List of Abbreviations

Total Page:16

File Type:pdf, Size:1020Kb

List of Abbreviations List of Abbreviations Ac acetyl acac acetylacetonate AcOH acetic acid AIBN 2,2’-azobis(2-methylpropionitrile) AMP adenosine monophosphate cAMP cyclic adenosine monophosphate ADP adenosine diphosphate ATP adenosine triphosphate 9-BBN 9-borabicyclo[3.3.1]nonane BINAP 2,2’-bis(diphenylphosphano)-1,1’-binaphthyl BINOL 2,2’-dihydroxy-1,1‘-binaphthyl Bn benzyl Boc N-t-butoxycarbonyl Boc2O di-t-butyl dicarbonate Bu n-butyl sBu sec.-butyl tBu t-butyl Bu2BOTf di-n-butylboryl trifluoromethanesulfonate BuOH n-butanol tBuOH t-butanol Bz benzoyl CAN ceric ammonium nitrate CBS reduction Corey-Bakshi-Shibata reduction Cbz carbobenzyloxy protecting group CoA coenzyme A CSA campher-10-sulfonic acid DABCO 1,4-diazabicyclo[2.2.2]octane dba dibenzylideneacetone DBN 1,5-diazabicyclo[4.3.0]non-5-ene DBS dibenzosuberyl DBU 1,8-diazabicyclo[5.4.0]undec-7-ene DCC dicyclohexylcarbodiimide DCE 1,2-dichloroethane DDQ 2,3-dichloro-5,6-dicyano-1,4-benzoquinone DEAD diethyl azodicarboxylate DHP dihydropyrane DIAD diisopropyl azodicarboxylate B. Schaefer, Natural Products in the Chemical Industry, DOI 10.1007/978-3-642-54461-3, © Springer-Verlag Berlin Heidelberg 2014 790 List of Abbreviations DIBAlH diisobutylaluminium hydride DIC diisopropylcarbodiimide DIGLYME bis(2-methoxyethyl) ether DIPEA N,N-diisopropylethylamine DMAP 4-dimethylaminopyridine DME 1,2-dimethoxyethane DMF dimethylformamide DMSO dimethylsulfoxide EDC 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide Et ethyl EtOH ethanol FAD flavin adenine dinucleotide Hex n-hexyl cHex cyclohexyl HMG 3-hydroxy-3-methylglutaryl HMPT, HMPA hexamethylphosphoric triamide HOMO highest occupied molecular orbital IC50 concentration of a substance that is required for 50% inhibition ICI Imperial Chemical Industries LD50 lethal dose, where 50% of test subjects exposed would die LDA lithium diisopropylamide LUMO lowest unoccupied molecular orbital MCPBA m-chloroperbenzoic acid Me methyl MeOH methanol Mes, mesylate methanesulfonate MTBE t-butylmethylether NAD nicotinamide adenine dinucleotide NaHMDS sodium bis(trimethylsilyl)amide NBS N-bromosuccinimide NCS N-chlorosuccinimide NMO N-methylmorpholine-N-oxide NMP N-methyl-2-pyrrolidone PCC pyridinium chlorochromate PEA 1-phenylethylamine PEG polyethylene glycol Ph phenyl PLE pig liver esterase PPA 1-propanephosphonic acid cyclic anhydride* Pr n-propyl iPr iso-propyl PrOH n-propanol iPrOH isopropanol PTC phase-transfer catalysis py pyridine List of Abbreviations 791 Ra-Ni Raney nickel Red-Al sodium bis(2-methoxyethoxy)aluminium hydride SAME S-adenosylmethionine TBAF tetra-n-butylammonium fluoride TBS t-butyldimethylsilyl TEMPO 2,2,6,6-tetramethylpiperidine-1-oxyl Tf trifluoromethanesulfonyl TFA trifluoroacetic acid THF tetrahydrofurane THP tetrahydropyrane TIPSOTf triisopropylsilyl trifluoromethanesulfonate TMEDA tetramethylethylenediamine TMSOiPr isopropoxy trimethylsilane TMSOTf trimethylsilyl trifluoromethanesulfonate Tos, tosylate 4-toluenesulfonate TPAP tetra-n-propylammonium perruthenate TPP triphenylphosphane TPPO triphenylphosphane oxide Triflate trifluoromethanesulfonate Trityl triphenylmethyl TsOH, pTSA p-toluenesulfonic acid *: unless otherwise indicated Directory of Illustrations 0. Preface 0.1 Public domain, USDA photo by Scott Bauer. 1. Indroduction 1.1 Wikipedia: Conscious, 1.2 NASA, 1.3 Public domain, 1.3 Public domain, 1.4 BASF, 1.5 BASF, 1.6 BASF, 1.7 Public domain, 1.8 Public domain. 2. Colourants 2.2 BASF, 2.4 Chrumps, 2.4 Public domain, 2.5 Dorothe Jacobs, Textilmuseum Neumünster, 2.6 Public domain, 2.7 BASF, 2.7 Kurt Stüber, 2.7 Alupus, 2.8 Lynn Downey, Levi Strauss & Co.San Francisco, 2.8 Lynn Downey, Levi Strauss & Co. San Francisco, 2.9 BASF, 2.10 Dr. Ansgar Schäfer, BASF, 2.11 Public domain, 2.12 BASF, 2.13 Prof. Dr. Roland Melzer, Universität München, 2.14 Fæ, 2.15 Public domain, 2.17 BASF, 2.17 H. Zell, 2.18 Public domain, 2.19 Public domain, 2.20 Thomas Seilnacht, 2.20 Public domain, 2.21 Petr Kratochvil, pub- lic domain, 2.23 Steve Evans aka “babasteve”, 2.24 Khayman. 3. Fragrances and Flavourings 3.1 Anselm Schafer, 3.1 Prof. Steve Kleene, University of Cincinnati, 3.3 Fuqiang Xu, Wuhan, China, 3.5 BASF, 3.6 Pressestelle MÄURER & WIRTZ, Martina Drewing PR, Beauty *Fashion* Lifestyle Düsseldorf, 3.8 Claudia Hermanns- Heber, Guerlain, 3.9 BASF, 3.10 Robert Seidel, The Essential Oil Company, 3.11 BASF, 3.13 Fritz Geller-Grimm, 3.15 Claudia Hermanns-Heber, Guerlain, 3.17 BASF, 3.19 Javier martin, 3.25 Michael Becker, 3.26 Simon Eugster- Simon, 3.29 Walkerma, 3.30 Feureau, 3.31 Public domain, 3.32 Die Rheinpfalz, IWZ, 3.33 Die Rheinpfalz, IWZ, 3.33 Glane23, 3.35 Symrise, Holzminden, 3.37 SHISEIDO Deutschland GmbH, Düsseldorf, 3.38 Dr. André Schüle, Zoo- logischen Garten Berlin, 3.39 Daderot, 3.39 Николай Усик / http://paradoxu- sik.livejournal.com/, 3.40 Public domain, 3.41 Francisco Manuel Blanco (O.S.A.), 3.41 Kat from St Albans, United Kingdom, 3.42 Public domain, Ferdi- nand Bauer, 3.43 Public domain, 3.44 Public domain, 3.45 Claudia Her- manns-Heber, Guerlain, 3.45 Pressestelle MÄURER & WIRTZ, Martina Drewing PR, Beauty *Fashion* Lifestyle, Düsseldorf, 3.46 Scott Portelli, Wildlife Photographer, Sydney, 3.46 Peter Kaminski, 3.47 C. Allemann, 3.50 Carsten Niehaus, 3.50 Andrea Buratti, 3.51 Kurt Stueber, 3.52 United States Fish and Wildlife Service, 3.53 M. Rohde, HZI, Braunschweig, Germany, 3.54 Georg E. Schulz, Freiburg, 3.55 Georg E. Schulz, Freiburg, 3.57 Maurice Perry, 3.58 arz, B. Schaefer, Natural Products in the Chemical Industry, DOI 10.1007/978-3-642-54461-3, © Springer-Verlag Berlin Heidelberg 2014 794 Directory of Illustrations 3.58 Antje Brüne, Kosmetikverband Wuppertal, 3.58 Ina Patschicke, COTY RESTIGE, Mainz, 3.58 Ines Karpa, Clarins GmbH, Starnberg. 4. Amino acids 4.1 R. Hadian, U.S. Geological Survey, Public domain, 4.2 YassineMrabet, GFDL, CC-BY-SA license, 4.3 NASA, public domain, 4.4 Public domain, 4.7 BASF, 4.8 www.atomium.be - SABAM Belgium 2012, 4.9 BASF, 4.12 Public domain, 4.14 Dr. Andrea Hohmeyer, Evonik Industries AG, Konzernarchiv, 4.15 Dr. Andrea Hohmeyer, Evonik Industries AG, Konzernarchiv, 4.17 Dr. Lothar Eggeling, Forschungszentrum Jülich, 4.20 Jeremiah, 4.20 Public domain, 4.21 Clark R. Landis, University of Wisconsin-Madison, 4.22 Symrise, Holz- minden, 4.23 Public domain, 4.24 Symrise, Holzminden. 5. Pharmaceuticals 5.4 Fernando Tatagiba, 5.6 Public domain, 5.8 Public domain, 5.17 Prof. K. Ravi Acharya, University of Bath, 5.20 The Third Man, London Film Productions, André Mieles, Deutsches Filminstitut-DIF e.V., 5.22 Wikidi, 5.23 Public do- main, 5.24 Public domain Nobel foundation, 5.25 Konrad Soyez, Universität Potsdam, 5.26 Dr. Birgit Hoff, BASF SE, 5.27 Mrjohncummings, Science Mu- seum London / Science and Society Picture Library, 5.28 Prof. Dr. Alessandro Riva, Università di Cagliari, 5.28 Dr. Birgit Hoff, BASF SE, 5.29 Public domain Nobel foundation, 5.34 Public domain Nobel foundation, 5.30 Public domain, 5.35 Rizzoli Editore, Milano, 5.36 Public domain, 5.37 Zbigniew Bela, Museum of Pharmacy in Kraków, 5.38 Public domain, 5.39 Public domain, 5.41 Prof. Dr. Henry I. Mosberg, University of Michigan, Ann Arbor, 5.45 Public domain, 5.48 BASF, 5.48 BASF, 5.48 Christian Pagenkopf, 5.50 Public domain, 5.51 Pu- blic domain, 5.52 Prof. Dr. Dr. M. H. Zenk, Universität München, 5.54 Peter Jolly, Tasmanian Alkaloids Pty Ltd, 5.54 Peter Jolly, Tasmanian Alkaloids Pty Ltd, 5.55 Public domain, 5.56 Public domain, 5.57 Public domain, 5.58 Public domain, 5.59 Public domain, 5.61 Staff Sergeant Angelita Lawrence US Air Force Public Affairs, Public domain, 5.63 Dr. Michel De Waard, Grenoble In- stitut des Neurosciences, 5.64 Barbetorte, 5.67 en:User:Tzahy, 5.70 Willow, 5.71 Christian Fischer, 5.72 Public domain, 5.72 Public domain, 5.73 Bayer AG: Corporate History & Archives, 5.74 Bayer AG: Corporate History & Archives, 5.75 Bayer AG: Corporate History & Archives, 5.76 Bayer AG: Corporate His- tory & Archives, 5.77 Bayer AG: Corporate History & Archives, 5.78 Prof. Dr. R. Michael Garavito, Michigan State University, Dr. Guenter Trummlitz, Boehringer-Ingelheim, 5.79 Mababole, 5.79 PD-USGOV, 5.81 Public domain, 5.82 Bernd Brägelmann Braegel Mit freundlicher Genehmigung von Dr. Martin Steinhoff, 5.83 Public domain, 5.84 Prof. Dr. R. Michael Garavito, Michigan State University, 5.86 Prof. Dr. R. Michael Garavito, Michigan State University, 5.87 Dr. Ravi G. Kurumbail, Pfizer, New York, 5.88 Prof. Dr. R. Michael Garavi- to, Michigan State University, 5.90 Dr. Garret A. FitzGerald, Institute for Trans- lational Medicine and Therapeutics, Philadelphia, 5.91 Klewic, 5.92 Selket, 5.93 Monopol, 5.94 Susanne Uebele, Archiv der Max-Planck-Gesellschaft, Berlin-Dahlem, 5.95 Elf Sternberg, derivative work: Tsaitgaist, 5.96 Nephron, 5.97 Prof. Dr. R. Michael Garavito, Michigan State University, 5.97 Prof. Dr. R. Directory of Illustrations 795 Michael Garavito, Michigan State University, 5.99 Gary Williams, California Academy of Sciences, 5.100 Public domain, 5.103 Public domain, 5.104 Public domain, 5.107 Jeff Servoss, Public domain, 5.108 Rong-Yang Wu, Institute of Botany, Academia Sinica, Taipei, Taiwan, 5.110 Dr. Ansgar Schäfer, BASF, 5.110 Boghog, 5.113 James Heilman, MD, 5.114 Jeff Dahl, Public domain, 5.115 Public domain, 5.116 Public domain, 5.118 Alex_brollo, 5.119 Holger Motzkau, Stockholm, 5.120 Max-Planck-Institut für Biochemie, 5.121 Erich Nigg, Max-Planck-Institut für Biochemie, 5.122 Michael Linnenbach, 5.123 Kenneth Downing awrence Berkeley National Laboratory UC Berkeley, 5.124 Harold P. Erickson, Duke University Medical Center, Durham, 5.125 Eva Nogales, Howard Hughes Medical Institute, Berkeley, 5.126 ArtMechanic, 5.127 Emgaol, 5.127 Walter Siegmund, 5.131 Dr. Gilbert Gorr, Phyton Biotech GmbH, 5.131 Dr.
Recommended publications
  • Title Total Biosynthesis of Opiates by Stepwise Fermentation Using
    Total biosynthesis of opiates by stepwise fermentation using Title engineered Escherichia coli. Nakagawa, Akira; Matsumura, Eitaro; Koyanagi, Takashi; Katayama, Takane; Kawano, Noriaki; Yoshimatsu, Kayo; Author(s) Yamamoto, Kenji; Kumagai, Hidehiko; Sato, Fumihiko; Minami, Hiromichi Citation Nature communications (2016), 7 Issue Date 2016-02-05 URL http://hdl.handle.net/2433/204378 This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; Right if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ Type Journal Article Textversion publisher Kyoto University ARTICLE Received 30 Oct 2015 | Accepted 7 Dec 2015 | Published 5 Feb 2016 DOI: 10.1038/ncomms10390 OPEN Total biosynthesis of opiates by stepwise fermentation using engineered Escherichia coli Akira Nakagawa1, Eitaro Matsumura1, Takashi Koyanagi1, Takane Katayama2, Noriaki Kawano3, Kayo Yoshimatsu3, Kenji Yamamoto1, Hidehiko Kumagai1, Fumihiko Sato4 & Hiromichi Minami1 Opiates such as morphine and codeine are mainly obtained by extraction from opium poppies. Fermentative opiate production in microbes has also been investigated, and complete biosynthesis of opiates from a simple carbon source has recently been accom- plished in yeast. Here we demonstrate that Escherichia coli serves as an efficient, robust and flexible platform for total opiate synthesis. Thebaine, the most important raw material in opioid preparations, is produced by stepwise culture of four engineered strains at yields of 2.1 mg l À 1 from glycerol, corresponding to a 300-fold increase from recently developed yeast systems.
    [Show full text]
  • “Biosynthesis of Morphine in Mammals”
    “Biosynthesis of Morphine in Mammals” D i s s e r t a t i o n zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) vorgelegt der Naturwissenschaftlichen Fakultät I Biowissenschaften der Martin-Luther-Universität Halle-Wittenberg von Frau Nadja Grobe geb. am 21.08.1981 in Querfurt Gutachter /in 1. 2. 3. Halle (Saale), Table of Contents I INTRODUCTION ........................................................................................................1 II MATERIAL & METHODS ........................................................................................ 10 1 Animal Tissue ....................................................................................................... 10 2 Chemicals and Enzymes ....................................................................................... 10 3 Bacteria and Vectors ............................................................................................ 10 4 Instruments ........................................................................................................... 11 5 Synthesis ................................................................................................................ 12 5.1 Preparation of DOPAL from Epinephrine (according to DUNCAN 1975) ................. 12 5.2 Synthesis of (R)-Norlaudanosoline*HBr ................................................................. 12 5.3 Synthesis of [7D]-Salutaridinol and [7D]-epi-Salutaridinol ..................................... 13 6 Application Experiments .....................................................................................
    [Show full text]
  • MEDICINAL PLANTS OPIUM POPPY: BOTANY, TEA: CULTIVATION to of NORTH AFRICA Opidjd CHEMISTRY and CONSUMPTION by Loutfy Boulos
    hv'IERIGAN BCXtlNICAL COJNCIL -----New Act(uisition~---------l ETHNOBOTANY FLORA OF LOUISIANA Jllll!llll GUIDE TO FLOWERING FLORA Ed. by Richard E. Schultes and Siri of by Margaret Stones. 1991. Over PLANT FAMILIES von Reis. 1995. Evolution of o LOUISIANA 200 beautiful full color watercolors by Wendy Zomlefer. 1994. 130 discipline. Thirty-six chapters from and b/w illustrations. Each pointing temperate to tropical families contributors who present o tru~ accompanied by description, habitat, common to the U.S. with 158 globol perspective on the theory and and growing conditions. Hardcover, plates depicting intricate practice of todoy's ethnobotony. 220 pp. $45. #8127 of 312 species. Extensive Hardcover, 416 pp. $49.95. #8126 glossary. Hardcover, 430 pp. $55. #8128 FOLK MEDICINE MUSHROOMS: TAXOL 4t SCIENCE Ed. by Richard Steiner. 1986. POISONS AND PANACEAS AND APPLICATIONS Examines medicinal practices of by Denis Benjamin. 1995. Discusses Ed. by Matthew Suffness. 1995. TAXQL® Aztecs and Zunis. Folk medicine Folk Medicine signs, symptoms, and treatment of Covers the discovery and from Indio, Fup, Papua New Guinea, poisoning. Full color photographic development of Toxol, supp~. Science and Australia, and Africa. Active identification. Health and nutritional biology (including biosynthesis and ingredients of garlic and ginseng. aspects of different species. biopharmoceutics), chemistry From American Chemical Society Softcover, 422 pp. $34.95 . #8130 (including structure, detection and Symposium. Softcover, isolation), and clinical studies. 223 pp. $16.95. #8129 Hardcover, 426 pp. $129.95 #8142 MEDICINAL PLANTS OPIUM POPPY: BOTANY, TEA: CULTIVATION TO OF NORTH AFRICA OpiDJD CHEMISTRY AND CONSUMPTION by Loutfy Boulos. 1983. Authoritative, Poppy PHARMACOLOGY TEA Ed.
    [Show full text]
  • Stems for Nonproprietary Drug Names
    USAN STEM LIST STEM DEFINITION EXAMPLES -abine (see -arabine, -citabine) -ac anti-inflammatory agents (acetic acid derivatives) bromfenac dexpemedolac -acetam (see -racetam) -adol or analgesics (mixed opiate receptor agonists/ tazadolene -adol- antagonists) spiradolene levonantradol -adox antibacterials (quinoline dioxide derivatives) carbadox -afenone antiarrhythmics (propafenone derivatives) alprafenone diprafenonex -afil PDE5 inhibitors tadalafil -aj- antiarrhythmics (ajmaline derivatives) lorajmine -aldrate antacid aluminum salts magaldrate -algron alpha1 - and alpha2 - adrenoreceptor agonists dabuzalgron -alol combined alpha and beta blockers labetalol medroxalol -amidis antimyloidotics tafamidis -amivir (see -vir) -ampa ionotropic non-NMDA glutamate receptors (AMPA and/or KA receptors) subgroup: -ampanel antagonists becampanel -ampator modulators forampator -anib angiogenesis inhibitors pegaptanib cediranib 1 subgroup: -siranib siRNA bevasiranib -andr- androgens nandrolone -anserin serotonin 5-HT2 receptor antagonists altanserin tropanserin adatanserin -antel anthelmintics (undefined group) carbantel subgroup: -quantel 2-deoxoparaherquamide A derivatives derquantel -antrone antineoplastics; anthraquinone derivatives pixantrone -apsel P-selectin antagonists torapsel -arabine antineoplastics (arabinofuranosyl derivatives) fazarabine fludarabine aril-, -aril, -aril- antiviral (arildone derivatives) pleconaril arildone fosarilate -arit antirheumatics (lobenzarit type) lobenzarit clobuzarit -arol anticoagulants (dicumarol type) dicumarol
    [Show full text]
  • Drugs That Changed the World
    Drugs That Changed the World Drugs That Changed the World How Therapeutic Agents Shaped Our Lives Irwin W. Sherman CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2017 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed on acid-free paper Version Date: 20160922 International Standard Book Number-13: 978-1-4987-9649-1 (Hardback) This book contains information obtained from authentic and highly regarded sources. While all reasonable efforts have been made to publish reliable data and information, neither the author[s] nor the publisher can accept any legal respon- sibility or liability for any errors or omissions that may be made. The publishers wish to make clear that any views or opinions expressed in this book by individual editors, authors or contributors are personal to them and do not neces- sarily reflect the views/opinions of the publishers. The information or guidance contained in this book is intended for use by medical, scientific or health-care professionals and is provided strictly as a supplement to the medical or other professional’s own judgement, their knowledge of the patient’s medical history, relevant manufacturer’s instructions and the appropriate best practice guidelines. Because of the rapid advances in medical science, any information or advice on dosages, procedures or diagnoses should be independently verified. The reader is strongly urged to consult the relevant national drug formulary and the drug companies’ and device or material manufacturers’ printed instructions, and their websites, before administering or utilizing any of the drugs, devices or materials mentioned in this book.
    [Show full text]
  • Educación Química, Vol. 1, Núm. 0
    PARA QUITARLE EL POLVO Syntex, una historia mexicana La química en la historia, para la enseñanza y su divulgación en el bachillerato Felipe León Olivares1 Resumen de no disponer de hormonas en cantidad y calidad El presente trabajo explica la importancia de las suficiente, generaba un problema ya que la produc- aportaciones de la investigación científica lograda en ción era limitada y los precios muy elevados, en gran México en el campo de la Química por Syntex, medida por los procesos complejos con rendimien- donde se realizó una verdadera revolución mundial tos bajos que usaban las compañías europeas. A en la síntesis orgánica de las hormonas esteroides. pesar de esta situación, mantenían el control tecno- De esta manera, se considera importante su divulga- lógico dominando el mercado internacional de estos ción en el bachillerato, como una experiencia que productos. Por su parte, las sucursales europeas en proyecta interés al estudio de la química a las nuevas Estados Unidos tuvieron un especial éxito comercial generaciones de estudiantes. motivando a éstas a una mayor actividad de investi- gación. Por ejemplo, la Upjohn y la Parke-Davis, Introducción fomentaron una extensa investigación a través de un El presente estudio plantea la alternativa de la divul- programa de becas. Así fue que el químico Russell gación de las aportaciones de la investigación cien- E. Marker, de la Universidad Estatal de Pennsylva- tífica realizada en México en el campo de la Quími- nia, inició sus estudios sobre las hormonas esteroides ca. Ejemplos como el de ‘‘Andrés Manuel del Río’’ (Lehmann, et al., 1973:196). (Carrera, 1956:5), ‘‘Vicente Ortigosa’’ (Chamizo, Marker planteó que el punto clave en la indus- 1999:138), y el de la empresa ‘‘Hojalata y Lámina de tria de las hormonas esteroides estaba en la materia Monterrey’’ (Garritz, 1993:36), entre otros aconteci- prima; con esta hipótesis prestó atención a las plantas mientos dignos de mención, deben ser conocidos como fuente barata y abundante de hormonas.
    [Show full text]
  • Regulation of Alkaloid Biosynthesis in Plants
    CONTRIBUTORS Numbers in parentheses indicate the pages on which the authors’ contributions begin. JAUME BASTIDA (87), Departament de Productes Naturals, Facultat de Farma` cia, Universitat de Barcelona, 08028 Barcelona, Spain YEUN-MUN CHOO (181), Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia PETER J. FACCHINI (1), Department of Biological Sciences, University of Calgary, Calgary, AB, Canada TOH-SEOK KAM (181), Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia RODOLFO LAVILLA (87), Parc Cientı´fic de Barcelona, Universitat de Barcelona, 08028 Barcelona, Spain DANIEL G. PANACCIONE (45), Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506-6108, USA CHRISTOPHER L. SCHARDL (45), Department of Plant Pathology, University of Kentucky, Lexington, KY 40546-0312, USA PAUL TUDZYNSKI (45), Institut fu¨r Botanik, Westfa¨lische Wilhelms Universita¨tMu¨nster, Mu¨nster D-48149, Germany FRANCESC VILADOMAT (87), Departament de Productes Naturals, Facultat de Farma` cia, Universitat de Barcelona, 08028 Barcelona, Spain vii PREFACE This volume of The Alkaloids: Chemistry and Biology is comprised of four very different chapters; a reflection of the diverse facets that comprise the study of alkaloids today. As awareness of the global need for natural products which can be made available as drugs on a sustainable basis increases, so it has become increas- ingly important that there is a full understanding of how key metabolic pathways can be optimized. At the same time, it remains important to find new biologically active alkaloids and to elucidate the mechanisms of action of those that do show potentially useful or novel biological effects. Facchini, in Chapter 1, reviews the significant studies that have been conducted with respect to how the formation of alkaloids in their various diverse sources are regulated at the molecular level.
    [Show full text]
  • Repeated Evolution of Cytochrome P450-Mediated Spiroketal Steroid Biosynthesis in Plants
    Repeated evolution of cytochrome P450- mediated spiroketal steroid biosynthesis in plants The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Christ, Bastien et al. "Repeated evolution of cytochrome P450- mediated spiroketal steroid biosynthesis in plants." Nature communications 10 (2019): 1038 © 2019 The Author(s) As Published 10.1038/s41467-019-11286-7 Publisher Springer Science and Business Media LLC Version Final published version Citable link https://hdl.handle.net/1721.1/124710 Terms of Use Creative Commons Attribution 4.0 International license Detailed Terms https://creativecommons.org/licenses/by/4.0/ ARTICLE https://doi.org/10.1038/s41467-019-11286-7 OPEN Repeated evolution of cytochrome P450-mediated spiroketal steroid biosynthesis in plants Bastien Christ1,6,7, Chengchao Xu1,7, Menglong Xu1,7, Fu-Shuang Li1, Naoki Wada 2, Andrew J. Mitchell1, Xiu-Lin Han3, Meng-Liang Wen3, Makoto Fujita2,4 & Jing-Ke Weng 1,5 Diosgenin is a spiroketal steroidal natural product extracted from plants and used as the single most important precursor for the world steroid hormone industry. The sporadic 1234567890():,; occurrences of diosgenin in distantly related plants imply possible independent biosynthetic origins. The characteristic 5,6-spiroketal moiety in diosgenin is reminiscent of the spiroketal moiety present in anthelmintic avermectins isolated from actinomycete bacteria. How plants gained the ability to biosynthesize spiroketal natural products is unknown. Here, we report the diosgenin-biosynthetic pathways in himalayan paris (Paris polyphylla), a monocot med- icinal plant with hemostatic and antibacterial properties, and fenugreek (Trigonella foenum–graecum), an eudicot culinary herb plant commonly used as a galactagogue.
    [Show full text]
  • Bifunctional CYP81AA Proteins Catalyse Identical Hydroxylations but Alternative Regioselective Phenol Couplings in Plant Xanthone Biosynthesis
    ARTICLE Received 27 Oct 2015 | Accepted 30 Mar 2016 | Published 5 May 2016 DOI: 10.1038/ncomms11472 OPEN Bifunctional CYP81AA proteins catalyse identical hydroxylations but alternative regioselective phenol couplings in plant xanthone biosynthesis Islam El-Awaad1,2,w, Marco Bocola3, Till Beuerle1,2, Benye Liu1,2 & Ludger Beerhues1,2 Xanthones are natural products present in plants and microorganisms. In plants, their biosynthesis starts with regioselective cyclization of 2,30,4,6-tetrahydroxybenzophenone to either 1,3,5- or 1,3,7-trihydroxyxanthones, catalysed by cytochrome P450 (CYP) enzymes. Here we isolate and express CYP81AA-coding sequences from Hypericum calycinum and H. perforatum in yeast. Microsomes catalyse two consecutive reactions, that is, 30-hydro- xylation of 2,4,6-trihydroxybenzophenone and C–O phenol coupling of the resulting 2,30, 4,6-tetrahydroxybenzophenone. Relative to the inserted 30-hydroxyl, the orthologues Hc/HpCYP81AA1 cyclize via the para position to form 1,3,7-trihydroxyxanthone, whereas the paralogue HpCYP81AA2 directs cyclization to the ortho position, yielding the isomeric 1,3,5- trihydroxyxanthone. Homology modelling and reciprocal mutagenesis reveal the impact of S375, L378 and A483 on controlling the regioselectivity of HpCYP81AA2, which is converted into HpCYP81AA1 by sextuple mutation. However, the reciprocal mutations in HpCYP81AA1 barely affect its regiospecificity. Product docking rationalizes the alternative C–O phenol coupling reactions. Our results help understand the machinery of bifunctional CYPs. 1 Institute of Pharmaceutical Biology, Technische Universita¨t Braunschweig, Mendelssohnstrae 1, Braunschweig 38106, Germany. 2 Center of Pharmaceutical Engineering (PVZ), Technische Universita¨t Braunschweig, Franz-Liszt-Strae 35A, Braunschweig 38106, Germany. 3 Institute of Biotechnology, RWTH Aachen University, Worringerweg 1, Aachen 52074, Germany.
    [Show full text]
  • Kevin C Maki CV 20June2019
    Kevin C. Maki, PhD, CLS, FNLA, FTOS, FACN Tel: 630-469-6600; Fax: 773-980-7151 Administrative Office Chicago Research Clinic Boca Raton Research Clinic Midwest Biomedical Great Lakes Clinical Trials MB Clinical Research Research 5149 North Ashland Ave. 751 Park of Commerce Drive 211 East Lake Street Chicago, Illinois 60640 Suite 118 Suite 3 Co-located with Great Boca Raton, Florida 33487 Addison, Illinois 60101 Lakes Clinical Trials E-MAIL: [email protected] [email protected] ACADEMIC & PROFESSIONAL EXPERIENCE: 2013-Present President and Chief Scientist MB Clinical Research and Consulting, LLC [MBClinicalResearch.com] Divisions: • Midwest Biomedical Research: Center for Metabolic & Cardiovascular Health, Addison, Illinois • MB Clinical Research Boca Raton, Florida 2014-Present Investigator Great Lakes Clinical Trials Chicago, Illinois 2013-Present Adjunct Faculty, Epidemiology and Biostatistics DePaul University, Department of Nursing Chicago, Illinois 2016-2018 Adjunct Faculty, Epidemiology and Biostatistics Illinois Institute of Technology Department of Food Science and Nutrition Chicago, Illinois 2004-2013 Chief Science Officer Biofortis Clinical Research (Formerly Provident Clinical Research) Addison, Illinois 2003-2004 Chief Science Officer Radiant Development (Formerly Protocare Development) Chicago, Illinois 2002-2003 Senior Vice President and Chief Science Officer Protocare Development, Inc. Chicago, Illinois 2000-2002 Vice President Protocare Development, Inc. Chicago, Illinois Kevin C. Maki, Ph.D. – Curriculum Vitae
    [Show full text]
  • International Historic Chemical Landmark Acclaims Success of Mexican Steroid Industry and a U.S
    Journal of the Mexican Chemical Society ISSN: 1870-249X [email protected] Sociedad Química de México México Raber, Linda Steroid industry honored. International historic chemical landmark acclaims success of mexican steroid industry and a U.S. chemist who made it possible Journal of the Mexican Chemical Society, vol. 43, núm. 6, noviembre-diciembre, 1999, pp. 235-237 Sociedad Química de México Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=47543610 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista de la Sociedad Química de México, Vol. 43, Núm. 6 (1999) 235-237 Noticias Steroid Industry Honored† International Historic Chemical Landmark Acclaims Success of Mexican Steroid Industry and a U.S. Chemist Who Made it Possible Linda Raber American Chemical Society 1155-16th St., N.W, Washington, D.C. 20036. U.S.A. “There are more stories told about Russell Marker than any he founded in Mexico City with Emeric Somlo and Federico other chemist. Although perhaps many of these stories are A. Lehmann. apocryphal, they are so fascinating that most of us cannot bear “This low-cost progesterone eventually became the pre- to stop repeating them. This is the oral history of our profes- ferred precursor in the industrial preparation of the anti- sion that we pass to our colleagues and our students. They are inflammatory drug cortisone. In 1951, Syntex researchers syn- the campfire stories that bind our profession together” – thesized the first useful oral contraceptive from Marker’s start- Steven M.
    [Show full text]
  • CURRENT MEDICAL CHEMISTRY Repositioning of TAK-475 in Mevalonate Kinase Disease: Translating Theory Into Practice
    CURRENT MEDICAL CHEMISTRY Repositioning of TAK-475 in Mevalonate Kinase Disease: translating theory into practice Annalisa Marcuzzia, Claudia Loganesb, Claudio Celeghinic, Giulio Kleinerd,* a Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy. b Institute for Maternal and Child Health - IRCCS “Burlo Garofolo”, Trieste, Italy c Department of Life Sciences, University of Trieste, Trieste, Italy. d Department of Neurology, Columbia University Medical Center, New York, NY, USA *Address correspondence to this author at the Department of Neurology, Columbia University Medical Center, New York, NY, USA. Tel/Fax: 212-305-1637 E-mail: [email protected] Abstract Mevalonate Kinase Deficiency (MKD, OMIM #610377) is a rare autosomal recessive metabolic and inflammatory disease. In MKD, defective function of the enzyme mevalonate kinase (MK) due to mutation in the MVK gene, leads to the shortage of mevalonate-derived intermediates, which results in unbalanced prenylation of proteins and altered metabolism of sterols. These defects are reflected in a complex multisystemic inflammatory and metabolic syndrome. Although biologic therapies blocking the pro-inflammatory cytokine interleukin -1, can significantly reduce inflammation, they cannot completely control the clinical symptoms, in particular those affecting the nervous system. For this reason, MKD has been designed as an orphan drug disease. Of note, zaragozic acid, an inhibitor of squalene synthase, has been proven to inhibit the hyper-inflammatory response in cellular models of MKD, by diverting mevalonate intermediates toward geranylgeranylation rather than to the synthesis of squalene. A similar action might be obtained by Lapaquistat (TAK-475, Takeda), a drug that underwent extensive clinical trials as cholesterol lowering agent 10 years ago with a good safety profile.
    [Show full text]