Physically Based Rendering Is a Terrific Book
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Physically Based Rendering: from Theory to Implementation Pdf, Epub, Ebook
PHYSICALLY BASED RENDERING: FROM THEORY TO IMPLEMENTATION PDF, EPUB, EBOOK Matt Pharr, Greg Humphreys, Wenzel Jakob | 1266 pages | 18 Oct 2016 | ELSEVIER SCIENCE & TECHNOLOGY | 9780128006450 | English | San Francisco, United States Physically Based Rendering: From Theory to Implementation PDF Book The text should make more clear that we're making use of the tristimulus theory of color perception in that step. I wrote a technical perspective, The Ray-Tracing Engine That Could , that introduced the article and helped frame the work's achievements for a non-graphics audience. Design and novel uses of higher-dimensional rasterization. Lecture 7: Splines, Curves and Surfaces Shirley et al. Hardcover ISBN: Stanford csb I recently had a great time teaching the and installments of csb, the graduate-level rendering course at Stanford. A practical shading model for ray tracing. Free Shipping Free global shipping No minimum order. Then, in the code below, the negation of 'd' should be removed and in the places where 'd' is added in the computations of tx and ty, subtraction should be used. Toggle navigation pbrt. Feiner, and Kurt Akeley. Osgood this is an outstanding reference Lecture 4: Transforms Shirley et al. I was also fortunate to have the opportunity to teach the class. Given its unconventional preparation style, this textbook stands out because of its descriptions of the tradeoffs involved in developing a complete working renderer. Index of Miscellaneous Identifiers. Wenzel is also the lead developer of the Mitsuba renderer , a research-oriented rendering system. Physically Based Rendering, Second Edition , describes both the mathematical theory behind a modern photorealistic rendering system as well as its practical implementation. -
Rendering Complex Scenes with Memory-Coherent Ray Tracing
To appear in Proceedings of SIGGRAPH 1997 Rendering Complex Scenes with Memory-Coherent Ray Tracing Matt Pharr Craig Kolb Reid Gershbein Pat Hanrahan Computer Science Department, Stanford University Abstract both. For example, Z-buffer rendering algorithms operate on a sin- gle primitive at a time, which makes it possible to build rendering Simulating realistic lighting and rendering complex scenes are usu- hardware that does not need access to the entire scene. More re- ally considered separate problems with incompatible solutions. Ac- cently, the Talisman architecture was designed to exploit frame-to- curate lighting calculations are typically performed using ray trac- frame coherence as a means of accelerating rendering and reducing ing algorithms, which require that the entire scene database reside memory bandwidth requirements[21]. in memory to perform well. Conversely, most systems capable of Kajiya has written a whitepaper that proposes an architecture rendering complex scenes use scan-conversion algorithms that ac- for Monte Carlo ray tracing systems that is designed to improve cess memory coherently, but are unable to incorporate sophisticated coherence across all levels of the memory hierarchy, from pro- illumination. We have developed algorithms that use caching and cessor caches to disk storage[13]. The rendering computation is lazy creation of texture and geometry to manage scene complexity. decomposed into parts—ray-object intersections, shading calcula- To improve cache performance, we increase locality of reference tions, and calculating spawned rays—that are performed indepen- by dynamically reordering the rendering computation based on the dently. The coherence of memory references is increased through contents of the cache. We have used these algorithms to compute careful management of the interaction of the computation and the images of scenes containing millions of primitives, while storing memory that it references, reducing overall running time and facil- ten percent of the scene description in memory. -
Realityserver Installation Guide
RealityServer Êc Web Services 3.1 Installation Guide Document version 1.28 December 8, 2010 Installation Guide Copyright Information c 1986, 2011 NVIDIA Corporation. All rights reserved. This document is protected under copyright law. The contents of this document may not be translated, copied or duplicated in any form, in whole or in part, without the express written permission of NVIDIA Corporation. The information contained in this document is subject to change without notice. NVIDIA Corporation and its employees shall not be responsible for incidental or consequential damages resulting from the use of this material or liable for technical or editorial omissions made herein. NVIDIA, the NVIDIA logo, and DiCE, imatter, iray, mental cloud, mental images, mental matter, mental mesh, mental mill, mental queue, mental ray, Metanode, MetaSL, neuray, Phenomenon, RealityDesigner, RealityPlayer, RealityServer, rendering imagination visible, Shape-By-Shading, and SPM, are trademarks and/or registered trademarks of NVIDIA Corporation. Other product names mentioned in this document may be trademarks or registered trademarks of their respective companies and are hereby acknowledged. Installation, doc. 1.28 c 1986, 2011 NVIDIA Corporation. Table of Contents Table of Contents System Requirements 1 Memory 1 Processors 1 Graphics Card 1 Operating System 4 Network 4 RealityServer Web Services Installation 5 Firewalls 5 Network Buffers 5 Software Protection Manager (SPM) 5 RealityServer Web Services Networking Setup 6 Network Setup 6 c 1986,2011NVIDIACorporation. Installation,doc. 1.28 i Table of Contents ii Installation, doc. 1.28 c 1986, 2011 NVIDIA Corporation. System Requirements— Graphics Card System Requirements Memory Memory requirements greatly depend on the size of the 3D scene, and the number of different scenes concurrently loaded. -
The Growing Importance of Ray Tracing Due to Gpus
NVIDIA Application Acceleration Engines advancing interactive realism & development speed July 2010 NVIDIA Application Acceleration Engines A family of highly optimized software modules, enabling software developers to supercharge applications with high performance capabilities that exploit NVIDIA GPUs. Easy to acquire, license and deploy (most being free) Valuable features and superior performance can be quickly added App’s stay pace with GPU advancements (via API abstraction) NVIDIA Application Acceleration Engines PhysX physics & dynamics engine breathing life into real-time 3D; Apex enabling 3D animators CgFX programmable shading engine enhancing realism across platforms and hardware SceniX scene management engine the basis of a real-time 3D system CompleX scene scaling engine giving a broader/faster view on massive data OptiX ray tracing engine making ray tracing ultra fast to execute and develop iray physically correct, photorealistic renderer, from mental images making photorealism easy to add and produce © 2010 Application Acceleration Engines PhysX • Streamlines the adoption of latest GPU capabilities, physics & dynamics getting cutting-edge features into applications ASAP, CgFX exploiting the full power of larger and multiple GPUs programmable shading • Gaining adoption by key ISVs in major markets: SceniX scene • Oil & Gas Statoil, Open Inventor management • Design Autodesk, Dassault Systems CompleX • Styling Autodesk, Bunkspeed, RTT, ICIDO scene scaling • Digital Content Creation Autodesk OptiX ray tracing • Medical Imaging N.I.H iray photoreal rendering © 2010 Accelerating Application Development App Example: Auto Styling App Example: Seismic Interpretation 1. Establish the Scene 1. Establish the Scene = SceniX = SceniX 2. Maximize interactive 2. Maximize data visualization quality + quad buffered stereo + CgFX + OptiX + volume rendering + ambient occlusion 3. -
Course Overview
Course overview Digital Image Synthesis Yung-Yu Chuang with slides by Mario Costa Sousa, Pat Hanrahan and Revi Ramamoorthi Logistics • Meeting time: 2:20pm-5:20pm, Thursday • Classroom: CSIE Room 111 • Instructor: Yung-Yu Chuang ([email protected]) • TA:陳育聖 • Webpage: http://www.csie.ntu.edu.tw/~cyy/rendering id/password • Mailing list: [email protected] Please subscribe via https://cmlmail.csie.ntu.edu.tw/mailman/listinfo/rendering/ Prerequisites • C++ programming experience is required. • Basic knowledge on algorithm and data structure is essential. • Knowledge on linear algebra, probability, calculus and numerical methods is a plus. • Though not required, it is recommended that you have background knowledge on computer graphics. Requirements (subject to change) • 3 programming assignments (60%) • Class participation (5%) • Final project (35%) Textbook Physically Based Rendering from Theory to Implementation, 2nd ed, by Matt Pharr and Greg Humphreys •Authors have a lot of experience on ray tracing •Complete (educational) code, more concrete •Has been used in many courses and papers •Implement some advanced or difficult-to-implement methods: subdivision surfaces, Metropolis sampling, BSSRDF, PRT. •3rd edition is coming next year! pbrt won Oscar 2014 •ToMatt Pharr, Greg Humphreys and Pat Hanrahan for their formalization and reference implementation of the concepts behind physically based rendering, as shared in their book Physically Based Rendering. Physically based rendering has transformed computer graphics lighting by more accurately simulating materials and lights, allowing digital artists to focus on cinematography rather than the intricacies of rendering. First published in 2004, Physically Based Rendering is both a textbook and a complete source-code implementation that has provided a widely adopted practical roadmap for most physically based shading and lighting systems used in film production. -
Jen-Hsun Huang, Co-Founder & Ceo, Nvidia | Gtc China 2016
THE DEEP LEARNING AI REVOLUTION JEN-HSUN HUANG, CO-FOUNDER & CEO, NVIDIA | GTC CHINA 2016 GPU DEEP LEARNING BIG BANG ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky Ilya Sutskever Geoffrey e. Hinton University of Toronto University of Toronto University of Toronto NIPS (2012) Deep Learning NVIDIA GPU GPU DEEP LEARNING ACHIEVES “SUPERHUMAN” RESULTS ImageNet — Accuracy % 96% Human Microsoft, Google 3.5% error rate DL 74% Hand-coded CV 2010 2011 2012 2013 2014 2015 2012: Deep Learning researchers 2015: DNN achieves superhuman 2015: Deep Speech 2 achieves worldwide discover GPUs image recognition superhuman voice recognition NVIDIA — “THE AI COMPUTING COMPANY” GPU Computing Computer Graphics Artificial Intelligence ANNOUNCING NEW GRAPHICS SDKS Ansel Volumetric OptiX 4.0 Mental Ray MDL 1.0 In-game Photography Physical Light Models Multi-GPU Ray-Tracing Now GPU-Accelerated! Physically Based Materials Funhouse VR 360 Video 1.0 Iray VR Remote Rendering GVDB Open Source Real-Time Panoramic VR Photorealistic VR Ray Tracing Video Compositing Sparse Volumes for Special Effects NVIDIA VR FUNHOUSE NVIDIA SILICON VALLEY HEADQUARTERS GTC — 25X GROWTH IN GPU DL DEVELOPERS s 16,000 400,000 55,000 • Higher Ed 35% • Australia • Software 19% • China • Internet 15% • Europe • Auto 10% • India 120,000 • Government 5% • Japan • Medical 4% • Japan 3,700 • Korea 2,200 • Finance 4% • United States • United States • Manufacturing 4% (Silicon Valley, D.C.) 2014 2016 2014 2016 2014 2016 4X Attendees 3X GPU Developers 25x Deep Learning -
GPU Based Cloud Computing
GPU based cloud computing Dairsie Latimer, Petapath, UK Petapath © NVIDIA Corporation 2010 About Petapath Petapath ! " Founded in 2008 to focus on delivering innovative hardware and software solutions into the high performance computing (HPC) markets ! " Partnered with HP and SGI to deliverer two Petascale prototype systems as part of the PRACE WP8 programme ! " The system is a testbed for new ideas in usability, scalability and efficiency of large computer installations ! " Active in exploiting emerging standards for acceleration technologies and are members of Khronos group and sit on the OpenCL working committee ! " We also provide consulting expertise for companies wishing to explore the advantages offered by heterogeneous systems © NVIDIA Corporation 2010 What is Heterogeneous or GPU Computing? x86 PCIe bus GPU Computing with CPU + GPU Heterogeneous Computing © NVIDIA Corporation 2010 Low Latency or High Throughput? CPU GPU ! " Optimised for low-latency ! " Optimised for data-parallel, access to cached data sets throughput computation ! " Control logic for out-of-order ! " Architecture tolerant of and speculative execution memory latency ! " More transistors dedicated to computation © NVIDIA Corporation 2010 NVIDIA GPU Computing Ecosystem ISV CUDA CUDA TPP / OEM Training Development Company Specialist Hardware GPU Architecture Architect VAR CUDA SDK & Tools Customer Application Customer NVIDIA Hardware Requirements Solutions Hardware Architecture © NVIDIA Corporation 2010 Deployment Science is Desperate for Throughput Gigaflops 1,000,000,000 -
An Advanced Path Tracing Architecture for Movie Rendering
RenderMan: An Advanced Path Tracing Architecture for Movie Rendering PER CHRISTENSEN, JULIAN FONG, JONATHAN SHADE, WAYNE WOOTEN, BRENDEN SCHUBERT, ANDREW KENSLER, STEPHEN FRIEDMAN, CHARLIE KILPATRICK, CLIFF RAMSHAW, MARC BAN- NISTER, BRENTON RAYNER, JONATHAN BROUILLAT, and MAX LIANI, Pixar Animation Studios Fig. 1. Path-traced images rendered with RenderMan: Dory and Hank from Finding Dory (© 2016 Disney•Pixar). McQueen’s crash in Cars 3 (© 2017 Disney•Pixar). Shere Khan from Disney’s The Jungle Book (© 2016 Disney). A destroyer and the Death Star from Lucasfilm’s Rogue One: A Star Wars Story (© & ™ 2016 Lucasfilm Ltd. All rights reserved. Used under authorization.) Pixar’s RenderMan renderer is used to render all of Pixar’s films, and by many 1 INTRODUCTION film studios to render visual effects for live-action movies. RenderMan started Pixar’s movies and short films are all rendered with RenderMan. as a scanline renderer based on the Reyes algorithm, and was extended over The first computer-generated (CG) animated feature film, Toy Story, the years with ray tracing and several global illumination algorithms. was rendered with an early version of RenderMan in 1995. The most This paper describes the modern version of RenderMan, a new architec- ture for an extensible and programmable path tracer with many features recent Pixar movies – Finding Dory, Cars 3, and Coco – were rendered that are essential to handle the fiercely complex scenes in movie production. using RenderMan’s modern path tracing architecture. The two left Users can write their own materials using a bxdf interface, and their own images in Figure 1 show high-quality rendering of two challenging light transport algorithms using an integrator interface – or they can use the CG movie scenes with many bounces of specular reflections and materials and light transport algorithms provided with RenderMan. -
Nvidia Corporation 2016 Annual Report
2017 NVIDIA CORPORATION ANNUAL REVIEW NOTICE OF ANNUAL MEETING PROXY STATEMENT FORM 10-K THE AGE OF THE GPU IS UPON US THE NEXT PLATFORM A decade ago, we set out to transform the GPU into a powerful computing platform—a specialized tool for the da Vincis and Einsteins of our time. GPU computing has since opened a floodgate of innovation. From gaming and VR to AI and self-driving cars, we’re at the center of the most promising trends in our lifetime. The world has taken notice. Jensen Huang CEO and Founder, NVIDIA NVIDIA GEFORCE HAS MOVED FROM GRAPHICS CARD TO GAMING PLATFORM FORBES The PC drives the growth of computer gaming, the largest entertainment industry in the world. The mass popularity of eSports, the evolution of gaming into a social medium, and the advance of new technologies like 4K, HDR, and VR will fuel its further growth. Today, 200 million gamers play on GeForce, the world’s largest gaming platform. Our breakthrough NVIDIA Pascal architecture delighted gamers, and we built on its foundation with new capabilities, like NVIDIA Ansel, the most advanced in-game photography system ever built. To serve the 1 billion new or infrequent gamers whose PCs are not ready for today’s games, we brought the GeForce NOW game streaming service to Macs and PCs. Mass Effect: Andromeda. Courtesy of Electronic Arts. THE BEST ANDROID TV DEVICE JUST GOT BETTER ENGADGET NVIDIA SHIELD TV, controller, and remote. NVIDIA SHIELD is taking NVIDIA gaming and AI into living rooms around the world. The most advanced streamer now boasts 1,000 games, has the largest open catalog of media in 4K, and can serve as the brain of the AI home. -
Form 10-K Nvidia Corporation
Table of Contents UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, D.C. 20549 ____________________________________________________________________________________________ FORM 10-K [x] ANNUAL REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934 For the fiscal year ended January 28, 2018 OR [_] TRANSITION REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934 Commission file number: 0-23985 NVIDIA CORPORATION (Exact name of registrant as specified in its charter) Delaware 94-3177549 (State or other jurisdiction of (I.R.S. Employer Incorporation or Organization) Identification No.) 2788 San Tomas Expressway Santa Clara, California 95051 (408) 486-2000 (Address, including zip code, and telephone number, including area code, of principal executive offices) Securities registered pursuant to Section 12(b) of the Act: Title of each class Name of each exchange on which registered Common Stock, $0.001 par value per share The NASDAQ Global Select Market Securities registered pursuant to Section 12(g) of the Act: None Indicate by check mark if the registrant is a well-known seasoned issuer, as defined in Rule 405 of the Securities Act. Yes ý No o Indicate by check mark if the registrant is not required to file reports pursuant to Section 13 or Section 15(d) of the Act. Yes o No ý Indicate by check mark whether the registrant (1) has filed all reports required to be filed by Section 13 or 15(d) of the Securities Exchange Act of 1934 during the preceding 12 months (or for such shorter period that the registrant was required to file such reports), and (2) has been subject to such filing requirements for the past 90 days. -
(Gpus) for Department of Defense (Dod) Digital Signal Processing (DSP) Applications
Assessment of Graphic Processing Units (GPUs) for Department of Defense (DoD) Digital Signal Processing (DSP) Applications John D. Owens, Shubhabrata Sengupta, and Daniel Horn† University of California, Davis † Stanford University Abstract In this report we analyze the performance of the fast Fourier transform (FFT) on graphics hardware (the GPU), comparing it to the best-of-class CPU implementation FFTW.WedescribetheFFT,thearchitectureoftheGPU,andhowgeneral-purpose computation is structured on the GPU. We then identify the factors that influence FFT performance and describe several experiments that compare these factors between the CPUandtheGPU.Weconcludethattheoverheadoftransferringdataandinitiating GPU computation are substantially higher than on the CPU, and thus for latency- critical applications, the CPU is a superior choice. We show that the CPU imple- mentation is limited by computation and the GPU implementation by GPU memory bandwidth and its lack of a writable cache. The GPU is comparatively better suited for larger FFTs with many FFTs computed in parallel in applications where FFT through- putismostimportant;ontheseapplicationsGPUandCPUperformanceisroughly on par. We also demonstrate that adding additional computation to an application that includes the FFT, particularly computation that is GPU-friendly, puts the GPU at an advantage compared to the CPU. The future of desktop processing is parallel.Thelastfewyearshaveseenanexplosionof single-chip commodity parallel architectures that promises to be the centerpieces of future computing platforms. Parallel hardware on the desktop—new multicore microprocessors, graphics processors, and stream processors—has the potential to greatly increase the com- putational power available to today’s computer users, with a resulting impact in computa- tion domains such as multimedia, entertainment, signal and image processing, and scientific computation. -
NVIDIA Quadro VCA Manager User's and Administrator's Guide
NVIDIA Quadro VCA Manager User's and administrator's guide NVIDIA Advanced Rendering Center Fasanenstraße 81 10623 Berlin Germany phone +49.30.315.99.70 fax +49.30.315.99.733 arc-offi[email protected] Copyright Information © 1986, 2015 NVIDIA ARC GmbH. All rights reserved. This document is protected under copyright law. The contents of this document may not be translated, copied or duplicated in any form, in whole or in part, without the express written permission of NVIDIA ARC GmbH. The information contained in this document is subject to change without notice. NVIDIA ARC GmbH and its employees shall not be responsible for incidental or consequential damages resulting from the use of this material or liable for technical or editorial omissions made herein. NVIDIA and the NVIDIA logo are registered trademarks of NVIDIA Corporation. imatter, IndeX, Iray, mental images, mental ray, and RealityServer are trademarks and/or registered trademarks of NVIDIA ARC GmbH. Other product names mentioned in this document may be trademarks or registered trademarks of their respective companies and are hereby ac- knowledged. Document build number 240329 ii VCA Manager Guide ©1986,2015 NVIDIA ARC GmbH Contents 1 Introduction to VCA Manager......................................... 1 2 Connecting to VCA Manager.......................................... 1 3 Logging in to VCA Manager.......................................... 2 3.1 VCA Manager Login window: Overview............................. 2 3.2 Logging in to VCA Manager: Procedure.............................. 2 4 Reserving VCAs.................................................... 3 4.1 VCA Manager Overview window: Overview.......................... 3 4.1.1 User status.................................................. 4 4.1.2 My Visual Computing Cluster.................................. 5 4.1.3 Visual Computing Appliance Pool............................... 7 4.1.4 Messages..................................................