Foraging Modes in Lacertid Lizards from Southern Africa

Total Page:16

File Type:pdf, Size:1020Kb

Foraging Modes in Lacertid Lizards from Southern Africa Foraging modes in lacertid lizards from southern Africa William E. Cooper, Jr.1, Martin J. Whiting2 1 Department of Biology, Indiana University-Purdue University, Fort Wayne, Indiana 46805, USA e-mail: [email protected] 2 Department of Herpetology, Transvaal Museum, Paul Kruger Str., P.O. Box 413, Pretoria 0001, South Africa Abstract. Most lacertids are active foragers, but intrafamilial variation in foraging mode is greater than in most lizard families. We collected data on eight species of African lacertids to assess this variation. Both active and ambush foraging occurred within Pedioplanis and Meroles. Meroles ctenodactylus had a proportion of time moving and proportion of attacked prey detected while moving intermediate to those for actively foraging and ambushing Pedioplanis, but its number of movements per minute was exceptionally high. This species has a unique mixed foraging mode. Like active foragers, it seeks food by tongue- icking while moving and spends a high percentage of the time moving. Like ambush foragers, it searches visually for prey during pauses between movements. Our ndings con rm published data on four Kalahari lacertids. We discuss the history of foraging modes in advanced lacertids. Introduction Effective foraging behavior is a prerequisite for survival and reproduction of desert lizards, but no single foraging style is most effective for all species. Insectivorous lizards exhibit two major foraging modes: active (wide) foraging and ambush (sit-and-wait) foraging (MacArthur and Pianka, 1966; Huey and Pianka, 1981). Active foragers move through the habitat searching for prey by sight and by frequent tongue- icking to collect chemical samples (Evans, 1961; Huey and Pianka, 1981), whereas ambushers adopt ambush posts where they remain immobile while scanning visually for approaching prey (Huey and Pianka, 1981; Cooper, 1995, 1997). These foraging modes are highly stable, some entire families of lizards and even higher taxa being restricted to a single mode (Cooper, 1994, 1995, 1997; Cooper et al., 1997). However, in a few families some species are ambushers and others are active foragers (e.g., Huey and Pianka, 1981; Arnold, 1990; Cooper, 1994; Webb and Shine, 1994). Within the two major foraging modes, substantial variation occurs in the degrees and patterns of movements (Perry, 1995). c Koninklijke Brill NV, Leiden, 1999 Amphibia-Reptilia 20: 299-311 ® 300 William E. Cooper, Jr., Martin J. Whiting Differences in foraging behavior among lizards strongly in uence important aspects of lizard life history. Foraging modes are correlated with energy budgets (Anderson and Karasov, 1981, 1988), relative clutch mass during reproductive intervals (Vitt and Congdon, 1978; Huey and Pianka, 1981; Vitt and Price, 1982), defense against predators (Huey and Pianka, 1981; Vitt, 1983), and the evolution of the tongue-vomeronasal system and the associated reliance on chemosensory detection of prey (Cooper, 1994a,b, 1995, 1996a,b, 1997a,b). Despite its great importance and numerous studies of ecological and behavioral correlates of foraging mode (Huey and Pianka, 1981; Huey and Bennett, 1986; Cooper, 1994b, 1995a, 1997a), little is known about the ultimate factors that determine which foraging mode is used by a particular species. Early studies of lizards emphasized the discrete nature of the two foraging modes, but a number of authors later suggested that foraging activity may vary along some portion of a continuum from complete inactivity to continual activity rather than being restricted to two separate ends of the continuum (Magnusson et al., 1985; Pietruszka, 1986; Perry et al., 1990). There is still some disagreement, but the two foraging modes are widely recognized as distinct. McLaughlin (1989) presented evidence that lizard foraging activity does show some continuous variation within each mode, but that the range of activity does not overlap between modes. Lizard foraging activity is usually determined by measuring either or both of two variables, the proportion of the time spent moving (PTM) and number of movements per minute (MPM) (e.g., Huey and Pianka, 1981; Perry, 1995; Cooper et al., 1997). In a review of all published quantitative data on lizard foraging modes, Perry (1995) chose PTM < 0.100 as the criterion for ambush foraging. Huey and Pianka (1981) considered lizards having PTM as high as 0.143 to be ambush foragers. In addition to PTM and MPM, some investigators have measured mean speeds over the entire period of observation and during movement. In the Lacertidae, a large family of small lizards ranging throughout much of Europe, Asia, and Africa (Arnold, 1989, 1993), a large majority of species are active foragers. Among 65 species in 13 genera reviewed by Cooper (1994), only two species in two genera had been characterized as ambush foragers. Active foraging is believed to be plesiomorphic in the Lacertidae (Cooper, 1994, 1995), the relatively primitive European taxa all having been characterized as active foragers (Arnold, 1993). Ambush foraging is known only in a few species in the advanced lineage of Africa and Eurasia (Arnold and Burton, 1978; Arnold, 1990, 1993). Even in the advanced lineage, a large majority of species are active foragers. Both foraging modes are believed to exist within the subsaharan genera Pedioplanis and Meroles (Huey and Pianka, 1981; Arnold, 1990), but quantitative data are available for only six species of Kalahari lacertids, including two species of Pedioplanis differing in foraging behavior (Huey and Pianka, 1981). Here we present quantitative data on the foraging modes of eight species of lacertids representing four genera found in arid zones of South Africa and Namibia. In addition to MPM and PTM, we present information on foraging speeds and frequency of attacks on Foraging modes in African lacertids 301 prey initiated by lizards while moving and still. We compare foraging behaviors of species differing in mode in two genera, describe a mixed foraging mode in Meroles ctenodactylus, and discuss the evolution of foraging modes in advanced lacertids and possible reasons for intrageneric variation. Methods Foraging data were collected at several sites, all in South Africa except as noted. Observa- tions were conducted on Meroles ctenodactylus on 29 February and 1 March 1996 at Hon- deklipbaai (30° 18¢ S, 17° 16¢ E); M. knoxii on 29 February and 1 March 1996 at Hondeklip- baai and on 3 March 1996 at Papendorp (31° 41¢ S, 18° 13¢ E); M. reticulatus on 25 February 1996 at the foot of Dune 7 (22° 58¢ 30¢ ¢ S, 14° 40¢ 24¢ ¢ E) in Namibia near Walvis Bay; Pe- dioplanis lineoocellata in the Kalahari on 24 March at Koegechop (28° 15¢ S, 21° 5¢ E) and 26 March 1993 at Loerkop (28° 14¢ S, 20° 55¢ E); P. namaquensis in Namaqualand at Ybeep (29° 58¢ S, 17° 59¢ E) on 27 and 28 March 1993 and Wolfhoek (30° 22¢ S, 18° 12¢ E) on 29 March 1993, with single observations on 24 March at Koegechop and 26 March 1993 at Loerkop; P. undata on 11 to 14 October 1994 and 20 and 21 February 1996 at Farm Bergvellei in Namibia (19° 37¢ S, 14° 40¢ E, 20 km west of Kamanjab); Heliobolus lugubris on 24 March 1993 at Loerkop in the Kalahari and 20-21 February 1996 at Farm Bergvellei. Data were collected for a single Nucras tessellata on 28 March 1993 at Ybeep. Observations were made only on sunny days when lizards were active. We located lizards with binoculars and unaided vision while walking slowly through an area. Upon detecting a lizard, the observer stopped moving to reduce possible disturbance to the lizard. Data were recorded on microcassette tapes only for individuals that did not appear to have been disturbed. Focal animals were observed continuously for 10 min if possible, but often less if the lizard moved out of sight. Minimum acceptable observation time was 1.5 min. To ensure that data were collected only once per individual, we avoided repeated sampling in the same area. For each lizard we recorded species, locality, date, and foraging behaviors, including time moving and stationary, distance moved (within ca. 2 cm for very short movements, but ca. 0.5 m for the longest movements of ù 10 m), and feeding attempts. Postural adjustments not involving translation (e.g., turning, tail movements) were not recorded. Immobility was recorded whenever a lizard paused for one or more seconds. Shorter intervals would have been inaccurate due to competing demands of reading time, observing lizard movements, and recording both. From the movement data we calculated PTM, MPM, and two measures of foraging speed (Huey and Pianka, 1981). Moving speed was average speed while moving, i.e., distance moved divided by time spent moving. Mean speed was calculated over the entire observation interval, including time not moving. The measurements of mean speed and movement speed are rather crude due to limitations in measures of distances moved, but 302 William E. Cooper, Jr., Martin J. Whiting are more than adequate to show differences among species. We pooled data for juveniles and adults after ascertaining that there were no signi cant age differences in MPM or PTM (Mann-Whitney U tests). All of the movement measures re ect activity levels, which are sensitive to factors such as body temperature and digestion. If care is not taken to record data only for lizards that are warm enough to forage normally and have not become so full as to stop foraging, activity data may give a distorted view of foraging. Although we could not completely control effects of differing environmental temperatures, we minimized effects of temperature by collecting data only at times of day when lizards normally forage and in light and temperature conditions affording them the opportunity to maintain body temperatures at preferred levels through thermoregulation. In addition to activity, the two foraging modes have another basic difference: Ambushers initiate attacks on prey while immobile, whereas active foragers initiate attack after nding the prey while moving.
Recommended publications
  • Preface Amphibian & Reptile Conservation Special Angola and Africa Issue
    Official journal website: Amphibian & Reptile Conservation amphibian-reptile-conservation.org 10(2): i–iii (e128). Preface Amphibian & Reptile Conservation Special Angola and Africa Issue William R. Branch Curator Emeritus Herpetology, Bayworld, P.O. Box 13147, Humewood 6013, SOUTH AFRICA (Research Associate, Department of Zoology, P.O. Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031, SOUTH AFRICA) Citation: Branch WR. 2016. Preface (Amphibian & Reptile Conservation Special Angola and Africa Issue). Amphibian & Reptile Conservation 10(2): i‒iii (e128). Copyright: © 2016 Branch. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercialNoDerivatives 4.0 International License, which permits unrestricted use for non-commercial and education purposes only, in any medium, provided the original author and the official and authorized publication sources are recognized and properly credited. The official and authorized publication credit sources, which will be duly enforced, are as follows: official journal title Amphibian & Reptile Conservation; official journal website <amphibian-reptile-conservation. org>. Published: 30 November 2016 Africa is a mega continent that was isolated for long pe- merous additional locality records dispersed in museum riods of its history. However, after the tectonic activity collections, they have not been consolidated and made and uplift that accompanied Gondwana’s breakup and easily accessible. This hinders the study of the African Africa’s birth c. 130 Ma the continent was relatively qui- herpetofauna, preventing fuller understanding of its ori- escent for nearly 100 million years until the development gins and diversity, and therefore its conservation (Tolley of the East African Rift system 31‒30 mMa (Ring 2014).
    [Show full text]
  • Preliminary Analysis of Correlated Evolution of Morphology and Ecological Diversification in Lacertid Lizards
    Butll. Soc. Cat. Herp., 19 (2011) Preliminary analysis of correlated evolution of morphology and ecological diversification in lacertid lizards Fèlix Amat Orriols Àrea d'Herpetologia, Museu de Granollers-Ciències Naturals. Francesc Macià 51. 08402 Granollers. Catalonia. Spain. [email protected] Resum S'ha investigat la diversitat morfològica en 129 espècies de lacèrtids i la seva relació amb l'ecologia, per mitjà de mètodes comparatius, utilitzant set variables morfomètriques. La mida corporal és la variable més important, determinant un gradient entre espècies de petita i gran mida independentment evolucionades al llarg de la filogènia dels lacèrtids. Aquesta variable està forta i positivament correlacionada amb les altres, emmascarant els patrons de diversitat morfològica. Anàlisis multivariants en les variables ajustades a la mida corporal mostren una covariació negativa entre les mides relatives de la cua i les extremitats. Remarcablement, les espècies arborícoles i semiarborícoles (Takydromus i el clade africà equatorial) han aparegut dues vegades independentment durant l'evolució dels lacèrtids i es caracteritzen per cues extremadament llargues i extremitats anteriors relativament llargues en comparació a les posteriors. El llangardaix arborícola i planador Holaspis, amb la seva cua curta, constitueix l’única excepció. Un altre cas de convergència ha estat trobat en algunes espècies que es mouen dins de vegetació densa o herba (Tropidosaura, Lacerta agilis, Takydromus amurensis o Zootoca) que presenten cues llargues i extremitats curtes. Al contrari, les especies que viuen en deserts, estepes o matollars amb escassa vegetació aïllada dins grans espais oberts han desenvolupat extremitats posteriors llargues i anteriors curtes per tal d'assolir elevades velocitats i maniobrabilitat. Aquest és el cas especialment de Acanthodactylus i Eremias Abstract Morphologic diversity was studied in 129 species of lacertid lizards and their relationship with ecology by means of comparative analysis on seven linear morphometric measurements.
    [Show full text]
  • Freshwater Fishes
    WESTERN CAPE PROVINCE state oF BIODIVERSITY 2007 TABLE OF CONTENTS Chapter 1 Introduction 2 Chapter 2 Methods 17 Chapter 3 Freshwater fishes 18 Chapter 4 Amphibians 36 Chapter 5 Reptiles 55 Chapter 6 Mammals 75 Chapter 7 Avifauna 89 Chapter 8 Flora & Vegetation 112 Chapter 9 Land and Protected Areas 139 Chapter 10 Status of River Health 159 Cover page photographs by Andrew Turner (CapeNature), Roger Bills (SAIAB) & Wicus Leeuwner. ISBN 978-0-620-39289-1 SCIENTIFIC SERVICES 2 Western Cape Province State of Biodiversity 2007 CHAPTER 1 INTRODUCTION Andrew Turner [email protected] 1 “We live at a historic moment, a time in which the world’s biological diversity is being rapidly destroyed. The present geological period has more species than any other, yet the current rate of extinction of species is greater now than at any time in the past. Ecosystems and communities are being degraded and destroyed, and species are being driven to extinction. The species that persist are losing genetic variation as the number of individuals in populations shrinks, unique populations and subspecies are destroyed, and remaining populations become increasingly isolated from one another. The cause of this loss of biological diversity at all levels is the range of human activity that alters and destroys natural habitats to suit human needs.” (Primack, 2002). CapeNature launched its State of Biodiversity Programme (SoBP) to assess and monitor the state of biodiversity in the Western Cape in 1999. This programme delivered its first report in 2002 and these reports are updated every five years. The current report (2007) reports on the changes to the state of vertebrate biodiversity and land under conservation usage.
    [Show full text]
  • AHN-48-2009 Type
    AFRICAN HERP NEWS Number 48 AUGUST 2009 African Herp News CONTENTS EDITORIAL .............. ................ ........................... .................... Newsletter of the Herpetological Association of Africa ARTICLES GOLDBERG, S.R. Reproduction in Speke's Sand Lizard, Heliobolus spekii (Squamata: Lacertidae) from Kenya . ... ... .. ... .. ........ 2 GOLDBERG, S.R. Reproduction of Jackson's Forest Lizard, Ado/fus jacksoni (Squamata: Lacertidae) . ... .. ........... .. .... 5 JAUCH, H. Captive propagation of Python anchietae in Namibia . .. 8 NATURAL HISTORY NOTES GOLDBERG, S.R. Rhoptropus barnardi. Reproduction ... ... ... ... .. 15 GOLDBERG, S.R., &BURSEY, C.R. Ado/fusjacksoni. Endoparasites ...... ..... 16 PHELPS, T. Cordy/us cordylus. Fire survival . 18 BOYCOTT, R.C. Amblyodipsas concolor. Size, defensive behaviour, and lepidosis . .. 20 GEOGRAPHICAL DISTRIBUTIONS BATES, M.F., & WHITTINGTON-JONES, C. Pseudocordylus m. melanotus (A. Smith, 1848) . 23 INSTRUCTIONS TO AUTHORS . .. ... .. 26 MEMBERSHIP APPLICATION FORM . .. .. .. .. ....... .. ......... 28 I l Number48 AUGUST 2009 ISSN 107-6187 AFRICAN HERP NEWS 48, AUGUST 2009 HERPETOLOGICAL ASSOCIATION OF AFRICA http://www.wits.ac.za/haa FOUNDED 1965 EDITORIAL The HAA is dedicated to the study and conservation of African reptiles and amphibians. Member- ship is open to anyone with an interest in the African herpetofauna. Members receive the Associa­ tion's journal, African Journal of Herpetology, which publishes review papers, research articles, We apologise to the members of the
    [Show full text]
  • Is Dietary Niche Breadth Linked to Morphology and Performance in Sandveld Lizards Nucras (Sauria: Lacertidae)?
    bs_bs_banner Biological Journal of the Linnean Society, 2013, 110, 674–688. With 4 figures Is dietary niche breadth linked to morphology and performance in Sandveld lizards Nucras (Sauria: Lacertidae)? SHELLEY EDWARDS1,2*, KRYSTAL A. TOLLEY1,2, BIEKE VANHOOYDONCK3, G. JOHN MEASEY4 and ANTHONY HERREL5 1Applied Biodiversity Research Division, South African National Biodiversity Institute, Claremont 7735, Cape Town, South Africa 2Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa 3Department of Biology, University of Antwerp, Antwerp, Belgium 4Department of Zoology, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031, South Africa 5Département d’Ecologie et de Gestion de la Biodiversité, UMR 7179 CNRS/MNHN, 57 rue Cuvier, Case postale 55, 75231, Paris, Cedex 5, France Received 28 March 2013; revised 1 June 2013; accepted for publication 2 June 2013 The functional characteristics of prey items (such as hardness and evasiveness) have been linked with cranial morphology and performance in vertebrates. In lizards particularly, species with more robust crania generally feed on harder prey items and possess a greater bite force, whereas those that prey on evasive prey typically have longer snouts. However, the link between dietary niche breadth, morphology, and performance has not been explicitly investigated in lizards. The southern African genus Nucras was used to investigate this link because the species exhibit differing niche breadth values and dietary compositions. A phylogeny for the genus was established using mitochondrial and nuclear markers, and morphological clusters were identified. Dietary data of five Nucras species, as reported previously, were used in correlation analyses between cranial shape (quantified using geometric morphometrics) and dietary niche breadth, and the proportion of hard prey taken and bite force capacity.
    [Show full text]
  • Preliminary Analysis of Correlated Evolution of Morphology and Ecological Diversification in Lacertid Lizards
    Butll. Soc. Cat. Herp., 19 (2011) Preliminary analysis of correlated evolution of morphology and ecological diversification in lacertid lizards Fèlix Amat Orriols Àrea d'Herpetologia, Museu de Granollers-Ciències Naturals. Francesc Macià 51. 08402 Granollers. Catalonia. Spain. [email protected] Resum S'ha investigat la diversitat morfològica en 129 espècies de lacèrtids i la seva relació amb l'ecologia, per mitjà de mètodes comparatius, utilitzant set variables morfomètriques. La mida corporal és la variable més important, determinant un gradient entre espècies de petita i gran mida independentment evolucionades al llarg de la filogènia dels lacèrtids. Aquesta variable està forta i positivament correlacionada amb les altres, emmascarant els patrons de diversitat morfològica. Anàlisis multivariants en les variables ajustades a la mida corporal mostren una covariació negativa entre les mides relatives de la cua i les extremitats. Remarcablement, les espècies arborícoles i semiarborícoles (Takydromus i el clade africà equatorial) han aparegut dues vegades independentment durant l'evolució dels lacèrtids i es caracteritzen per cues extremadament llargues i extremitats anteriors relativament llargues en comparació a les posteriors. El llangardaix arborícola i planador Holaspis, amb la seva cua curta, constitueix l’única excepció. Un altre cas de convergència ha estat trobat en algunes espècies que es mouen dins de vegetació densa o herba (Tropidosaura, Lacerta agilis, Takydromus amurensis o Zootoca) que presenten cues llargues i extremitats curtes. Al contrari, les especies que viuen en deserts, estepes o matollars amb escassa vegetació aïllada dins grans espais oberts han desenvolupat extremitats posteriors llargues i anteriors curtes per tal d'assolir elevades velocitats i maniobrabilitat. Aquest és el cas especialment de Acanthodactylus i Eremias Abstract Morphologic diversity was studied in 129 species of lacertid lizards and their relationship with ecology by means of comparative analysis on seven linear morphometric measurements.
    [Show full text]
  • Squamata: Lacertidae)
    UNIVERSITY OF CALIFORNIA SANTA CRUZ EVOLUTIONARY CONSEQUENCES OF CENOZOIC CLIMATE CHANGE ON AFRICAN LACERTID LIZARDS (SQUAMATA: LACERTIDAE) A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in ECOLOGY AND EVOLUTIONARY BIOLOGY by Christy A. Hipsley September 2012 The Dissertation of Christy Hipsley is approved: _________________________________ Professor Barry Sinervo, Chair _________________________________ Professor Giacomo Bernardi _________________________________ Professor Johannes Müller _________________________________ Tyrus Miller Vice Provost and Dean of Graduate Studies Copyright © by Christy A. Hipsley 2012 TABLE OF CONTENTS LIST OF TABLES AND FIGURES …………………………………………………………. v ABSTRACT ……………………………………………………………………………… vii ACKNOWLEDGEMENTS ………………………………………………………………… ix INTRODUCTION ……………………………………………………………………..……. 1 CHAPTER 1. INTEGRATION OF BAYESIAN MOLECULAR CLOCK METHODS AND FOSSIL-BASED SOFT BOUNDS REVEALS EARLY CENOZOIC ORIGIN OF AFRICAN LACERTIDS LIZARDS…………………………………………………………………… 9 Abstract ………………………………………………………………………… 9 Background …………………………………………………………………….. 10 Methods ………………………………………………………………………… 11 Results ……………………………………………………….…………………. 13 Discussion………………………………………………………….………………16 CHAPTER 2. MORPHOLOGICAL CONVERGENCE IN ARID-DWELLING AFRICAN LACERTID LIZARDS DRIVEN BY ECOLOGICAL AND CLIMATIC FACTORS………………. 22 Abstract ………………………………………………………………………... 22 Introduction ……………………………………………………………………. 23 Materials and Methods ………………………………………………………… 26 Results ……………………………………………………………………..……
    [Show full text]
  • The Bulletin of Zoological Nomenclature V57 Part02
    Volume 57, Part 2, 30 June 2000, pp. 69-136 ISSN 0007-5167 stum The Bulletin of Zoological Nomenclature Original from and digitized by National University of Singapore Libraries THE BULLETIN OF ZOOLOGICAL NOMENCLATURE The Bulletin is published four times a year for the International Commission on Zoological Nomenclature by the International Trust for Zoological Nomenclature, a charity (no. 211944) registered in England. The annual subscription for 2000 is £110 or $200, postage included. All manuscripts, letters and orders should be sent to: The Executive Secretary, International Commission on Zoological Nomenclature, c/o The Natural History Museum, Cromwell Road, London, SW7 5BD, U.K. (Tel. 020 7942 5653) (e-mail: [email protected]) (http://www.iczn.org) INTERNATIONAL COMMISSION ON ZOOLOGICAL NOMENCLATURE Officers President Prof A. Minelli {Italy) Vice-President Dr W. N. Eschmeyer (U.S.A.) Executive Secretary Dr P. K. Tubbs (United Kingdom) Members Prof W. J. Bock (U.S.A.; Ornithology) Dr V. Mahnert Prof P. Bouchet (France; Mollusca) (Switzerland; Ichthyology) Prof D. J. Brothers Prof U. R. Martins de Souza (South Africa; Hymenoptera) (Brazil; Coleoptera) Dr L. R. M. Cocks (U.K.; Brachiopoda) Prof S. F. Mawatari (Japan; Bryozoa) DrH.G. Cogger (Australia; Herpetology) Prof A. Minelli (Italy; Myriapoda) Prof C. Dupuis (France; Heteroptera) Dr C. Nielsen (Denmark; Bryozoa) Dr W. N. Eschmeyer Dr L. Papp (Hungary; Diptera) (U.S.A.; Ichthyology) Prof D. J. Patterson (Australia; Protista) Mr D. Heppell (U.K.; Mollusca) Prof W. D. L. Rid^(Australia; Mammalia) Dr I. M. Kerzhner (Russia; Heteroptera) Prof J. M. Savage (U.S. A; Herpetology) Prof Dr O.
    [Show full text]
  • Jackie L. Childers
    JACKIE L. CHILDERS Museum of Vertebrate Zoology, Department of Integrative Biology 3101 Valley Life Sciences Building, University of California Berkeley Berkeley, CA 94720-3160 Email: [email protected] EDUCATION UNIVERSITY OF CALIFORNIA, BERKELEY 2016-Present Berkeley, California- Ph.D Integrative Biology Thesis advisor: Dr. Rauri C. K. Bowie VILLANOVA UNIVERSITY 2013-2015 Villanova, Pennsylvania- M.S. Biology Thesis advisor Dr. Aaron M. Bauer UNIVERSITY OF CALIFORNIA, BERKELEY 2008-2012 Berkeley, California- B.S. Conservation and Resource Studies PUBLICATIONS 2014 – Present Childers, J.L., Kirchhof, S. & Bauer, A.M. 2020. Lizards of a different stripe: Phylogeography of the Pedioplanis undata species complex (Squamata: Lacertidae), with the description of two new species. Zoosystematics and Evolution (In Review). Childers, J.L., Singh, K., Koo, M.S., 2020. Dicamptodon tenebrosus (Pacific Giant Salamander). Diet. Herpetological Review 51(4): 806–807. Bauer, A.M., Childers, J.L., Murdoch, H. 2020. A reevaluation of the Sandveld Lizards Nucras (Squamata:Lacertidae) of Namibia. Amphibian and Reptile Conservation 14(3) [Taxonomy Section]: 231–250 (e271). Bauer, A.M., Childers, J.L., Broeckhoven, C., Mouton, P. LF. N., 2019. A new Nucras Gray, 1838 (Squamata: Lacertidae) from the Strandveld of the Western Cape, South Africa. Zootaxa 4560(1): 149-163. Eifler, D.A., Eifler, M., Malela, K., Childers, J.L., 2016. Social networks in the Little Scrub Island Ground Lizard (Ameiva corax). Journal of Ethology 34(3): 343–348. Childers, J.L. & Eifler, D.A., 2015. Intraspecific behavioural variation in the lacertid lizard Meroles cuneirostris (Strauch, 1867) (Sauria: Lacertidae). African Journal of Herpetology 64(1): 54–66. Childers, J.L.
    [Show full text]
  • Nuclear and Mtdna-Based Phylogeny of Southern African Sand Lizards, Pedioplanis (Sauria: Lacertidae)
    Molecular Phylogenetics and Evolution 44 (2007) 622–633 www.elsevier.com/locate/ympev Nuclear and mtDNA-based phylogeny of southern African sand lizards, Pedioplanis (Sauria: Lacertidae) Jane S. Makokha a,*, Aaron M. Bauer a,1, Werner Mayer b, Conrad A. Matthee a a Evolutionary Genomics Group, Department of Botany and Zoology, Stellenbosch University, 7602, South Africa b Naturhistorisches Museum Wien, Burgring 7, A-1014 Wien, Austria Received 14 August 2006; revised 20 April 2007; accepted 28 April 2007 Available online 18 May 2007 Abstract The diversity of lacertid lizards in Africa is highest in the southern African subcontinent, where over two-thirds of the species are endemic. With eleven currently recognized species, Pedioplanis is the most diverse among the southern African genera. In this study we use 2200 nucleotide positions derived from two mitochondrial markers (ND2 and 16S rRNA) and one nuclear gene (RAG-1) to (i) assess the phylogeny of Pedioplanis and (ii) estimate divergence time among lineages using the relaxed molecular clock method. Indi- vidual analyses of each gene separately supported different nodes in the phylogeny and the combined analysis yielded more well sup- ported relationships. We present the first, well-resolved gene tree for the genus Pedioplanis and this is largely congruent with a phylogeny derived from morphology. Contrary to previous suggestions Heliobolus/Nucras are sister to Pedioplanis. The genus Pediopl- anis is monophyletic, with P. burchelli/P. laticeps forming a clade that is sister to all the remaining congeners. Two distinct geographic lineages can be identified within the widespread P. namaquensis; one occurs in Namibia, while the other occurs in South Africa.
    [Show full text]
  • Diet and Activity of Mabuya Acutilabris (Reptilia: Scincidae) in Namibia
    HERPETOLOGICAL JOURNAL, Vol. 3, pp. 130-135 (1993) DIET AND ACTIVITY OF MABUYA ACUTILABRIS (REPTILIA: SCINCIDAE) IN NAMIBIA RONALD A. CASTANZO AND AARON M. BAUER* Biology Department, Villanova University, Villanova, Pennsylvania 19085, USA •Author fo r correspondence (A ccepted JO. 2. 93) ABSTRACT Mabuya acutilabris is a terrestrial African scincid lizard distributed from Little Namaqualand to the mouth of the Zaire (Congo) River. In the central portion of its range (near Kamanjab , Namibia) the species is active in early winter from 09.50 hr to 17.10 hr. These skinks spend much time basking, and 73 % of their surfaceactivity occurs within 30 cm of clumps of vegetation where they construct shallow burrows . Single day movements of the skinks are short in both duration and distance, yet long-term movement may be considerable. Density of the species at the study site was at least 106/ha. Across its geographic range M. acutilabris is a generalist insectivore, with hemipterans and a variety of insect larvae constituting the most important prey classes. INTRODUCTION Farm Franken. Lizard density appeared somewhat lower at this site than in surrounding areas, but the sparse vegetation of Scincid lizards of the genus Mabuya comprise one of the the river bed facilitated observation. Unusually heavy (405 most diverse elements in the saurian fauna of the Pronamib mm vs . 300 mm rain/year average; Bauer et al. , in press) and and northern Namibian savanna. Eleven species have been late rainfall in 1989-90 supported relatively lush grass cover recorded from the region of the Great Escarpment near the over much of the surrounding area well into the winter.
    [Show full text]
  • Reptiles and Amphibians of the Goegap Nature Reserve
    their time underground in burrows. These amphibians often leave their burrows after heavy rains that are seldom. Reptiles And Amphibians Of The There are reptiles included in this report, which don’t occur here in Goegap but at the Augrabies Falls NP. So you can find here also the Nile monitor and the flat liz- Goegap Nature Reserve ard. Measuring reptiles By Tanja Mahnkopf In tortoises and terrapins the length is measured at the shell. Straight along the mid- line of the carapace. The SV-Length is the length of head and body (Snout to Vent). In lizards it easier to look for this length because their tail may be a regenerated one Introduction and these are often shorter than the original one. The length that is mentioned for the The reptiles are an ancient class on earth. The earliest reptile fossils are about 315 species in this report is the average to the maximum length. For the snakes I tried to million years old. During the aeons of time they evolved a great diversity of extinct give the total length because it is often impossible to say where the tail begins and and living reptiles. The dinosaurs and their relatives dominated the earth 150 million the body ends without holding the snake. But there was not for every snake a total years ago. Our living reptiles are remnants of that period or from a period after the length available. dinosaurs were extinct. Except of the chameleons (there are only two) you can find all reptiles in the appen- Obviously it looks like reptiles are not as successful as mammals.
    [Show full text]