RhoA during acidity and, thus, suppressed acidity-induced epithelial–mesenchymal transition (EMT) of pancreatic cancer cells. Meanwhile, downregulating [Ca2+]i with calcium chelating agent BAPTA-AM or knockdown of RhoA with siRNA also significantly repressed acidity-induced EMTof pancreatic cancer cells. Significantly, although without obvious effect on proliferation, knockdown of ASIC1 and ASIC3 in pancreatic cancer cells significantly suppresses liver and lung metastasis in xenograft model. In addition, ASIC1 and ASIC3 are positively correlated with expression of mesenchymal marker vimentin, but inversely correlated with epithelial marker E-cadherin in pancreatic cancer cells.
    [Show full text]
  • Acetylcholine Acetylcholine Receptors Acid-Sensing Ion Channels
    Acid-Sensing Ion Channels 1 degenerin 1 (MDEG1), brain sodium channel 1 Acetylcholine (BNC1, BNaC1); ASIC2b: mammalian degenerin 2 (MDEG2); ASIC3: dorsal-root acid-sensing ion channel (DRASIC) Synonyms ACh Definition Acid-Sensing Ion Channels (ASICs) are membrane Definition protein complexes that form depolarizing ion channels Acetylcholine is the chemical mediator in the synapse present on peripheral and/or central neurons. These of a motor endplate. The electrical signal of the channels are opened by extracellular protons. Their acti- motor nerve terminal causes release of many packets vation induces action potential triggering on neurons of acetylcholine. The packets are released into the after an extracellular pH decrease to acidic values. Such synaptic cleft where receptors in the postjunctional tissue acidosis occurs during inflammation or ischemia, membrane of the striated muscle fiber membrane and is a major source of pain. convert the chemical signal to an electrical signal (a propagated action potential) that can produce muscle Characteristics contractile activity. Normally, an occasional acetylcho- ASICs are membrane protein complexes formed by line packet is released spontaneously by the nerve four subunits among the six characterized isoforms terminal without a nerve signal. Each packet produces a (Fig. 1). The isoforms are coded by four different miniature endplate potential in the muscle fiber, but its genes, two of them spliced in two variants: ASIC1a and amplitude is too small to be propagated. Myofascial ASIC1b, ASIC2a and ASIC2b, ASIC3 and ASIC4 trigger points are associated with excessive sponta- (Chen et al. 1998; Garcia-Anoveros et al. 1997; neous release of acetylcholine packets in affected Grunder et al.
    [Show full text]
  • Inhibition of Voltage-Gated Na+ Currents in Sensory Neurons by the Sea Anemone Toxin
    Inhibition of voltage-gated Na+ currents in sensory neurons by the sea anemone toxin APETx2 Maxime G. Blanchard1, Lachlan D. Rash2 and Stephan Kellenberger1* 1Département de Pharmacologie et Toxicologie Université de Lausanne Rue du Bugnon 27 CH-1005 Lausanne, Switzerland 2Institute for Molecular Bioscience The University of Queensland St Lucia Queensland Australia 4072 Running title: Nav current inhibition by APETx2 in DRG neurons Category: Neuropharmacology *To whom correspondence should be addressed ([email protected]). 1 Summary Background and purpose APETx2, a toxin from the sea anemone Anthropleura elegantissima inhibits acid-sensing ion channel 3 (ASIC3)-containing homo- and heterotrimeric channels with IC50 values < 100 nM and 0.1-2 µM, respectively. ASIC3 has been shown to mediate acute acid-induced and inflammatory pain response, and several animal studies relied on APETx2 as a selective pharmacological tool. Toxins from sea anemone have been shown to modulate voltage-gated + Na channel (Nav) function. The aim of this study was to test whether APETx2 affects Nav function in sensory neurons. Experimental approach The effect of APETx2 on Nav function was studied in rat dorsal root ganglion (DRG) neurons by whole-cell patch-clamp. Key results APETx2 inhibited the tetrodotoxin (TTX)-resistant Nav1.8 currents of DRG neurons with an IC50 of 2.6 µM. TTX-sensitive currents were inhibited to a smaller extent. The inhibition of Nav1.8 currents is due to a rightward shift in the voltage dependence of activation, and a reduction of the maximal macroscopic conductance. The inhibition of Nav1.8 by APETx2 was confirmed on the cloned channel expressed in Xenopus oocytes.
    [Show full text]
  • Acid-Sensing Ion Channel (ASIC) 4 Gene: Physical Mapping, Genomic Organisation, and Evaluation As a Candidate for Paroxysmal Dystonia
    European Journal of Human Genetics (2001) 9, 672 ± 676 ã 2001 Nature Publishing Group All rights reserved 1018-4813/01 $15.00 www.nature.com/ejhg ARTICLE Acid-sensing ion channel (ASIC) 4 gene: physical mapping, genomic organisation, and evaluation as a candidate for paroxysmal dystonia Stefan GruÈnder*,1, Hyun-Soon Geisler1, Shirley Rainier2 and John K Fink2,3 1Department of Otolaryngology, Research Group of Sensory Physiology, University of TuÈbingen, RoÈntgenweg 11, D-72076 TuÈbingen, Germany; 2Department of Neurology, University of Michigan, W. Medical Center Drive, Ann Arbor, Michigan, MI 48109, USA; 3Geriatric Research Education and Clinical Center, Ann Arbor Veterans Affairs Medical Center, Ann Arbor, Michigan, MI 48109, USA Acid-sensing ion channels (ASICs) are protongated Na+ channels. They have been implicated with synaptic transmission, pain perception as well as mechanoperception. ASIC4 is the most recent member of this gene family. It shows expression throughout the central nervous system with strongest expression in pituitary gland. ASIC4 is inactive by itself and its function is unknown. Mutations in ion channel subunits, which are homologues of ASICs lead to neurodegeneration in Caenorhabditis elegans. It has, therefore, been speculated that similar mutations in ASICs may be responsible for neurodegeneration in humans. Here, we show that ASIC4 maps to the long arm of chromosome 2 in close proximity to the locus for paroxysmal dystonic choreoathetosis (PDC), a movement disorder with unknown cause. Ion channel genes have been shown to cause several other paroxysmal neurologic disorders and are important candidate genes for PDC. We established the genomic organisation of the ASIC4 gene and screened a PDC pedigree for mutations in the coding region.
    [Show full text]