By Daniel Bump, David Denholm, Jerome Dumonteil, Gunnar Farneb¨Ack, Thomas Traber, Tanguy Urvoy, Inge Wallin GNU GO 3.0

Total Page:16

File Type:pdf, Size:1020Kb

By Daniel Bump, David Denholm, Jerome Dumonteil, Gunnar Farneb¨Ack, Thomas Traber, Tanguy Urvoy, Inge Wallin GNU GO 3.0 Documentation for the GNU Go Project Edition 3.0.0 August, 2001 By Daniel Bump, David Denholm, Jerome Dumonteil, Gunnar Farneb¨ack, Thomas Traber, Tanguy Urvoy, Inge Wallin GNU GO 3.0 Copyright °c 1999, 2000, 2001 Free Software Foundation, Inc. This is Edition 3.0.0 of The GNU Go Project documentation, for the 3.0 version of the GNU GO program. Published by the Free Software Foundation 675 Massachusetts Avenue Cambridge, MA 02139-3309 USA Phone: +1-617-876-3296 Permission is granted to make and distribute verbatim or modified copies of this manual is given provided that the terms of the GNU Free Documentation License (see Section A.2 [GFDL], page 179) are respected. Permission is granted to make and distribute verbatim or modified copies of the program GNU Go is given provided the terms of the GNU General Public License (see Section A.1 [GPL], page 173) are respected. Chapter 1: Introduction 1 1 Introduction This is GNU Go 3.0, a Go program. Development versions of GNU Go may be found at http://www.gnu.org/software/gnugo/devel.html. Contact us at [email protected] if you are interested in helping. 1.1 About GNU Go and this Manual The challenge of Computer Go is not to beat the computer, but to program the computer. In Computer Chess, strong programs are capable of playing at the highest level, even challenging such a player as Garry Kasparov. No Go program even as strong as amateur shodan exists. The challenge is to write such a program. To be sure, existing Go programs are strong enough to be interesting as opponents, and the hope exists that some day soon a truly strong program can be written. GNU Go is getting stronger. For one thing, we’ve paid a lot of attention to life and death. GNU Go 3.0 can consistently give GNU Go 2.6 a four stone handicap. In a four stone game against GNU Go 2.6, GNU Go 3.0 very often kills a group. Until now, Go programs have always been distributed as binaries only. The algorithms in these proprietary programs are secret. No-one but the programmer can examine them to admire or criticise. As a consequence, anyone who wished to work on a Go program usually had to start from scratch. This may be one reason that Go programs have not reached a higher level of play. Unlike most Go programs, GNU Go is Free Software. Its algorithms and source code are open and documented. They are free for any one to inspect or enhance. We hope this freedom will give GNU Go’s descendents a certain competetive advantage. Here is GNU Go’s Manual. There are doubtless inaccuracies. The ultimate documenta- tion is in the commented source code itself. The first three chapters of this manual are for the general user. Chapter 3 is the User’s Guide. The rest of the book is for programmers, or persons curious about how GNU Go works. Chapter 4 is a general overview of the engine. Chapter 5 introduces various tools for looking into the GNU Go engine and finding out why it makes a certain move, and Chapters 6–7 form a general programmer’s reference to the GNU Go API. The remaining chapters are more detailed explorations of different aspects of GNU Go’s internals. 1.2 Copyrights Copyright 1999, 2000, 2001 by the Free Software Foundation except for the files ‘gmp.c’ and ‘gmp.h’, which are copyrighted by Bill Shubert ([email protected]). All files are under the GNU General Public License (see Section A.1 [GPL], page 173), except ‘gmp.c’, ‘gmp.h’, ‘gtp.c’, ‘gtp.h’, the files ‘interface/html/*’ and ‘win/makefile.win’. The two files ‘gmp.c’ and ‘gmp.h’ were placed in the public domain by William Shubert, their author, and are free for unrestricted use. Chapter 1: Introduction 2 The files ‘gtp.c’ and ‘gtp.h’ are copyright the Free Software Foundation. In the interests of promoting the Go Text Protocol these two files are licensed under a less restrictive license than the GPL and are free for unrestricted use (see Section A.3 [GTP License], page 185). The files ‘interface/html/*’ are not part of GNU Go but are a separate program and are included in the distribution for the convenience of anyone looking for a CGI interface to GNU Go. They were placed in the public domain by their author, Douglas Ridgway, and are free for unrestricted use. The file ‘win/makefile.win’ is also in the public domain and is free for unrestricted use. 1.3 Authors GNU Go maintainers are Daniel Bump and Gunnar Farneb¨ack. GNU Go authors (in chronological order of contribution) are Man Li, Daniel Bump, David Denholm, Gunnar Farneb¨ack, Nils Lohner, Jerome Dumonteil, Tommy Thorn, Nicklas Ekstrand, Inge Wallin, Thomas Traber, Douglas Ridgway, Teun Burgers, Tanguy Urvoy, Thien-Thi Nguyen, Heikki Levanto, Mark Vytlacil, Adriaan van Kessel, Wolfgang Manner, Jens Yllman and Don Dailey. 1.4 Thanks We would like to thank Arthur Britto, Tim Hunt, Piotr Lakomy, Paul Leonard, Jean- Louis Martineau, Andreas Roever and Pierce Wetter for helpful correspondence. Thanks to everyone who stepped on a bug (and sent us a report)! Thanks to Gary Boos, Peter Gucwa, Martijn van der Kooij, Michael Margolis, Trevor Morris, Mans Ullerstam, Don Wagner and Yin Zheng for help with Visual C++. And thanks to Alan Crossman, Stephan Somogyi, Pierce Wetter and Mathias Wagner for help with Macintosh. Special thanks to Ebba Berggren for creating our logo, based on a design by Tanguy Ur- voy and comments by Alan Crossman. The old GNU Go logo was adapted from Jamal Han- nah’s typing GNU: http://www.gnu.org/graphics/atypinggnu.html. Both logos can be found in ‘doc/newlogo.*’ and ‘doc/oldlogo.*’. We would like to thank Stuart Cracraft, Richard Stallman and Man Lung Li for their interest in making this program a part of GNU, William Shubert for writing CGoban and gmp.c, Rene Grothmann for Jago and Erik van Riper and his collaborators for NNGS. 1.5 The GNU Go Task List You can help make GNU Go the best Go program. This is a task-list for anyone who is interested in helping with GNU Go. If you want to work on such a project you should correspond with us until we reach a common vision of how the feature will work! A note about copyright. The Free Software Foundation has the copyright to GNU Go. For this reason, before any code can be accepted as a part of the official release of GNU Go, the Free Software Foundation will want you to sign a copyright assignment. Chapter 1: Introduction 3 Of course you could work on a forked version without signing such a disclaimer. You can also distribute such a forked version of the program so long as you also distribute the source code to your modifications under the GPL (see Section A.1 [GPL], page 173). But if you want your changes to the program to be incorporated into the version we distribute we need you to assign the copyright. Please contact the GNU Go maintainers, Daniel Bump ([email protected]) and Gunnar Farneb¨ack ([email protected]), to get more information and the papers to sign. Below is a list of things YOU could work on. We are already working on some of these tasks, but don’t let that stop you. Please contact us or the person assigned to task for further discussion. 1. Report and fix bugs. Bugs are an important cause of weakness in any Go program! If you can, send us bug FIXES as well as bug reports. If you see some bad behavior, figure out what causes it, and what to do about fixing it. And send us a patch! If you find an interesting bug and cannot tell us how to fix it, we would be happy to have you tell us about it anyway. Send us the sgf file (if possible) and attach other relevant information, such as the GNU Go version number. In cases of assertion failures and segmentation faults we probably want to know what operating system and compiler you were using, in order to determine if the problem is platform dependent. 2. Extend the regression test suites. See the texinfo manual in the doc directory for a description of how to do this. In particular it would be useful with test suites for common life and death problems. Currently second line groups, L groups and the tripod shape are reasonably well covered, but there is for example almost nothing on comb formations, carpenter’s square, and so on. Other areas where test suites would be most welcome are fuseki, tesuji, and endgame. 3. Tune the pattern databases. This is a sort of art. It is not necessary to do any programming to do this since most of the patterns do not require helpers. We would like it if a few more Dan level players would learn this skill. 4. Extend and tune the Joseki database. 5. Rewrite the semeai module The semeai module is vastly in need of improvement. In fact, semeai can probably only be analyzed by reading to discover what backfilling is needed before we can make atari. 6. Write a connection analysis module. The connection analysis is today completely static and has a hard time identifying mutually dependent connections or moves that simultaneously threatens two or more connections. This could be improved by writing a connection reader, which like the owl code uses pattern matching to find a small amount of key moves to try.
Recommended publications
  • Openbsd Gaming Resource
    OPENBSD GAMING RESOURCE A continually updated resource for playing video games on OpenBSD. Mr. Satterly Updated August 7, 2021 P11U17A3B8 III Title: OpenBSD Gaming Resource Author: Mr. Satterly Publisher: Mr. Satterly Date: Updated August 7, 2021 Copyright: Creative Commons Zero 1.0 Universal Email: [email protected] Website: https://MrSatterly.com/ Contents 1 Introduction1 2 Ways to play the games2 2.1 Base system........................ 2 2.2 Ports/Editors........................ 3 2.3 Ports/Emulators...................... 3 Arcade emulation..................... 4 Computer emulation................... 4 Game console emulation................. 4 Operating system emulation .............. 7 2.4 Ports/Games........................ 8 Game engines....................... 8 Interactive fiction..................... 9 2.5 Ports/Math......................... 10 2.6 Ports/Net.......................... 10 2.7 Ports/Shells ........................ 12 2.8 Ports/WWW ........................ 12 3 Notable games 14 3.1 Free games ........................ 14 A-I.............................. 14 J-R.............................. 22 S-Z.............................. 26 3.2 Non-free games...................... 31 4 Getting the games 33 4.1 Games............................ 33 5 Former ways to play games 37 6 What next? 38 Appendices 39 A Clones, models, and variants 39 Index 51 IV 1 Introduction I use this document to help organize my thoughts, files, and links on how to play games on OpenBSD. It helps me to remember what I have gone through while finding new games. The biggest reason to read or at least skim this document is because how can you search for something you do not know exists? I will show you ways to play games, what free and non-free games are available, and give links to help you get started on downloading them.
    [Show full text]
  • DVD-Libre 2005-04 Y 2 Pr W W Pr B - 3 T T T T S De Ca SI 5 Sc Re Ra Q 1 Po 3 Ph I Sa Dic Dic 2 4 W Ex ( H N C T
    (continuación) - CDCheck 3.1.4.0 - CDex 1.51 - Celestia 1.3.2 - Centarsia 1.3 - Chain Reaction - Check4me 2.03 - Checky 2.5 - Chomp 1.4.5 - ClamWin 0.83 - Clan Bomber 1.05 - Cobian Backup 6.1.1.264 - Cobian Internet Tools 1.0.0.10 - ColorCop 5.3 - ColorWiz 1.0 - Combinaisons Junior Plus 2.70 - Continental 2.1 - Crack Attack! 1.1.08 - Crimson Editor 3.70 - CubeTest 0.9.3 - DBDesigner 4.0.5.6 - DeepBurner 1.3.6.168 - Deslizzzp 3.3 - Dev-C++ 4.9.9.2 - Dia Win32 0.94 - DirGraph 2.0 - DVD-Libre Disk Imager 1.4 - Domino Puzzle 0.1a - DominOSA 1.71 - DomiSol 1.2 - Doxygen 1.4.1 - Dragonboard 0.8c - Drawing for children 2.0 - DVD Identifier 3.6.2 - e-Counter 3.1.2004 - EasyISO 1.3 - EasyPHP cdlibre.org 1.8 - Eclipse 3.0.1 - Eclipse Language Pack 3.0.x - Eclipse Modeling Framework 2.0.1 - Eclipse Visual Editor 1.0.2 - Emilia Pinball 0.30c - Enigma 0.81 - EQTabla 4.0.050208 - Eraser 5.7 - Everest 2005-04 Dictionary 3.10 beta - Everest Dictionary 3.10 beta Completo - Exact Audio Copy 0.95 prebeta 5 - Exodus 0.9.0.0 - Fall - FileMenu Tools 4.1 - FileZilla 2.2.12a - Find Favorites 1.11 - Firebird 1.5.2 - Flexible Renamer 7.3 - FloboPuyo 0.20 - FolderQuote 1.0 - foobar2000 0.8.3 - FooBilliard 3.0 - Foxit PDF Reader 1.2.0.115 - FractalExplorer 2.02 - FractalForge 2.8.2 - FrameFun 1.0.5.0 - Free Download DVD-Libre es una recopilación de programas para Windows: Manager 1.5.256 - Free Pascal 1.0.10 - FreeCiv 1.14.2 - FreeMind 0.7.1 - Frozen Bubble Enhanced ● libres / gratuitos al menos para uso personal o educativo 1.0 - Gaim 1.1.4 - GanttProject 1.10.3
    [Show full text]
  • E-Book? Začala Hra
    Nejlepší strategie všech dob 1 www.yohama.cz Nejlepší strategie všech dob Obsah OBSAH DESKOVÁ HRA GO ................................................................................................................................ 3 Úvod ............................................................................................................................................................ 3 Co je to go ................................................................................................................................................... 4 Proč hrát go ................................................................................................................................................. 7 Kde získat go ................................................................................................................................................ 9 Jak začít hrát go ......................................................................................................................................... 10 Kde a s kým hrát go ................................................................................................................................... 12 Jak se zlepšit v go ...................................................................................................................................... 14 Handicapová hra ....................................................................................................................................... 15 Výkonnostní třídy v go a rating hráčů .......................................................................................................
    [Show full text]
  • FUEGO—An Open-Source Framework for Board Games and Go Engine Based on Monte Carlo Tree Search Markus Enzenberger, Martin Müller, Broderick Arneson, and Richard Segal
    IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 2, NO. 4, DECEMBER 2010 259 FUEGO—An Open-Source Framework for Board Games and Go Engine Based on Monte Carlo Tree Search Markus Enzenberger, Martin Müller, Broderick Arneson, and Richard Segal Abstract—FUEGO is both an open-source software framework with new algorithms that would not be possible otherwise be- and a state-of-the-art program that plays the game of Go. The cause of the cost of implementing a complete state-of-the-art framework supports developing game engines for full-information system. Successful previous examples show the importance of two-player board games, and is used successfully in a substantial open-source software: GNU GO [19] provided the first open- number of projects. The FUEGO Go program became the first program to win a game against a top professional player in 9 9 source Go program with a strength approaching that of the best Go. It has won a number of strong tournaments against other classical programs. It has had a huge impact, attracting dozens programs, and is competitive for 19 19 as well. This paper gives of researchers and hundreds of hobbyists. In Chess, programs an overview of the development and current state of the UEGO F such as GNU CHESS,CRAFTY, and FRUIT have popularized in- project. It describes the reusable components of the software framework and specific algorithms used in the Go engine. novative ideas and provided reference implementations. To give one more example, in the field of domain-independent planning, Index Terms—Computer game playing, Computer Go, FUEGO, systems with publicly available source code such as Hoffmann’s man-machine matches, Monte Carlo tree search, open source soft- ware, software frameworks.
    [Show full text]
  • Walnut Creek CDROM Spring 1995 Catalog 1-800-786-9907 • 1-510-674-0821 Fax the Best of Walnut Creek CDROM Is Yours Free*
    Walnut Creek CDROM Spring 1995 Catalog 1-800-786-9907 • 1-510-674-0821 Fax The Best of Walnut Creek CDROM is yours Free*. The • You’ll also get fonts, fractals, Best of Walnut Creek CDROM music, clipart, and more. 600 lets you explore in-depth what MegaBytes in total! Walnut Creek CDROM has to offer. • Boot images from our Unix for PC discs so you will With samples from all of our know if your hardware will products, you’ll be able to see boot Slackware Linux or what our CDROM’s will do for FreeBSD you, before you buy. This CDROM contains: • The Walnut Creek CDROM digital catalog - photos and • Index listings of all the descriptions of our all titles programs, photos, and files on all Walnut Creek CDROM If you act now, we’ll include titles $5.00 good toward the purchase of all Walnut Creek CDROM • The best from each disc titles. If you’re only going to including Hobbes OS/2, own one CDROM, this should CICA MS Windows, Simtel be it! March, 1995. MSDOS, Giga Games, Internet Info, Teacher 2000, Call, write, fax, or email your Ultra Mac-Games and Ultra order to us today! Mac-Utilities * The disc is without cost, but the regular shipping charge still applies. • You get applications, games, utilities, photos, gifs, documents, ray-tracings, and animations 2 CALL NOW! 1-800-786-9907 Phone: +1-510-674-0783 • Fax: +1-510-674-0821 • Email: [email protected] • WWW: http://WWW.cdrom.com/ (Alphabetical Index on page 39.) Hi, Sampler - (Best of Walnut Creek) 2 This is Jack and I’ve got another great batch of CICA for Windows 4 Music Workshop 5 CDROM’s for you.
    [Show full text]
  • Strategy Game Programming Projects
    STRATEGY GAME PROGRAMMING PROJECTS Timothy Huang Department of Mathematics and Computer Science Middlebury College Middlebury, VT 05753 (802) 443-2431 [email protected] ABSTRACT In this paper, we show how programming projects centered around the design and construction of computer players for strategy games can play a meaningful role in the educational process, both in and out of the classroom. We describe several game-related projects undertaken by the author in a variety of pedagogical situations, including introductory and advanced courses as well as independent and collaborative research projects. These projects help students to understand and develop advanced data structures and algorithms, to manage and contribute to a large body of existing code, to learn how to work within a team, and to explore areas at the frontier of computer science research. 1. INTRODUCTION In this paper, we show how programming projects centered around the design and construction of computer players for strategy games can play a meaningful role in the educational process, both in and out of the classroom. We describe several game-related projects undertaken by the author in a variety of pedagogical situations, including introductory and advanced courses as well as independent and collaborative research projects. These projects help students to understand and develop advanced data structures and algorithms, to manage and contribute to a large body of existing code, to learn how to work within a team, and to explore areas at the frontier of computer science research. We primarily consider traditional board games such as chess, checkers, backgammon, go, Connect-4, Othello, and Scrabble. Other types of games, including video games and real-time strategy games, might also lead to worthwhile programming projects.
    [Show full text]
  • GHDL Documentation Release 1.0-Dev
    GHDL Documentation Release 1.0-dev Tristan Gingold and contributors Aug 30, 2020 Introduction 1 What is VHDL? 3 2 What is GHDL? 5 3 Who uses GHDL? 7 4 Contributing 9 4.1 Reporting bugs............................................9 4.2 Requesting enhancements...................................... 10 4.3 Improving the documentation.................................... 10 4.4 Fork, modify and pull-request.................................... 11 4.5 Related interesting projects..................................... 11 5 Copyrights | Licenses 13 5.1 GNU GPLv2............................................. 13 5.2 CC-BY-SA.............................................. 14 5.3 List of Contributors......................................... 14 I Getting GHDL 15 6 Releases and sources 17 6.1 Using package managers....................................... 17 6.2 Downloading pre-built packages................................... 17 6.3 Downloading Source Files...................................... 18 7 Building GHDL from Sources 21 7.1 Directory structure.......................................... 22 7.2 mcode backend............................................ 23 7.3 LLVM backend............................................ 23 7.4 GCC backend............................................. 24 8 Precompile Vendor Primitives 27 8.1 Supported Vendors Libraries..................................... 27 8.2 Supported Simulation and Verification Libraries.......................... 28 8.3 Script Configuration......................................... 28 8.4 Compiling on Linux........................................
    [Show full text]
  • Collaborative Go
    Distributed Computing Master Thesis COLLABORATIVE GO Alex Hugger December 13, 2011 Supervisor: S. Welten Prof. Dr. R. Wattenhofer Distributed Computing Group Computer Engineering and Networks Laboratory ETH Zürich Abstract The game of Go is getting more and more popular in Europe. Its simple rules and the huge complexity for computer programs make it very interesting for a study about collaborative gaming. The idea of collaborative Go is to play a simple two player game in a setup of teams behaving as one single player instead of one versus one. During this thesis, we implemented a framework allowing to play collaborative Go. The framework is heavily based on the existing Go Text Protocol allowing an inte- gration into already existing Go servers or a competition with existing Go programs. Multiple players are merged through the use of different decision engines into one single player. Two decision engines were implemented based on different interac- tion schemes. One is based on a voting process whereas the other one decides on the final move of a team by applying a Monte Carlo simulation. The final experiments show that collaborative gaming is very interesting and atten- tion attracting for the players. Especially the voting mechanism used in the collab- orative player achieved a high user satisfaction. For an automated decision engine, we found out that it is very important to make the decision process as transparent as possible to all users, as this increases the level of the acceptance even when a bad decision was made. Acknowledgments During the accomplishment of this master thesis, a lot of people supported and guided me to a successful completion of the work.
    [Show full text]
  • FUEGO – an Open-Source Framework for Board Games and Go Engine Based on Monte-Carlo Tree Search
    FUEGO – An Open-source Framework for Board Games and Go Engine Based on Monte-Carlo Tree Search Markus Enzenberger, Martin Muller,¨ Broderick Arneson and Richard Segal Abstract—FUEGO is both an open-source software frame- available source code such as Hoffmann’s FF [20] have had work and a state of the art program that plays the game of a similarly massive impact, and have enabled much followup Go. The framework supports developing game engines for full- research. information two-player board games, and is used successfully in UEGO a substantial number of projects. The FUEGO Go program be- F contains a game-independent, state of the art came the first program to win a game against a top professional implementation of MCTS with many standard enhancements. player in 9×9 Go. It has won a number of strong tournaments It implements a coherent design, consistent with software against other programs, and is competitive for 19 × 19 as well. engineering best practices. Advanced features include a lock- This paper gives an overview of the development and free shared memory architecture, and a flexible and general current state of the FUEGO project. It describes the reusable components of the software framework and specific algorithms plug-in architecture for adding domain-specific knowledge in used in the Go engine. the game tree. The FUEGO framework has been proven in applications to Go, Hex, Havannah and Amazons. I. INTRODUCTION The main innovation of the overall FUEGO framework may lie not in the novelty of any of its specific methods and Research in computing science is driven by the interplay algorithms, but in the fact that for the first time, a state of of theory and practice.
    [Show full text]
  • Advanced Optimization and New Capabilities of GCC 10
    SUSE Best Practices Advanced Optimization and New Capabilities of GCC 10 Development Tools Module, SUSE Linux Enterprise 15 SP2 Martin Jambor, Toolchain Developer, SUSE Jan Hubička, Toolchain Developer, SUSE Richard Biener, Toolchain Developer, SUSE Martin Liška, Toolchain Developer, SUSE Michael Matz, Toolchain Team Lead, SUSE Brent Hollingsworth, Engineering Manager, AMD 1 Advanced Optimization and New Capabilities of GCC 10 The document at hand provides an overview of GCC 10 as the current Development Tools Module compiler in SUSE Linux Enterprise 15 SP2. It focuses on the important optimization levels and options Link Time Optimization (LTO) and Prole Guided Optimization (PGO). Their eects are demonstrated by compiling the SPEC CPU benchmark suite for AMD EPYC 7002 Series Processors and building Mozilla Firefox for a generic x86_64 machine. Disclaimer: This document is part of the SUSE Best Practices series. All documents published in this series were contributed voluntarily by SUSE employees and by third parties. If not stated otherwise inside the document, the articles are intended only to be one example of how a particular action could be taken. Also, SUSE cannot verify either that the actions described in the articles do what they claim to do or that they do not have unintended consequences. All information found in this document has been compiled with utmost attention to detail. However, this does not guarantee complete accuracy. Therefore, we need to specically state that neither SUSE LLC, its aliates, the authors, nor the translators
    [Show full text]
  • SAI: a Sensible Artificial Intelligence That Targets High Scores in Go
    SAI: a Sensible Artificial Intelligence that Targets High Scores in Go F. Morandin,1 G. Amato,2 M. Fantozzi, R. Gini,3 C. Metta,4 M. Parton,2 1Universita` di Parma, Italy, 2Universita` di Chieti–Pescara, Italy, 3Agenzia Regionale di Sanita` della Toscana, Italy, 4Universita` di Firenze, Italy [email protected], [email protected], [email protected], [email protected], [email protected], [email protected] Abstract players. Moreover, one single self-play training game is used to train 41 winrates, which is not a robust approach. Finally, We integrate into the MCTS – policy iteration learning pipeline in (Wu 2019, KataGo) the author introduces a heavily modi- of AlphaGo Zero a framework aimed at targeting high scores fied implementation of AlphaGo Zero, which includes score in any game with a score. Training on 9×9 Go produces a superhuman Go player. We develop a family of agents that estimation, among many innovative features. The value to be can target high scores, recover from very severe disadvan- maximized is then a linear combination of winrate and expec- tage against weak opponents, and avoid suboptimal moves. tation of a nonlinear function of the score. This approach has Traning on 19×19 Go is underway with promising results. A yielded a extraordinarily strong player in 19×19 Go, which multi-game SAI has been implemented and an Othello run is is available as an open source software. Notably, KataGo is ongoing. designed specifically for the game of Go. In this paper we summarise the framework called Sensi- ble Artificial Intelligence (SAI), which has been introduced 1 Introduction to address the above-mentioned issues in any game where The game of Go has been a landmark challenge for AI re- victory is determined by score.
    [Show full text]
  • Combining Old-Fashioned Computer Go with Monte Carlo Go
    Combining Old-fashioned Computer Go with Monte Carlo Go Florin Chelaru (Author) Faculty of Computer Science University ”Al. I. Cuza” of Ias, i General Berthelot 16, 700483 Ias, i, Romania fl[email protected] Liviu Ciortuz (Scientific Advisor) Faculty of Computer Science - Computer Science Department University ”Al. I. Cuza” of Ias, i General Berthelot 16, 700483 Ias, i, Romania [email protected] Abstract puter Go, referring to classic artificial intelligence tech- niques and strategies, and Monte Carlo Go, a recent ap- In this paper we discuss the idea of combining old- proach based on probabilities and heuristics. fashioned Computer Go with Monte Carlo Go. We intro- First studies and research in old-fashioned Go started duce an analyze-after approach to random simulations. We about forty years ago1 focusing mostly on state representa- also briefly present the other features of our present Monte tion, breaking down the game in goal-oriented sub-games, Carlo implementation with Upper Confidence Trees. We local searches and local results, functions for evaluation then explain our approach to adding this implementation and determining influence and base knowledge for pattern as a module in the GNU Go 3.6 engine, and finally show matching2. There are several programs using this approach, some preliminary results of the entire work, ideas for future of which one of the best and the only one with available work and conclusions. sources and documentation is GNU Go. Since the beginning of 1990’s, and more intensely within the last 10 years, the attention has moved over some proba- 1. Introduction bilistic approaches, the most important being Monte Carlo Go3.
    [Show full text]