Kreski Phd Thesis 2014-07
Total Page:16
File Type:pdf, Size:1020Kb
NETWORK DILATATION AND RELAXATION IN CHEMICALLY STRENGTHENED ALKALI SILICATE GLASSES BY PATRICK K. KRESKI A THESIS SUBMITTED TO THE FACULTY OF ALFRED UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN GLASS SCIENCE ALFRED, NEW YORK SEPTEMBER, 2014 Alfred University theses are copyright protected and may be used for education or personal research only. Reproduction or distribution in part or whole is prohibited without written permission from the author. Signature page may be viewed at Scholes Library, New York State College of Ceramics, Alfred University, Alfred, New York. NETWORK DILATATION AND RELAXATION IN CHEMICALLY STRENGTHENED ALKALI SILICATE GLASSES BY PATRICK K. KRESKI B.S. ALFRED UNIVERSITY (2007) M.S. ALFRED UNIVERSITY (2009) SIGNATURE OF AUTHOR ______________________________________ APPROVED BY _______________________________________________ ARUN K. VARSHNEYA, ADVISOR _________________________________________________ MATTHEW M. HALL, ADVISOR _________________________________________________ ALASTAIR N. CORMACK, ADVISORY COMMITTEE _________________________________________________ ALEXIS G. CLARE, ADVISORY COMMITTEE _________________________________________________ NATHAN P. MELLOTT, ADVISORY COMMITTEE _________________________________________________ CHAIR, ORAL THESIS DEFENSE ACCEPTED BY _______________________________________________ DOREEN D. EDWARDS, DEAN KAZUO INAMORI SCHOOL OF ENGINEERING ACCEPTED BY _______________________________________________ NANCY J. EVANGELISTA, ASSOCIATE PROVOST FOR GRADUATE AND PROFESSIONAL PROGRAMS ALFRED UNIVERSITY ACKNOWLEDGMENTS Many thanks to Dr. Arun Varshneya for supplying the seeds for this thesis and advising throughout its development. Thanks to Saxon Glass for providing materials and equipment time. Thanks to Dr. Matthew Hall for administrative advising and support. Thanks to Dr. Alastair Cormack for enabling me to branch this project into molecular dynamics simulations. Also thanks to Dr. Alexis Clare and Dr. Nathan Mellott for participating on my thesis committee. Thanks to Dr. Tim Wong, visiting professor from 2008-2010, and Dr. Jinghong Fan for numerous discussions related to mechanics and finite element analysis. Thanks also to the university staff, including Gerry Wynick with microprobe analysis and Fran Williams with profilometer maintenance. Throughout this project a number of graduate students have generously provided their time to help with various aspects of this thesis. For proof-of-concept experiments, thanks to Matt Brophy with vapor deposition of metallic coatings and Brian Adams with sol-gel silica spin-coatings. For getting started with molecular dynamics simulations and related equipment up-keep, I am grateful to Laura Adkins and Bu Wang for their time and effort. Finally, thank you to my family and friends for their support over the years. Many thanks to Jessie for continual support and encouragement. A special thanks to my parents, Mary Ann and Ken. iii TABLE OF CONTENTS Page Acknowledgments .............................................................................................................. iii Table of Contents................................................................................................................ iv List of Tables ...................................................................................................................... vi List of Figures................................................................................................................... viii Abstract ............................................................................................................................. xii I. INTRODUCTION ................................................................................................... 1 References ........................................................................................................................... 5 II. MOLECULAR DYNAMICS SIMULATIONS OF ALKALI STUFFED SILICATE GLASS NETWORKS ......................................................................... 8 A. Introduction.................................................................................................................. 8 1. Basic Principles .............................................................................................................. 8 2. Background................................................................................................................... 10 3. Foundation .................................................................................................................... 12 B. Simulation and Analysis Methods .............................................................................. 17 B. Results ....................................................................................................................... 20 1. Molar Volume and LNDC ............................................................................................. 20 2. Range I: Structural Unit ................................................................................................ 21 3. Range II: Interconnection of Adjacent Structural Units ................................................. 28 4. Range III: Network Topology ....................................................................................... 31 5. Elastic Properties .......................................................................................................... 32 6. NVT Stuffing ................................................................................................................ 36 C. Discussion .................................................................................................................. 37 1. A Note on Timescale, Temperature, and Boundary Conditions ..................................... 37 2. What Influences LNDC? ............................................................................................... 38 3. Network Features of Stuffing Alkali Accommodation ................................................... 38 4. LNDC and Compression Maximum .............................................................................. 41 D. Conclusions................................................................................................................ 47 E. References.................................................................................................................. 49 III. DIMENSIONAL SWELLING CHARACTERIZATION OF CHEMICALLY STRENGTHENED ALKALI SILICATE GLASSES ........................................ 52 A. Introduction................................................................................................................ 52 iv 1. Background................................................................................................................... 52 2. Dimensional Changes and Models ................................................................................ 55 B. Method ....................................................................................................................... 59 C. Results ....................................................................................................................... 67 1. Laboratory Dimensional Changes ................................................................................. 67 2. Laboratory Chemical Diffusion and Stress Profiles ....................................................... 71 3. Laboratory Combined Results ....................................................................................... 78 4. Finite Element Method Elastic Dimensional Changes ................................................... 82 5. Strain Model with Shear Flow (SPS model) .................................................................. 86 6. Strain Model with Densification and Shear Flow (DSPS model) ................................... 93 D. Discussion .................................................................................................................. 97 1. General Dimensional Swelling ...................................................................................... 97 2. Elastic Finite Element Method ...................................................................................... 97 3. Strain Models .............................................................................................................. 100 E. Conclusions.............................................................................................................. 103 F. References................................................................................................................ 105 IV. SUMMARY AND CONCLUSIONS .................................................................. 110 V. FUTURE WORK ................................................................................................ 112 APPENDIX .................................................................................................................... 114 A. MD Simulation Cutoff Distances ............................................................................. 114 B. MD Simulation Qn Distributions .............................................................................. 115 C. Surface Profile Notes ............................................................................................... 116 1. Substrate Deformation ................................................................................................ 116 2. Edge Profile Averaging ..............................................................................................