Handbook of MASS MEASUREMENT

Total Page:16

File Type:pdf, Size:1020Kb

Handbook of MASS MEASUREMENT Handbook of MASS MEASUREMENT FRANK E. JONES RANDALL M. SCHOONOVER CRC PRESS Boca Raton London New York Washington, D.C. © 2002 by CRC Press LLC Front cover drawing is used with the consent of the Egyptian National Institute for Standards, Gina, Egypt. Back cover art from II Codice Atlantico di Leonardo da Vinci nella Biblioteca Ambrosiana di Milano, Editore Milano Hoepli 1894–1904. With permission from the Museo Nazionale della Scienza e della Tecnologia Leonardo da Vinci Milano. Library of Congress Cataloging-in-Publication Data Jones, Frank E. Handbook of mass measurement / Frank E. Jones, Randall M. Schoonover p. cm. Includes bibliographical references and index. ISBN 0-8493-2531-5 (alk. paper) 1. Mass (Physics)—Measurement. 2. Mensuration. I. Schoonover, Randall M. II. Title. QC106 .J66 2002 531’.14’0287—dc21 2002017486 CIP This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use. Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior permission in writing from the publisher. The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained in writing from CRC Press LLC for such copying. Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation, without intent to infringe. Visit the CRC Press Web site at www.crcpress.com © 2002 by CRC Press LLC No claim to original U.S. Government works International Standard Book Number 0-8493-2531-5 Library of Congress Card Number 2002017486 Printed in the United States of America 1 2 3 4 5 6 7 8 9 0 Printed on acid-free paper © 2002 by CRC Press LLC Preface “A false balance is abomination to the Lord: but a just weight is his delight.” — Proverbs 11.1 The purpose of this handbook is to provide in one location detailed, up-to-date information on various facets of mass measurement that will be useful to those involved in mass metrology at the highest level (at national standards laboratories, for example), in science and engineering, in industry and commerce, in legal metrology, and in more routine mass measurements or weighings. We have pursued clarity and hope that we have in some measure succeeded. Literature related to mass measurement, historical and current, has been cited and summarized in specific areas. Much of the material in this handbook is our own work, in many cases previously unpublished. We take this opportunity to recognize the considerable contributions to mass measurement of the late Horace A. Bowman, including the development of the National Bureau of Standards (NBS) 2 balance with an estimate of standard deviation of 1 part per billion (ppb) and the development of the silicon density standard with estimate of standard deviation of 2 parts per million (ppm), adopted worldwide. In addition, he was mentor to each of us and positively affected our careers. Chapter 1 introduces mass and mass standards. Historical background material in Section 1.2 is an excerpt from NBS monograph, “Mass and Mass Values,” by Paul E. Pontius, then chief of the U.S. NBS section responsible for mass measurements. Chapter 2 presents recalibration of the U.S. National Prototype Kilogram and the Third Periodic Verification of National Prototypes of the Kilogram. Chapter 3 discusses contamination of platinum-iridium mass standards and stainless steel mass stan- dards. The literature is reviewed and summarized. Carbonaceous contamination, mercury contamina- tion, water adsorption, and changes in ambient environmental conditions are studied, as are various methods of analysis. Cleaning of platinum-iridium mass standards and stainless steel mass standards are discussed in Chapter 4, including the BIPM (Bureau International des Poids et Mesures) Solvent Cleaning and Steam Washing procedure. Results of various cleaning methods are presented. In Chapter 5, the determination of mass differences from balance observations is treated in detail. In Chapter 6, a glossary of statistical terms that appear throughout the book is provided. The U.S. National Institute of Standards and Technology (NIST) guidelines for evaluating and express- ing the uncertainty of measurement results are presented in Chapter 7. The Type A and Type B evaluations of standard uncertainty are illustrated. In Chapter 8, weighing designs are discussed in detail. Actual data are used for making calculations. © 2002 by CRC Press LLC Calibration of the screen and the built-in weights of direct-reading analytical balances is described in Chapter 9. Chapter 10 takes a detailed look at the electronic balance. The two dominant types of electronic balance in use are the hybrid balance and the electromagnetic force balance. Features and idiosyncrasies of the balance are discussed. In Chapter 11, buoyancy corrections and the application of buoyancy corrections to mass determina- tion are discussed in detail. For illustration, the application of buoyancy corrections to weighings of titanium dioxide powder in a weighing bottle on a balance is demonstrated. The development of the air density equation for use in calculation of values of air density to be used in making buoyancy corrections is presented in detail in Chapter 12. The development of the air density equation by Jones is used as background material. Then, the BIPM 1981 and the BIPM 1981/1991 equations are presented and discussed. Direct determination of air density, experimental determination of air density in weighing on a 1-kg balance in air and in vacuum, a practical approach to air density determination, and a test of the air density equation at differing altitude are summarized from original papers and discussed. Chapter 13 discusses the continuation of programs undertaken by NIST to improve hydrostatic weigh- ing and to develop a density scale based on the density of a solid object. Central to this development is the classic paper, “Procedure for High Precision Density Determinations by Hydrostatic Weighing,” by Bowman and Schoonover. Among the subjects discussed in Chapter 13 are the principles of use of the submersible balance, determination of the density of mass standards, an efficient method for measuring the density or volume of similar objects, and the measurement of liquid density. The calculation of the density of water is the subject of Chapter 14. Redeterminations of the density of water and corresponding equations developed by three groups of researchers were corrected for changes in density of water with air saturation, compressibility, and isotopic concentration. In Chapter 15, the conventional value of weighing in air, its concept, intent, benefits, and limitations are discussed. Examples of computation are included. Comparison of error propagations for mass and the conventional mass is presented in detail in Chapter 16. OIML Recommendation R111 is used for the comparison. Parameters that can cause error in mass determinations are examined in detail in Chapter 17. Subjects covered are mass artifacts, mass standards, mass comparison, the fundamental mass relationship, weigh- ing designs, uncertainties in the determination of the mass of an object, buoyancy, thermal equilibrium, atmospheric effects, cleaning of mass standards, magnetic effects, and the instability of the International Prototype Kilogram. In Chapter 18, the problem of assigning mass values to piston weights of about 590 g nominal mass with the goal of accomplishing an uncertainty in mass corresponding to an error in the maximum pressure generated by the piston-gauge rotating assembly of 1 ppm is discussed. The mass was determined with a total uncertainty of 0.1 ppm. The response of apparent mass to thermal gradients and free convective currents is studied in Chapter 19, based on the known experimental fact that if an artifact is not at thermal equilibrium with the balance chamber the apparent mass of the artifact deviates from the value at thermal equilibrium. In Chapter 20, magnetic errors in mass metrology, that is, unsuspected vertical forces that are magnetic in origin, are discussed. © 2002 by CRC Press LLC The “gravitational configuration effect,” which arises because for weights of nominally equal mass the distance of the center of gravity above the base of each weight depends on the size and shape of the weight, is examined in Chapter 21. In Chapter 22, the “between-time” component of error in mass measurements is examined. The between-time component manifests itself between groups of measurements made at different times, on different days, for example. Chapter 23 illustrates the key elements for the most rigorous mass measurements. In Chapter 24, control charts are developed and used to demonstrate attainment of statistical control of a mass calibration process. Tolerance testing of mass standards is discussed in Chapter 25. Procedures to be followed for deter- mining whether or not mass standards are within the tolerances specified for a particular class of weights are reviewed. Surveillance testing of weights is discussed in Chapter 26. Surveillance looks for signs that one or more members of a weight set may have changed since the latest calibration. Chapter 27 describes a project to disseminate the mass unit to surrogate laboratories using the NIST portable mass calibration package. A surrogate laboratories project began with the premise that a NIST- certified calibration could be performed by the user in the user’s laboratory. The very informal, low- budget project was undertaken to expose the technical difficulties that lay in the way.
Recommended publications
  • Units and Conversions
    Units and Conversions This unit of the Metrology Fundamentals series was developed by the Mitutoyo Institute of Metrology, the educational department within Mitutoyo America Corporation. The Mitutoyo Institute of Metrology provides educational courses and free on-demand resources across a wide variety of measurement related topics including basic inspection techniques, principles of dimensional metrology, calibration methods, and GD&T. For more information on the educational opportunities available from Mitutoyo America Corporation, visit us at www.mitutoyo.com/education. This technical bulletin addresses an important aspect of the language of measurement – the units used when reporting or discussing measured values. The dimensioning and tolerancing practices used on engineering drawings and related product specifications use either decimal inch (in) or millimeter (mm) units. Dimensional measurements are therefore usually reported in either of these units, but there are a number of variations and conversions that must be understood. Measurement accuracy, equipment specifications, measured deviations, and errors are typically very small numbers, and therefore a more practical spoken language of units has grown out of manufacturing and precision measurement practice. Metric System In the metric system (SI or International System of Units), the fundamental unit of length is the meter (m). Engineering drawings and measurement systems use the millimeter (mm), which is one thousandths of a meter (1 mm = 0.001 m). In general practice, however, the common spoken unit is the “micron”, which is slang for the micrometer (m), one millionth of a meter (1 m = 0.001 mm = 0.000001 m). In more rare cases, the nanometer (nm) is used, which is one billionth of a meter.
    [Show full text]
  • Consultative Committee for Amount of Substance; Metrology in Chemistry and Biology CCQM Working Group on Isotope Ratios (IRWG) S
    Consultative Committee for Amount of Substance; Metrology in Chemistry and Biology CCQM Working Group on Isotope Ratios (IRWG) Strategy for Rolling Programme Development (2021-2030) 1. EXECUTIVE SUMMARY In April 2017, the Consultative Committee for Amount of Substance; Metrology in Chemistry and Biology (CCQM) established a task group to study the metrological state of isotope ratio measurements and to formulate recommendations to the Consultative Committee (CC) regarding potential engagement in this field. In April 2018 the Isotope Ratio Working Group (IRWG) was established by the CCQM based on the recommendation of the task group. The main focus of the IRWG is on the stable isotope ratio measurement science activities needed to improve measurement comparability to advance the science of isotope ratio measurement among National Metrology Institutes (NMIs) and Designated Institutes (DIs) focused on serving stake holder isotope ratio measurement needs. During the current five-year mandate, it is expected that the IRWG will make significant advances in: i. delta scale definition, ii. measurement comparability of relative isotope ratio measurements, iii. comparable measurement capabilities for C and N isotope ratio measurement; and iv. the understanding of calibration modalities used in metal isotope ratio characterization. 2. SCIENTIFIC, ECONOMIC AND SOCIAL CHALLENGES Isotopes have long been recognized as markers for a wide variety of molecular processes. Indeed, applications where isotope ratios are used provide scientific, economic, and social value. Early applications of isotope measurements were recognized with the 1943 Nobel Prize for Chemistry which included the determination of the water content in the human body, determination of solubility of various low-solubility salts, and development of the isotope dilution method which has since become the cornerstone of analytical chemistry.
    [Show full text]
  • Tribology for Aerospace Systems (La Tribologie Pour Les Systemes Aerospatiaux)
    AGARD-CP-589 0) 00 10 CL Ü i Q AC < ADVISORY GROUP FOR AEROSPACE RESEARCH & DEVELOPMENT S 7 RUE ANCELLE, 92200 NEUILLY-SUR-SEINE, FRANCE AGARD CONFERENCE PROCEEDINGS 589 Tribology for Aerospace Systems (la Tribologie pour les systemes aerospatiaux) Papers presented at the 82nd Meeting of the AGARD Structures and Materials Panel, held in Sesimbra, Portugal, 6-7 May 1996. Mm m ® NORTH ATLANTIC TREATY ORGANIZATION Published October 1996 Distribution and Availability on Back Cover THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY. AGARD-CP-589 ADVISORY GROUP FOR AEROSPACE RESEARCH & DEVELOPMENT 7 RUE ANCELLE, 92200 NEUILLY-SUR-SEINE, FRANCE AGARD CONFERENCE PROCEEDINGS 589 Tribology for Aerospace Systems (la Tribologie pour les systemes aerospatiaux) Papers presented at the 82nd Meeting of the AGARD Structures and Materials Panel, held in Sesimbra, Portugal, 6-7 May 1996. .BASEMENT K j Approved tor ijäustie rsieaa« ) WTC QUALITY INSPECTED */ North Atlantic Treaty Organization Organisation du Tratte de l'Atlantique Nord The Mission of AGARD According to its Charter, the mission of AGARD is to bring together the leading personalities of the NATO nations in the fields of science and technology relating to aerospace for the following purposes: — Recommending effective ways for the member nations to use their research and development capabilities for the common benefit of the NATO community; — Providing scientific and technical advice and assistance to the
    [Show full text]
  • Role of Metrology in Conformity Assessment
    Role of Metrology in Conformity Assessment Andy Henson Director of International Liaison and Communications of the BIPM Metrology, the science of measurement… and its applications “When you can measure what you are speaking about, and express it in numbers, you know something about it; but when you cannot express it in numbers, your knowledge is of a meagre and unsatisfactory kind” William Thompson (Lord Kelvin): Lecture on "Electrical Units of Measurement" (3 May 1883) Conformity assessment Overall umbrella of measures taken by : ‐manufacturers ‐customers ‐regulatory authorities ‐independent third parties To assess that a product/service meets standards or technical regulations 2 Metrology is a part of our lives from birth Best regulation Safe food Technical evidence Safe treatment Safe baby food Manufacturing Safe traveling Globalization weighing of baby Healthcare Innovation Climate change Without metrology, you can’t discover, design, build, test, manufacture, maintain, prove, buy or operate anything safely and reliably. From filling your car with petrol to having an X‐ray at a hospital, your life is surrounded by measurements. In industry, from the thread of a nut and bolt and the precision machined parts on engines down to tiny structures on micro and nano components, all require an accurate measurement that is recognized around the world. Good measurement allows country to remain competitive, trade throughout the world and improve quality of life. www.bipm.org 3 Metrology, the science of measurement As we have seen, measurement science is not purely the preserve of scientists. It is something of vital importance to us all. The intricate but invisible network of services, suppliers and communications upon which we are all dependent rely on metrology for their efficient and reliable operation.
    [Show full text]
  • The Kelvin and Temperature Measurements
    Volume 106, Number 1, January–February 2001 Journal of Research of the National Institute of Standards and Technology [J. Res. Natl. Inst. Stand. Technol. 106, 105–149 (2001)] The Kelvin and Temperature Measurements Volume 106 Number 1 January–February 2001 B. W. Mangum, G. T. Furukawa, The International Temperature Scale of are available to the thermometry commu- K. G. Kreider, C. W. Meyer, D. C. 1990 (ITS-90) is defined from 0.65 K nity are described. Part II of the paper Ripple, G. F. Strouse, W. L. Tew, upwards to the highest temperature measur- describes the realization of temperature able by spectral radiation thermometry, above 1234.93 K for which the ITS-90 is M. R. Moldover, B. Carol Johnson, the radiation thermometry being based on defined in terms of the calibration of spec- H. W. Yoon, C. E. Gibson, and the Planck radiation law. When it was troradiometers using reference blackbody R. D. Saunders developed, the ITS-90 represented thermo- sources that are at the temperature of the dynamic temperatures as closely as pos- equilibrium liquid-solid phase transition National Institute of Standards and sible. Part I of this paper describes the real- of pure silver, gold, or copper. The realiza- Technology, ization of contact thermometry up to tion of temperature from absolute spec- 1234.93 K, the temperature range in which tral or total radiometry over the tempera- Gaithersburg, MD 20899-0001 the ITS-90 is defined in terms of calibra- ture range from about 60 K to 3000 K is [email protected] tion of thermometers at 15 fixed points and also described.
    [Show full text]
  • MEMS Metrology Metrology What Is a Measurement Measurable
    Metrology • What is metrology? – It is the science of weights and measures • Refers primarily to the measurements of length, MEMS Metrology wetight, time, etc. • Mensuration- A branch of applied geometry – It measure the area and volume of solids from Dr. Bruce K. Gale lengths and angles Fundamentals of Micromachining • It also includes other engineering measurements for the establishment of a flat, plane reference surface What is a Measurement Measurable Parameters • A measurement is an act of assigning a • What do we want to • Pressure specific value to a physical variable measure? • Forces • The physical variable becomes the • Length or distance •Stress measured variable •Mass •Strain • Temperature • Measurements provide a basis for • Friction judgements about • Elemental composition • Resistance •Viscosity – Process information • Roughness • Diplacements or – Quality assurance •Depth distortions – Process control • Intensity •Time •etc. Components of a Measuring Measurement Systems and Tools System • Measurement systems are important tools for the quantification of the physical variable • Measurement systems extend the abilities of the human senses, while they can detect and recognize different degrees of physical variables • For scientific and engineering measurement, the selection of equipment, techniques and interpretation of the measured data are important How Important are Importance of Metrology Measurements? • In human relationships, things must be • Measurement is the language of science counted and measured • It helps us
    [Show full text]
  • Thermometry (Temperature Measurement)
    THERMOMETRY Thermometry ................................................................................................................................................. 1 Applications .............................................................................................................................................. 2 Temperature metrology ............................................................................................................................. 2 The primary standard: the TPW-cell ..................................................................................................... 5 Temperature and the ITS-90 ..................................................................................................................... 6 The Celsius scale ................................................................................................................................... 6 Thermometers and thermal baths .......................................................................................................... 7 Metrological properties ............................................................................................................................. 7 Types of thermometers.............................................................................................................................. 9 Liquid-in-glass ...................................................................................................................................... 9 Thermocouple ....................................................................................................................................
    [Show full text]
  • Time-Reversal-Based Quantum Metrology with Many-Body Entangled States
    Time-Reversal-Based Quantum Metrology with Many-Body Entangled States 1 1 1 Simone Colombo, ∗ Edwin Pedrozo-Penafiel,˜ ∗ Albert F. Adiyatullin, ∗ Zeyang Li,1 Enrique Mendez,1 Chi Shu,1;2 Vladan Vuletic´1 1Department of Physics, MIT-Harvard Center for Ultracold Atoms and Research Laboratory of Electronics, Massachusetts Institute of Technology, 2Department of Physics, Harvard University Cambridge, Massachusetts 02139, USA ∗These authors contributed equally to this work In quantum metrology, entanglement represents a valuable resource that can be used to overcome the Standard Quantum Limit (SQL) that bounds the precision of sensors that operate with independent particles. Measurements beyond the SQL are typically enabled by relatively simple entangled states (squeezed states with Gaussian probability distributions), where quantum noise is redistributed between different quadratures. However, due to both funda- arXiv:2106.03754v3 [quant-ph] 28 Sep 2021 mental limitations and the finite measurement resolution achieved in practice, sensors based on squeezed states typically operate far from the true fundamen- tal limit of quantum metrology, the Heisenberg Limit. Here, by implement- ing an effective time-reversal protocol through a controlled sign change in an optically engineered many-body spin Hamiltonian, we demonstrate atomic- sensor performance with non-Gaussian states beyond the limitations of spin 1 squeezing, and without the requirement of extreme measurement resolution. Using a system of 350 neutral 171Yb atoms, this signal amplification through time-reversed interaction (SATIN) protocol achieves the largest sensitivity im- provement beyond the SQL (11:8 0:5 dB) demonstrated in any (full Ramsey) ± interferometer to date. Furthermore, we demonstrate a precision improving in proportion to the particle number (Heisenberg scaling), at fixed distance of 12.6 dB from the Heisenberg Limit.
    [Show full text]
  • MASTER En GENIE BIOMEDICAL USING X-RAYS in BIOMATERIALS
    Université Abou BakrBelkaïd de Tlemcen Faculté de Technologie Département de Génie Biomédical MEMOIRE DE PROJET DE FIN D’ETUDES Pourl’obtention du Diplôme de MASTER en GENIE BIOMEDICAL Spécialité :Imagerie Médicale / instrumentation biomédicale Présentépar : DJEBARNI Asma et ZIREK Amina USING X-RAYS IN BIOMATERIALS Soutenu le14/09/ 2017 devant le Jury M. BESSAID Abdelhafid Prof Université de Tlemcen Président M. SOULIMANE Sofiane MCB Université de Tlemcen Examinateur M. DIB Nabil MCB Université de Tlemcen Examinateur Année universitaire 2017-2018 [Texte] ACKNOWLEDGEMENT Thanks to “ALLAH” for the strength that he gives us that helped and supported us.This work has been realized in the frame ofERASMUS + Internationalstudent exchange program session February-July 2017 in LUBLIN UNIVERSITY OF TECHNOLOGY, POLAND. We would like to thank all the stuff from both countries for all the hard work for trying to make everything easier and to create such a memorable experience. Special thanks to: Mr SalimKERAI, head of department of biomedical engineering, University Tlemcen. MrSylwester SAMBORSKI, head of department of mechanical engineering, University Lublin. MrFethiREGUIG BEREKSI and Abdel hafid BESSAID, Professors, Responsibles, University Tlemcen. Mme Monika OSTAPIUK, Supervisor Professor and framer, University Lublin. Mr Omar BEHDADA, Home University Coordinator, University Tlemcen. Mme Anna RADZISZEWSKA, Host University Coordinator, University Lublin. We would first like to thank our thesis advisor Mr SOULIMANESofianeand Mr DIB Nabil for accepting being examiners and juries members. Finally, we must express our very profound gratitude to our parents and family for providing us with unfailing support and continuous encouragement throughout our years of study and through the process of researching and writing this thesis.
    [Show full text]
  • The International System of Units (SI)
    NAT'L INST. OF STAND & TECH NIST National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce NIST Special Publication 330 2001 Edition The International System of Units (SI) 4. Barry N. Taylor, Editor r A o o L57 330 2oOI rhe National Institute of Standards and Technology was established in 1988 by Congress to "assist industry in the development of technology . needed to improve product quality, to modernize manufacturing processes, to ensure product reliability . and to facilitate rapid commercialization ... of products based on new scientific discoveries." NIST, originally founded as the National Bureau of Standards in 1901, works to strengthen U.S. industry's competitiveness; advance science and engineering; and improve public health, safety, and the environment. One of the agency's basic functions is to develop, maintain, and retain custody of the national standards of measurement, and provide the means and methods for comparing standards used in science, engineering, manufacturing, commerce, industry, and education with the standards adopted or recognized by the Federal Government. As an agency of the U.S. Commerce Department's Technology Administration, NIST conducts basic and applied research in the physical sciences and engineering, and develops measurement techniques, test methods, standards, and related services. The Institute does generic and precompetitive work on new and advanced technologies. NIST's research facilities are located at Gaithersburg, MD 20899, and at Boulder, CO 80303.
    [Show full text]
  • Measurements and Measurement Standards - Yuri V
    PHYSICAL METHODS, INSTRUMENTS AND MEASUREMENTS – Vol. I - Measurements and Measurement Standards - Yuri V. Tarbeyev MEASUREMENTS AND MEASUREMENT STANDARDS Yuri V. Tarbeyev D. I. Mendeleyev Institute for Metrology, St. Petersburg, Russia Keywords: measurement, metrology, physical quantity, accuracy, traceability, metrological assurance, national measurement system, metrology and assurance of life safety, standard of unit, fundamental physical quantity, quantum metrology Contents 1. Introduction 2. Metrology: Science, Philosophy, and Scientific Basis for the Art of Measurement 2.1 “Going Uphill, Glance Behind”: Measurements Yesterday and Today: A Brief History 2.2 The Place of Metrology in the System of Science 2.3 Fundamental Problems of Theoretical Metrology 2.4 Fundamental Physical–Metrological Problems 2.5 International Measurement Traceability: A Modern Approach to the Assurance of Traceability: Arrangement on the Equivalence of Measurement Standards 3. Measurement Standards 4. Metrology: Trends of Future Development Acknowledgments Glossary Bibliography Biographical Sketch Summary This contribution is aimed at presenting a broad generalization of information about measurement of physical quantities, and metrology as a science, philosophy, and the basis for the art of measurement. The history of the development of measurements, the state of measurement and metrology yesterday and today, and the trend of their development in the first decade of the twenty-first century are discussed. The internationalUNESCO system of measurement traceab
    [Show full text]
  • Introduction to Metrology: SI Unit System and Measurement Standards, Traceability, Calibration and Measurement Uncertainty
    Introduction to Metrology: SI unit system and measurement standards, traceability, calibration and measurement uncertainty Experimental Design 7.2.2013 Doc. Martti Heinonen Mars Climate Orbiter MH 2013 2 Impact of metrology: NIST SRM case MH 2013 3 Outline 1. Traceability in measurements 1.1 Basic concepts 1.2 Why we need traceability? 1.3 Infrastructure ensuring availability of traceable measurements 2. SI – the international system of units 2.1 System of units: from trade to science 2.2 Base and derived units 2.3 Measurement standards and traceability 3. Measurement uncertainty – part 1: Introduction 3.1 Terminology 3.2 Importance of the measurement uncertainty 4. Measurement uncertainty – part 2: Methods 4.1 Calculating uncertainty 4.2 Calculations step by step 4.3 Uncertainty calculation in practice MH 2013 4 1 Traceability in measurements 1.1 Basic concepts 1.2 Why we need traceability? 1.3 Infrastructure ensuring availability of traceable measurements 1.1 Basic concepts Terms QUANTITY • Property of a phenomenon, body, or substance, where the property has a magnitude that can be expressed as a number and a reference (A reference can be a measurement unit, a measurement procedure, a reference material, or a combination of such.) • Quantity can be a general quantity (e.g. length) or particular quantity (e.g. wavelength of Sodium D line) MEASURAND • Quantity intended to be measured ESTIMATE (of the measurand); called also MEASURED QUANTITY VALUE • measured value of a quantity measured value • quantity value representing a measurement
    [Show full text]