Diet and Activity of Mabuya Acutilabris (Reptilia: Scincidae) in Namibia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Preface Amphibian & Reptile Conservation Special Angola and Africa Issue
Official journal website: Amphibian & Reptile Conservation amphibian-reptile-conservation.org 10(2): i–iii (e128). Preface Amphibian & Reptile Conservation Special Angola and Africa Issue William R. Branch Curator Emeritus Herpetology, Bayworld, P.O. Box 13147, Humewood 6013, SOUTH AFRICA (Research Associate, Department of Zoology, P.O. Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031, SOUTH AFRICA) Citation: Branch WR. 2016. Preface (Amphibian & Reptile Conservation Special Angola and Africa Issue). Amphibian & Reptile Conservation 10(2): i‒iii (e128). Copyright: © 2016 Branch. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercialNoDerivatives 4.0 International License, which permits unrestricted use for non-commercial and education purposes only, in any medium, provided the original author and the official and authorized publication sources are recognized and properly credited. The official and authorized publication credit sources, which will be duly enforced, are as follows: official journal title Amphibian & Reptile Conservation; official journal website <amphibian-reptile-conservation. org>. Published: 30 November 2016 Africa is a mega continent that was isolated for long pe- merous additional locality records dispersed in museum riods of its history. However, after the tectonic activity collections, they have not been consolidated and made and uplift that accompanied Gondwana’s breakup and easily accessible. This hinders the study of the African Africa’s birth c. 130 Ma the continent was relatively qui- herpetofauna, preventing fuller understanding of its ori- escent for nearly 100 million years until the development gins and diversity, and therefore its conservation (Tolley of the East African Rift system 31‒30 mMa (Ring 2014). -
Squamata: Lacertidae)
UNIVERSITY OF CALIFORNIA SANTA CRUZ EVOLUTIONARY CONSEQUENCES OF CENOZOIC CLIMATE CHANGE ON AFRICAN LACERTID LIZARDS (SQUAMATA: LACERTIDAE) A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in ECOLOGY AND EVOLUTIONARY BIOLOGY by Christy A. Hipsley September 2012 The Dissertation of Christy Hipsley is approved: _________________________________ Professor Barry Sinervo, Chair _________________________________ Professor Giacomo Bernardi _________________________________ Professor Johannes Müller _________________________________ Tyrus Miller Vice Provost and Dean of Graduate Studies Copyright © by Christy A. Hipsley 2012 TABLE OF CONTENTS LIST OF TABLES AND FIGURES …………………………………………………………. v ABSTRACT ……………………………………………………………………………… vii ACKNOWLEDGEMENTS ………………………………………………………………… ix INTRODUCTION ……………………………………………………………………..……. 1 CHAPTER 1. INTEGRATION OF BAYESIAN MOLECULAR CLOCK METHODS AND FOSSIL-BASED SOFT BOUNDS REVEALS EARLY CENOZOIC ORIGIN OF AFRICAN LACERTIDS LIZARDS…………………………………………………………………… 9 Abstract ………………………………………………………………………… 9 Background …………………………………………………………………….. 10 Methods ………………………………………………………………………… 11 Results ……………………………………………………….…………………. 13 Discussion………………………………………………………….………………16 CHAPTER 2. MORPHOLOGICAL CONVERGENCE IN ARID-DWELLING AFRICAN LACERTID LIZARDS DRIVEN BY ECOLOGICAL AND CLIMATIC FACTORS………………. 22 Abstract ………………………………………………………………………... 22 Introduction ……………………………………………………………………. 23 Materials and Methods ………………………………………………………… 26 Results ……………………………………………………………………..…… -
The Bulletin of Zoological Nomenclature V57 Part02
Volume 57, Part 2, 30 June 2000, pp. 69-136 ISSN 0007-5167 stum The Bulletin of Zoological Nomenclature Original from and digitized by National University of Singapore Libraries THE BULLETIN OF ZOOLOGICAL NOMENCLATURE The Bulletin is published four times a year for the International Commission on Zoological Nomenclature by the International Trust for Zoological Nomenclature, a charity (no. 211944) registered in England. The annual subscription for 2000 is £110 or $200, postage included. All manuscripts, letters and orders should be sent to: The Executive Secretary, International Commission on Zoological Nomenclature, c/o The Natural History Museum, Cromwell Road, London, SW7 5BD, U.K. (Tel. 020 7942 5653) (e-mail: [email protected]) (http://www.iczn.org) INTERNATIONAL COMMISSION ON ZOOLOGICAL NOMENCLATURE Officers President Prof A. Minelli {Italy) Vice-President Dr W. N. Eschmeyer (U.S.A.) Executive Secretary Dr P. K. Tubbs (United Kingdom) Members Prof W. J. Bock (U.S.A.; Ornithology) Dr V. Mahnert Prof P. Bouchet (France; Mollusca) (Switzerland; Ichthyology) Prof D. J. Brothers Prof U. R. Martins de Souza (South Africa; Hymenoptera) (Brazil; Coleoptera) Dr L. R. M. Cocks (U.K.; Brachiopoda) Prof S. F. Mawatari (Japan; Bryozoa) DrH.G. Cogger (Australia; Herpetology) Prof A. Minelli (Italy; Myriapoda) Prof C. Dupuis (France; Heteroptera) Dr C. Nielsen (Denmark; Bryozoa) Dr W. N. Eschmeyer Dr L. Papp (Hungary; Diptera) (U.S.A.; Ichthyology) Prof D. J. Patterson (Australia; Protista) Mr D. Heppell (U.K.; Mollusca) Prof W. D. L. Rid^(Australia; Mammalia) Dr I. M. Kerzhner (Russia; Heteroptera) Prof J. M. Savage (U.S. A; Herpetology) Prof Dr O. -
Jackie L. Childers
JACKIE L. CHILDERS Museum of Vertebrate Zoology, Department of Integrative Biology 3101 Valley Life Sciences Building, University of California Berkeley Berkeley, CA 94720-3160 Email: [email protected] EDUCATION UNIVERSITY OF CALIFORNIA, BERKELEY 2016-Present Berkeley, California- Ph.D Integrative Biology Thesis advisor: Dr. Rauri C. K. Bowie VILLANOVA UNIVERSITY 2013-2015 Villanova, Pennsylvania- M.S. Biology Thesis advisor Dr. Aaron M. Bauer UNIVERSITY OF CALIFORNIA, BERKELEY 2008-2012 Berkeley, California- B.S. Conservation and Resource Studies PUBLICATIONS 2014 – Present Childers, J.L., Kirchhof, S. & Bauer, A.M. 2020. Lizards of a different stripe: Phylogeography of the Pedioplanis undata species complex (Squamata: Lacertidae), with the description of two new species. Zoosystematics and Evolution (In Review). Childers, J.L., Singh, K., Koo, M.S., 2020. Dicamptodon tenebrosus (Pacific Giant Salamander). Diet. Herpetological Review 51(4): 806–807. Bauer, A.M., Childers, J.L., Murdoch, H. 2020. A reevaluation of the Sandveld Lizards Nucras (Squamata:Lacertidae) of Namibia. Amphibian and Reptile Conservation 14(3) [Taxonomy Section]: 231–250 (e271). Bauer, A.M., Childers, J.L., Broeckhoven, C., Mouton, P. LF. N., 2019. A new Nucras Gray, 1838 (Squamata: Lacertidae) from the Strandveld of the Western Cape, South Africa. Zootaxa 4560(1): 149-163. Eifler, D.A., Eifler, M., Malela, K., Childers, J.L., 2016. Social networks in the Little Scrub Island Ground Lizard (Ameiva corax). Journal of Ethology 34(3): 343–348. Childers, J.L. & Eifler, D.A., 2015. Intraspecific behavioural variation in the lacertid lizard Meroles cuneirostris (Strauch, 1867) (Sauria: Lacertidae). African Journal of Herpetology 64(1): 54–66. Childers, J.L. -
Nuclear and Mtdna-Based Phylogeny of Southern African Sand Lizards, Pedioplanis (Sauria: Lacertidae)
Molecular Phylogenetics and Evolution 44 (2007) 622–633 www.elsevier.com/locate/ympev Nuclear and mtDNA-based phylogeny of southern African sand lizards, Pedioplanis (Sauria: Lacertidae) Jane S. Makokha a,*, Aaron M. Bauer a,1, Werner Mayer b, Conrad A. Matthee a a Evolutionary Genomics Group, Department of Botany and Zoology, Stellenbosch University, 7602, South Africa b Naturhistorisches Museum Wien, Burgring 7, A-1014 Wien, Austria Received 14 August 2006; revised 20 April 2007; accepted 28 April 2007 Available online 18 May 2007 Abstract The diversity of lacertid lizards in Africa is highest in the southern African subcontinent, where over two-thirds of the species are endemic. With eleven currently recognized species, Pedioplanis is the most diverse among the southern African genera. In this study we use 2200 nucleotide positions derived from two mitochondrial markers (ND2 and 16S rRNA) and one nuclear gene (RAG-1) to (i) assess the phylogeny of Pedioplanis and (ii) estimate divergence time among lineages using the relaxed molecular clock method. Indi- vidual analyses of each gene separately supported different nodes in the phylogeny and the combined analysis yielded more well sup- ported relationships. We present the first, well-resolved gene tree for the genus Pedioplanis and this is largely congruent with a phylogeny derived from morphology. Contrary to previous suggestions Heliobolus/Nucras are sister to Pedioplanis. The genus Pediopl- anis is monophyletic, with P. burchelli/P. laticeps forming a clade that is sister to all the remaining congeners. Two distinct geographic lineages can be identified within the widespread P. namaquensis; one occurs in Namibia, while the other occurs in South Africa. -
The Impact of Overgrazing on Reptile Diversity and Population Dynamics of Pedioplanis L
Bernd Wasiolka The impact of overgrazing on reptile diversity and population dynamics of Pedioplanis l. lineoocellata in the southern Kalahari Dieses Werk ist unter einem Creative Commons Lizenzvertrag lizenziert: Namensnennung - Keine kommerzielle Nutzung - Weitergabe unter gleichen Bedingungen 2.0 Deutschland Um die Lizenz anzusehen, gehen Sie bitte zu: http://creativecommons.org/licenses/by-nc-sa/2.0/de/ Elektronisch veröffentlicht auf dem Publikationsserver der Universität Potsdam: http://opus.kobv.de/ubp/volltexte/2008/1661/ urn:nbn:de:kobv:517-opus-16611 [http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-16611] Institut für Biochemie und Biologie Arbeitsgruppe Vegetationsökologie und Naturschutz Impact of overgrazing on reptile diversity and population dynamics of Pedioplanis l. lineoocellata in the southern Kalahari, South Africa Dissertation zur Erlangung des akademischen Grades "doctor rerum naturalium" (Dr. rer. nat.) in der Wissenschaftsdisziplin " Ökologie" eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Potsdam von Bernd Wasiolka Potsdam, den 31.08.2007 Table of Contents Preface 1 General Introduction 2 Chapter 1 Effects of habitat degradation on regional reptile diversity 8 1. Abstract 9 2. Introduction 10 3. Methods 11 3.1. Study area and period 11 3.2. Reptile survey 12 3.3. Vegetation survey 13 3.4. Prey availability 13 3.5. Habitat preference 13 3.6. Data analyses 13 4. Results 15 4.1 Vegetation survey 15 4.2 Reptile survey 16 4.3 Prey availability 18 4.4 Habitat preference 19 5. Discussion 22 5.1. Thermoregulation 22 5.2. Predation risk 23 5.3. Resource availability 23 5.4. Habitat preference 24 i 5.5. -
Revised Phylogeny of African Sand Lizards (Pedioplanis), with the Description of Two New Species from South-Western Angola
African Journal of Herpetology, 2012, 1Á22, iFirst article Revised phylogeny of African sand lizards (Pedioplanis), with the description of two new species from south-western Angola 1 2,3 WERNER CONRADIE *, G. JOHN MEASEY ,WILLIAM R. 1,4 2,5 BRANCH &KRYSTAL A. TOLLEY 1Port Elizabeth Museum, P.O. Box 13147, Humewood 6013, South Africa; 2Applied Biodiversity Research, South African National Biodiversity Institute, Private Bag X7, Claremont 7735, South Africa; 3School of Environmental Sciences and Development, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; 4Department of Zoology, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031, South Africa; 5Department of Botany & Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa Abstract.*Although reptile diversity in Africa is high, it is poorly represented in Angola, with just 257 species known. Despite its greater surface area and habitat diversity Angola has significantly lower lacertid lizard diversity than adjacent Namibia. This is particularly notable in African sand lizards (Pedioplanis), where 10 species (two endemic) are known from Namibia but only two are recorded from adjacent Angola. Pedioplanis benguellensis was described from Angola, but its taxonomic status is problematic and it was previously synonymised with P. namaquensis. All other Angolan Pedioplanis were referred to Namibian P. undata, although this taxon is now known to comprise a complex of at least five different species and the relationship of Angolan material to this complex has not been assessed. In this study, we investigated the phylogenetic placement of Angolan Pedioplanis using two mitochondrial (ND2 and 16S) and one nuclear (RAG-1) markers. -
A New Nucras Gray, 1838 (Squamata: Lacertidae) from the Strandveld of the Western Cape, South Africa
Zootaxa 4560 (1): 149–163 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2019 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4560.1.8 http://zoobank.org/urn:lsid:zoobank.org:pub:615FFE96-38AC-41D5-98F9-7221C1D4BDC4 A new Nucras Gray, 1838 (Squamata: Lacertidae) from the Strandveld of the Western Cape, South Africa AARON M. BAUER1, JACKIE L. CHILDERS2, CHRIS BROECKHOVEN3 & P. LEFRAS N. MOUTON4 1Department of Biology, Villanova University, 800 Lancaster Avenue, Villanova, Pennsylvania 19085, USA. E-mail: [email protected] 2Museum of Vertebrate Zoology, University of California, Berkeley, California 94720, USA. E-mail: [email protected] 3Laboratory of Functional Morphology, Department of Biology, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium. E-mail: [email protected] 4Department of Botany & Zoology, University of Stellenbosch, Private Bag X1, Matieland, 7602 Stellenbosch, South Africa. E-mail: [email protected] Abstract A striking new sandveld lizard of the Nucras tessellata group is described from the Lambert’s Bay Strandveld of the West- ern Cape Province, South Africa. It is sister to the clade N. livida + N. tessellata, and is phenetically most similar to N. tessellata, from which it differs in its more elongate body and possibly increased number of presacral vertebrae and pat- ternless orange dorsal coloration. The form elegans, described as a species by Andrew Smith (1838), but treated as an infrasubspecific variant by Broadley (1972), also exhibits weak patterning, but is likely a regional color variant. Nucras aurantiaca sp. nov. is the ninth member of the genus found in southern Africa. -
Directional Asymmetry in Hindlimbs of Agamidae and Lacertidae (Reptilia: Lacertilia)
BwlogicalJoumal of& Linnean So&& (2000), 69: 461481. With 3 figures @ doi:10.1006/bij1.1999.0366, available online at http://www.idealibrary.com on lDrbL* Evolution and ecology of developmental processes and of the resulting morphology: directional asymmetry in hindlimbs of Agamidae and Lacertidae (Reptilia: Lacertilia) HERVE SELJGMA" Department of Evolution, systematics and Ecology, The Hebrew Univers-ig ofJmalem, 91 904Jmah, Israel Received 16 Febwv 1999; accepted for publication 27 March 1999 In this paper, the evolution and ecology of directional asymmetry (DA) during the de- velopmental trajectory (DT) is compared with that of its product, morphological DA (MDA). DT and MDA are calculated for two bilateral morphological scale characters of lizards, the number of subdigital lamellae beneath the fourth toe in 10 agamid and 28 lacertid taxa, and the number of rows of ventral scales in 12 lacertid taxa. MDA, the subtraction between left and right sides (classical measure of DA), is functional in adult animals. Results confirm the hypothesis that, in DT, the regression parameters a (constant) and b (regression slope) of counts on the right side with those on the left describe a developmental process. No phylogenetic or environmental effects were observed on a and b, but analyses considering both a and b together show non-random phyletic patterns. Independent analyses deduced the same ancestral DT in Agamidae and Lacertidae. In Lacertidae, distance between pairs of taxa in a+b (standardized values) correlates positively with the phylogenetic distance between taxa. Phyletic trends in MDA are indirect, and due to the link of MDA with a + b. The MDA of species is more dissimilar in sympatry than in allopatry. -
The Ecology of Lizard Reproductive Output
Global Ecology and Biogeography, (Global Ecol. Biogeogr.) (2011) ••, ••–•• RESEARCH The ecology of lizard reproductive PAPER outputgeb_700 1..11 Shai Meiri1*, James H. Brown2 and Richard M. Sibly3 1Department of Zoology, Tel Aviv University, ABSTRACT 69978 Tel Aviv, Israel, 2Department of Biology, Aim We provide a new quantitative analysis of lizard reproductive ecology. Com- University of New Mexico, Albuquerque, NM 87131, USA and Santa Fe Institute, 1399 Hyde parative studies of lizard reproduction to date have usually considered life-history Park Road, Santa Fe, NM 87501, USA, 3School components separately. Instead, we examine the rate of production (productivity of Biological Sciences, University of Reading, hereafter) calculated as the total mass of offspring produced in a year. We test ReadingRG6 6AS, UK whether productivity is influenced by proxies of adult mortality rates such as insularity and fossorial habits, by measures of temperature such as environmental and body temperatures, mode of reproduction and activity times, and by environ- mental productivity and diet. We further examine whether low productivity is linked to high extinction risk. Location World-wide. Methods We assembled a database containing 551 lizard species, their phyloge- netic relationships and multiple life history and ecological variables from the lit- erature. We use phylogenetically informed statistical models to estimate the factors related to lizard productivity. Results Some, but not all, predictions of metabolic and life-history theories are supported. When analysed separately, clutch size, relative clutch mass and brood frequency are poorly correlated with body mass, but their product – productivity – is well correlated with mass. The allometry of productivity scales similarly to metabolic rate, suggesting that a constant fraction of assimilated energy is allocated to production irrespective of body size. -
The Herpetofauna of the Cubango, Cuito, and Lower Cuando River Catchments of South-Eastern Angola
Official journal website: Amphibian & Reptile Conservation amphibian-reptile-conservation.org 10(2) [Special Section]: 6–36 (e126). The herpetofauna of the Cubango, Cuito, and lower Cuando river catchments of south-eastern Angola 1,2,*Werner Conradie, 2Roger Bills, and 1,3William R. Branch 1Port Elizabeth Museum (Bayworld), P.O. Box 13147, Humewood 6013, SOUTH AFRICA 2South African Institute for Aquatic Bio- diversity, P/Bag 1015, Grahamstown 6140, SOUTH AFRICA 3Research Associate, Department of Zoology, P O Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031, SOUTH AFRICA Abstract.—Angola’s herpetofauna has been neglected for many years, but recent surveys have revealed unknown diversity and a consequent increase in the number of species recorded for the country. Most historical Angola surveys focused on the north-eastern and south-western parts of the country, with the south-east, now comprising the Kuando-Kubango Province, neglected. To address this gap a series of rapid biodiversity surveys of the upper Cubango-Okavango basin were conducted from 2012‒2015. This report presents the results of these surveys, together with a herpetological checklist of current and historical records for the Angolan drainage of the Cubango, Cuito, and Cuando Rivers. In summary 111 species are known from the region, comprising 38 snakes, 32 lizards, five chelonians, a single crocodile and 34 amphibians. The Cubango is the most western catchment and has the greatest herpetofaunal diversity (54 species). This is a reflection of both its easier access, and thus greatest number of historical records, and also the greater habitat and topographical diversity associated with the rocky headwaters. -
A Phylogeny and Revised Classification of Squamata, Including 4161 Species of Lizards and Snakes
BMC Evolutionary Biology This Provisional PDF corresponds to the article as it appeared upon acceptance. Fully formatted PDF and full text (HTML) versions will be made available soon. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes BMC Evolutionary Biology 2013, 13:93 doi:10.1186/1471-2148-13-93 Robert Alexander Pyron ([email protected]) Frank T Burbrink ([email protected]) John J Wiens ([email protected]) ISSN 1471-2148 Article type Research article Submission date 30 January 2013 Acceptance date 19 March 2013 Publication date 29 April 2013 Article URL http://www.biomedcentral.com/1471-2148/13/93 Like all articles in BMC journals, this peer-reviewed article can be downloaded, printed and distributed freely for any purposes (see copyright notice below). Articles in BMC journals are listed in PubMed and archived at PubMed Central. For information about publishing your research in BMC journals or any BioMed Central journal, go to http://www.biomedcentral.com/info/authors/ © 2013 Pyron et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes Robert Alexander Pyron 1* * Corresponding author Email: [email protected] Frank T Burbrink 2,3 Email: [email protected] John J Wiens 4 Email: [email protected] 1 Department of Biological Sciences, The George Washington University, 2023 G St.