Technologies for the Ray
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pre-Feasibility Study for a Solar Power Precinct Final Report Enhancing and Sustaining the World’S Built, Natural and Social Environments
Pre-Feasibility Study for a Solar Power Precinct Final report Enhancing and sustaining the world’s built, natural and social environments. ’ Pre-Feasibility Study for a Solar Power Precinct Table of Contents At a Glance i Executive Summary iii Glossary xiv 1.0 Introduction 1 1.1 Background 1 1.2 Objectives 1 1.3 Scope and Deliverables 2 1.4 Document Structure 2 2.0 Methodology 3 2.1 Overview 3 2.2 Phase 1: Technical and Environmental 3 Feasibility 3 2.16 Phase 2: Economics 9 2.17 Phase 3: Risk Assessment and Role for Government 9 2.18 Phase 4: Summary 9 3.0 Technical Assessment 11 3.1 Technology 11 3.2 Summary of Area Selection Process 11 3.3 Detailed Technical Assessment 13 3.4 Summary 18 4.0 Economic Feasibility 19 4.1 Introduction 19 4.2 Methodology 19 4.3 Levelised Cost of Electricity 21 4.4 Feasibility assessment 27 4.5 Cost Sensitivity 30 5.0 Risk Assessment 35 6.0 Role of Government 40 6.1 Introduction 40 6.2 Economic Benefits 40 6.3 Types of Assistance 43 6.4 Summary 49 7.0 References 51 Appendix A A Area selection process A Appendix B B Detailed factor assessment B Appendix C C Solar technology characteristics C Appendix D D Transmission components D Appendix E E Direct Normal Radiation E Appendix F F Technology and area matrices F 17 December 2010 At a Glance Pre-Feasibility Study for a Solar Power Precinct Final report Pre-Feasibility Study for a Solar Power Precinct a’ emissions to 60% below 2000 levels by 2050. -
Solar Roadway Design Concept
Mediterranean Institute for Regional Studies – MIRS www.mirs.co Policy Paper, No 5 Investigation and Feasibility Study to Replace Asphalt Roadway into Solare Roadway Prepared by: Dllshad Mwani Senior fellow and coordinator at MIRS Iraq- Kurdistan Region- Sulaymanyah *** Mediterranean Institute for Regional Studies II Investigation and Feasibility Study to Replace Asphalt Roadway into Solare Roadway By: Dilshad Mwani Contact us Email: [email protected] Official website: www.mirs.co Tel: 00 (964)7701951736 00(90)5338601514 Facebook: https://www.facebook.com/mirs.english/ Twitter: https://twitter.com/MIRSEnglish About Author : He is an expert on Managing oil and gas sector, He has an M.A in Oil and Gas Management at Birmingham City University. He is also a senior fellow and Coordinator MIRS. III Abstract Sustainability is critical in current engineering designs, especially in the area of pavement engineering, and is founded on having only limited resources while attempting to maximize designs for operation. To this end, developing infrastructure that can meet multiple needs is highly beneficial to society’s will to live at our current standard of living. One such task is the proposition to build roads that have been integrated with photovoltaic cells in order to supply a high performance driving surface while generating renewable electricity. This electricity could then be used by local infrastructure, adjacent buildings, or sold to the electrical grid. In order law to do this there are many challenges that necessitate to be overcome, as these roads cannot be built from traditional road surface materials, and a thorough analysis of many design aspects needs to be seen. -
Conference Programme
20 - 24 JUNE 2016 Ɣ MUNICH, GERMANY EU PVSEC 2016 ICM - International Congress Center Munich 32nd European PV Solar Energy Conference and Exhibition CONFERENCE PROGRAMME Status 18 March 2016 Monday, 20 June 2016 Monday, 20 June 2016 CONFERENCE PROGRAMME ORAL PRESENTATIONS 1AO.1 13:30 - 15:00 Fundamental Characterisation, Theoretical and Modelling Studies Please note, that this Programme may be subject to alteration and the organisers reserve the right to do so without giving prior notice. The current version of the Programme is available at www.photovoltaic-conference.com. Chairpersons: N.J. Ekins-Daukes (i) (i) = invited Imperial College London, United Kingdom W. Warta (i) Fraunhofer ISE, Germany Monday, 20 June 2016 1AO.1.1 Fast Qualification Method for Thin Film Absorber Materials L.W. Veldhuizen, Y. Kuang, D. Koushik & R.E.I. Schropp PLENARY SESSION 1AP.1 Eindhoven University of Technology, Netherlands G. Adhyaksa & E. Garnett 09:00 - 10:00 New Materials and Concepts for Solar Cells and Modules FOM Institute AMOLF, Amsterdam, Netherlands 1AO.1.2 Transient I-V Measurement Set-Up of Photovoltaic Laser Power Converters under Chairpersons: Monochromatic Irradiance A.W. Bett (i) S.K. Reichmuth, D. Vahle, M. de Boer, M. Mundus, G. Siefer, A.W. Bett & H. Helmers Fraunhofer ISE, Germany Fraunhofer ISE, Freiburg, Germany M. Rusu (i) C.E. Garza HZB, Germany Nanoscribe, Eggenstein-Leopoldshafen, Germany 1AP.1.1 Keynote Presentation: 37% Efficient One-Sun Minimodule and over 40% Efficient 1AO.1.3 Imaging of Terahertz Emission from Individual Subcells in Multi-Junction Solar Cells Concentrator Submodules S. Hamauchi, Y. Sakai, T. Umegaki, I. -
Newcastle-Under-Lyme Staffordshire ST5 1BL PLEASE NOTE EARLIER START TIME
Public Document Pack Date of Tuesday, 26th February, 2019 meeting Time 6.30 pm Venue Astley Room - Castle House Contact Geoff Durham Castle House Barracks Road Newcastle-under-Lyme Staffordshire ST5 1BL PLEASE NOTE EARLIER START TIME Planning Committee AGENDA PART 1 – OPEN AGENDA 1 APOLOGIES 2 DECLARATIONS OF INTEREST To receive Declarations of Interest from Members on items included on the agenda. 3 MINUTES OF PREVIOUS MEETING(S) (Pages 5 - 12) To consider the minutes of the previous meeting(s). 4 APPLICATION FOR MAJOR DEVELOPMENT - FORMER (Pages 13 - 24) BENNETT ARMS, LONDON ROAD, CHESTERTON. MR ANDREW GREEN. 18/00371/FUL 5 APPLICATION FOR MAJOR DEVELOPMENT - CROFT FARM, (Pages 25 - 38) STONE ROAD, HILL CHORLTON. DAVID JAMES DEVELOPMENTS LIMITED. 18/00507/OUT 6 APPLICATION FOR MAJOR DEVELOPMENT - NORTH BOUND (Pages 39 - 50) KEELE MOTORWAY SERVICE AREA. WELCOME BREAK. 18/00537/FUL 7 APPLICATION FOR MAJOR DEVELOPMENT - CRACKLEY (Pages 51 - 58) GATES FARM, LEYCETT LANE, SILVERDALE. MR DACEY. 18/00733/FUL 8 APPLICATION FOR MAJOR DEVELOPMENT - LAND AT BIRCH (Pages 59 - 64) HOUSE ROAD, CHESTERTON. ASPIRE HOUSING. 17/01033/FUL 9 REQUEST FOR VARIATION TO SECTION 106 AGREEMENT - (Pages 65 - 66) LEA COURT, NEW ROAD, MADELEY. HOUSING AND CARE 21. 08/00555/FUL Contacting the Council: Switchboard 01782 717717 . Text 07800 140048 Email [email protected]. www.newcastle-staffs.gov.uk 10 APPLICATION FOR MINOR DEVELOPMENT - BROUGHTON (Pages 67 - 74) ARMS, NEWCASTLE ROAD, BALTERLEY. THE BROUGHTON PROPCO LTD. (MR RICHARD COLCLOUGH). 18/00846/FUL 11 APPLICATION FOR MINOR DEVELOPMENT - THE OLD HALL (Pages 75 - 82) FARM, MAIN ROAD, BETLEY. -
Large-Scale Solar Photovoltaic Impact Assessment in the Context of the Brazilian Environmental and Energy Planning
LARGE-SCALE SOLAR PHOTOVOLTAIC IMPACT ASSESSMENT IN THE CONTEXT OF THE BRAZILIAN ENVIRONMENTAL AND ENERGY PLANNING Gardenio Diogo Pimentel da Silva Dissertação de Mestrado apresentada ao Programa de Pós-graduação em Planejamento Energético, COPPE, da Universidade Federal do Rio de Janeiro, como parte dos requisitos necessários à obtenção do título de Mestre em Planejamento Energético. Orientador(es): David Alves Castelo Branco Alessandra Magrini Rio de Janeiro Feverreiro de 2019 LARGE-SCALE SOLAR PHOTOVOLTAIC IMPACT ASSESSMENT IN THE CONTEXT OF THE BRAZILIAN ENVIRONMENTAL AND ENERGY PLANNING Gardenio Diogo Pimentel da Silva DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA (COPPE) DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE MESTRE EM CIÊNCIAS EM PLANEJAMENTO ENERGÉTICO. Examinada por: ________________________________________________ Prof. Dr. David Alves Castelo Branco, DSc. ________________________________________________ Prof. Dr. Alessandra Magrini, DSc. ________________________________________________ Prof. Dr. Betina Susanne Hoffmann, DSc. ________________________________________________ Prof. Dr. Ricardo Abranches Felix Cardoso Júnior, DSc. RIO DE JANEIRO, RJ - BRASIL FEVERREIRO DE 2019 Da Silva, Gardenio Diogo Pimentel Large-scale solar photovoltaic impact assessment in the context of the Brazilian environmental and energy planning/ Gardenio Diogo Pimentel da Silva. XIV, 89 p.: il.; 29,7 cm. Orientador: David Alves Castelo Branco e Alessandra Magrini Dissertação (mestrado) – UFRJ/ COPPE/ Programa de Planejamento Energético, 2019. Referências Bibliográficas: p. 92-96. 1. 1. Environmental Impact Assessment. 2. Regulation and energy planning. 3. Multicriteria decision-making analysis. I. Branco, David Alves Castelo; Magrini, Alessandra. II. Universidade Federal do Rio de Janeiro, COPPE, Programa de Engenharia Civil. -
Electrical Hints and Tips for Solar Car Challenge Race Teams
Electrical Hints and Tips for Solar Car Challenge Race Teams Revision 1.0 - August 28, 2013. By Dan Lepinski, Solar Engineer In the Public Domain To: All Teams Participating in the Solar Car Challenge .. Past, Present, and Future... Purpose: Suggestions and Comments for Improved Design and Assembly of Solar Cars Introduction By way of introduction, my name is Dan Lepinski. I’m a professional solar energy engineer. 2013 is my 41 st year of involvement in the solar energy industry where I continue to serve as a design engineer, consultant, and advisor. I had the pleasure and frustration of accompanying the 2013 race from Fort Worth, Texas to Los Angeles, California. My role was that of a volunteer. I provided solar-generated 120 volt AC electrical power for any team that needed it for repairs or other purposes along the way. I accomplished this with a large “solar” trailer, which was capable of powering the largest welders and compressors used by any team. 11 of the 14 teams participating in the 2013 Solar Car Challenge used power from my equipment along the race route for their welders, grinders, compressors, drills, saws, and more. They did whatever was necessary to make their cars roadworthy again. Some teams worked for up to an hour or more at a time to effect changes and repairs. It’s not important they used my equipment for this purpose. The important thing to remember ... every 2013 team succeeded in finishing the race. While repairs were underway by various teams, I had an opportunity to view their solar car wiring and construction in detail. -
Integrated Solar Lighting for Pedestrian Crosswalk Visibility
Integrated Solar Lighting for Pedestrian Crosswalk Visibility A report written for the Florida Department of Transportation Authored by Jonathan Scheffe University of Florida Department of Mechanical and Aerospace Engineering Gainesville, FL 32611 October 31st, 2016 Task Order # 977-62 Master Agreement Order # BDV31 PI: Jonathan Scheffe PM: Ronald Chin Co-PM: Trey Tillander III 1 Contents Abstract ........................................................................................................................................... 3 Background and Motivation ........................................................................................................... 4 Description of Relevant Commercial Technologies ....................................................................... 5 Solar Roadways® ......................................................................................................................... 5 Structural Analysis .................................................................................................................. 7 Wattway ...................................................................................................................................... 8 SolaRoad ..................................................................................................................................... 9 Hejimans - Studio Roosegaarde ................................................................................................ 11 Other Possible Solutions .......................................................................................................... -
Next-Generation Solar Power Dutch Technology for the Solar Energy Revolution Next-Generation High-Tech Excellence
Next-generation solar power Dutch technology for the solar energy revolution Next-generation high-tech excellence Harnessing the potential of solar energy calls for creativity and innovative strength. The Dutch solar sector has been enabling breakthrough innovations for decades, thanks in part to close collaboration with world-class research institutes and by fostering the next generation of high-tech talent. For example, Dutch student teams have won a record ten titles in the World Solar Challenge, a biennial solar-powered car race in Australia, with students from Delft University of Technology claiming the title seven out of nine times. 2 Solar Energy Guide 3 Index The sunny side of the Netherlands 6 Breeding ground of PV technology 10 Integrating solar into our environment 16 Solar in the built environment 18 Solar landscapes 20 Solar infrastructure 22 Floating solar 24 Five benefits of doing business with the Dutch 26 Dutch solar expertise in brief 28 Company profiles 30 4 Solar Energy Guide The Netherlands, a true solar country If there’s one thing the Dutch are remarkably good at, it’s making the most of their natural circumstances. That explains how a country with a relatively modest amount of sunshine has built a global reputation as a leading innovator in solar energy. For decades, Dutch companies and research institutes have been among the international leaders in the worldwide solar PV sector. Not only with high-level fundamental research, but also with converting this research into practical applications. Both by designing and refining industrial production processes, and by developing and commercialising innovative solutions that enable the integration of solar PV into a product or environment with another function. -
Technology Map 2013
JRC SCIENCE AND POLICY REPORTS 2013 Technology Map of the European Strategic Energy Technology Plan Technology Descriptions Report EUR 26345 EN Joint Research Centre EUROPEAN COMMISSION Joint Research Centre Institute for Energy and Transport Contact: Johan Carlsson Address: Joint Research Centre, 3 Westerduinweg 1755 LE Petten the Netherlands E-mail: [email protected] Tel.: +31 224565341 Fax: +31 224565616 http://iet.jrc.ec.europa.eu/ http://www.jrc.ec.europa.eu/ This publication is a Scientific and Policy Report by the Joint Research Centre of theE uropean Commission. LEGAL NOTICE Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/ JRC86357 EUR 26345 EN ISBN 978-92-79-34720-7 (pdf) ISBN 978-92-79-34721-4 (print) ISSN 1831-9424 (online) ISSN 1018-5593 (print) doi: 10.2790/99812 (online) doi: 10.2790/9986 (print) Luxembourg: Publications Office of the European Union, 2014 © European Union, 2014 Reproduction is authorised provided the source is acknowledged. Printed in Luxembourg 2013 Technology Map of the European Strategic Energy Technology Plan (SET-Plan) Technology Descriptions TABLE OF CONTENTS 1. -
The First Solar Roadway Opened in Amsterdam
THE FIRST SOLAR ROADWAY OPENED IN AMSTERDAM By Ivan Lawrence White On November 12th 2014, the first solar roadway opened in Amsterdam – a 70 meter stretch of bike path that connects the Amsterdam suburbs of Krommenie and Wormerveer and which generates solar power from rugged, textured glass-covered photovoltaic cells. This project, built by SolaRoad is at an initial proof-of-concept demonstration that solar energy can be applied as solution for future roads connecting to it all electric systems and services to ensure night and day mobility as well as other grid services. In particular the energy produced from the road can be hooked up to the grid and will be used to power streetlights, stoplights, businesses and homes. The road, which is named by the Netherlands Organization for Applied Scientific Research (TNO) as SolaRoad, is made up of rows of crystalline silicon solar cells, which were embedded into the concrete of the path and covered with a translucent layer of tempered glass. Each SolaRoad panel is comprised of a 1.4 to 2.3 meter layer cake composed of a layer of concrete, a layer of a centimetre of silicon solar cells and then a final layer of strengthened glass. It is estimated that the potential of electricity generation is of 54 kWh per square yard. The new solar road, which costs three thousand € meter, was created as the first step in a project that the local government hopes will see the path being extended to 100 metres by 2016. Actually, SolaRoad is not the first project aimed at turning roads and pathways into energy-harvesting surfaces. -
Guide for Partial- and Full-Depth Pavement Recycling in California
December 2020 Guideline: UCPRC-GL-2020-01 Guide for Partial- and Full-Depth Pavement Recycling in California Authors: D. Jones, S. Louw, and J. Harvey Partnered Pavement Research Center (PPRC) Contract Strategic Plan Elements 4.59, 4.65, 4.69, and 4.70 (DRISI Tasks 2707, 3194, 3195, and 3196): Improved Guidance and Specifications for In-Place Recycling PREPARED FOR: PREPARED BY: California Department of Transportation University of California Division of Research, Innovation and System Information Pavement Research Center Office of Materials and Infrastructure Roadway Research UC Davis and UC Berkeley TECHNICAL REPORT DOCUMENTATION PAGE 1. REPORT NUMBER 2. GOVERNMENT ASSOCIATION NUMBER 3. RECIPIENT’S CATALOG NUMBER UCPRC-GL-2020-01 4. TITLE AND SUBTITLE 5. REPORT PUBLICATION DATE Guide for Partial- and Full-Depth Pavement Recycling in California December 2020 6. PERFORMING ORGANIZATION CODE 7. AUTHOR(S) 8. PERFORMING ORGANIZATION REPORT D. Jones, S. Louw, and J. Harvey NO. UCPRC-GL-2020-01 UCD-ITS-RR-21-11 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. WORK UNIT NUMBER University of California Pavement Research Center Department of Civil and Environmental Engineering, UC Davis 11. CONTRACT OR GRANT NUMBER 1 Shields Avenue 65A0542 and 65A0628 Davis, CA 95616 12. SPONSORING AGENCY AND ADDRESS 13. TYPE OF REPORT AND PERIOD COVERED California Department of Transportation Guideline Division of Research, Innovation, and System Information 14. SPONSORING AGENCY CODE P.O. Box 942873 Sacramento, CA 94273-0001 15. SUPPLEMENTAL NOTES doi:10.7922/G2TX3CN8 16. ABSTRACT This document has been prepared to guide practitioners on project investigation, recycling strategy selection, pavement structural design, environmental life cycle and life cycle cost assessment, mix design, and construction of in-place pavement recycling projects on flexible pavements in California. -
Surrey AUTUMN 2007 F-C:Surrey Newsletter 3
HOGWASH live @ Surrey Christmas Cracker - P3 Midnight Market Madness AUTUMN-2007 later. “Animal! Animal!” the locals chant (which we correctly hoped was a reference to the Muppet Dubbin’ the leather character). Amazing stuff. The audience has gone wild, the band is impressed, and their own displaced t’s a beautiful September morning in the Forest of drummer looks … nervous. Dean and there’s not a duelling banjo in sight. In her Ifirst major ride as Lead Road Marshal, Catherine But how to recognise such undeclared talent, so boldly threads her column of bikes this presented and so well performed…? way and that through the twisting lanes. With Corkie’s solid presence Suddenly, it was obvious. And at the next Club Night our at the back, we skilfully dodge the very own Nigel Worsfold, drummer of considerable genial (but suicidal) Forest sheep, class, is ceremoniously dubbed ‘Animal of the Forest’ at until we find ourselves sandwiched the first outing of ‘Goodrich’ our new Chapter Dubbing neatly into the grounds of the faded Sword. Well done Nigel! Your leathers were the first to medieval glory that is Goodrich receive an official Chapter dubbin’ – but they won’t be Castle. It’s a fascinating place – the last! right from the medieval toilets that emptied down the front of the building into the waterless(!) moat, to the layers of defences that were more form than function for its elegant residents. But let’s be honest, Corkie – all this is not why we’re here, is it? We are here because right next to the café is a large display case with proper swords you can actually buy! Maybe it was the thrall of the place, or maybe the strange Forest airs, but in no time at all our Master at Arms had assembled a Committee quorum and secured its endorsement for the purchase of a Chapter Sword! Strangely, the reasons put forward for such a purchase evaporated from our collective Committee brain seconds after the till rang.