Pollination Drop Proteome and Reproductive Organ Transcriptome Comparison in Gnetum Reveals Entomophilous Adaptation

Total Page:16

File Type:pdf, Size:1020Kb

Pollination Drop Proteome and Reproductive Organ Transcriptome Comparison in Gnetum Reveals Entomophilous Adaptation G C A T T A C G G C A T genes Article Pollination Drop Proteome and Reproductive Organ Transcriptome Comparison in Gnetum Reveals Entomophilous Adaptation Chen Hou 1 , Richard M. K. Saunders 2 , Nan Deng 3,4 , Tao Wan 5,6 and Yingjuan Su 1,* 1 School of Life Sciences, Sun Yat-Sen University, Xingangxi Road No. 135, Guangzhou 510275, China; [email protected] 2 Division of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China; [email protected] 3 Institute of Ecology, Hunan Academy of Forestry, Shaoshannan Road, No. 6581, Changsha 410004, China; [email protected] 4 Hunan Cili Forest Ecosystem State Research Station, Cili 427200, China 5 Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Science, Liantangxianhu Road, No. 160, Shenzhen 518004, China; [email protected] 6 Sino-Africa Joint Research Centre, Chinese Academy of Science, Moshan, Wuhan 430074, China * Correspondence: [email protected] Received: 30 August 2019; Accepted: 11 October 2019; Published: 12 October 2019 Abstract: Gnetum possesses morphologically bisexual but functionally unisexual reproductive structures that exude sugary pollination drops to attract insects. Previous studies have revealed that the arborescent species (G. gnemon L.) and the lianoid species (G. luofuense C.Y.Cheng) possess different pollination syndromes. This study compared the proteome in the pollination drops of these two species using label-free quantitative techniques. The transcriptomes of fertile reproductive units (FRUs) and sterile reproductive units (SRUs) for each species were furthermore compared using Illumina Hiseq sequencing, and integrated proteomic and transcriptomic analyses were subsequently performed. Our results show that the differentially expressed proteins between FRUs and SRUs were involved in carbohydrate metabolism, the biosynthesis of amino acids and ovule defense. In addition, the differentially expressed genes between the FRUs and SRUs (e.g., MADS-box genes) were engaged in reproductive development and the formation of pollination drops. The integrated protein-transcript analyses revealed that FRUs and their exudates were relatively conservative while the SRUs and their exudates were more diverse, probably functioning as pollinator attractants. The evolution of reproductive organs appears to be synchronized with changes in the pollination drop proteome of Gnetum, suggesting that insect-pollinated adaptations are not restricted to angiosperms but also occur in gymnosperms. Keywords: insect pollination; label-free quantitative sequencing; pollination drops; proteome; transcriptome; Gnetales 1. Introduction Animal pollination (and entomophily in particular) has a profound impact on species diversity and the geographical distribution of extant seed plants [1–3]. In marked contrast to angiosperms, however, entomophily has rarely been reported in gymnosperms, and is restricted to cycads [4–6] and Gnetales [7,8]. The reports of insect pollination in Gnetales (comprising three genera, Ephedra L., Welwitschia Hook.f. and Gnetum L.) include E. foeminea Forssk. [9–11], W. mirabilis Hook.f. [12] and several Gnetum species [13–17] (Figure1). In contrast, the majority of Ephedra species are wind Genes 2019, 10, 800; doi:10.3390/genes10100800 www.mdpi.com/journal/genes Genes 2019, 10, 800 2 of 21 Genes 2019, 10, x FOR PEER REVIEW 2 of 22 pollinated [9,10,18] and African Gnetum species are likely to be predominantly anemophilous [19,20] or withwith windwind pollination pollination as as a supplementa supplement to entomophilyto entomophily (e.g., (e.g.,G. parvifolium G. parvifolium(Warb.)(Warb.)W.C.Cheng W.C.Cheng [21]). Insect[21]). Insect pollination pollination has been has inferred been inferred to be the to plesiomorphic be the plesiomorphic condition condition within the within Gnetales, thewith Gnetales, wind pollinationwith wind pollination derived [9, 11derived,19]. [9,11,19]. Figure 1.1.ReproductiveReproductive evolution evolution and and morphology morphology of of GnetumGnetum..( (AA)) A A schematic schematic phylogeny illustrating the pollinationpollination biology biology and and inferred inferred reproductive reproductive evolution evolution of the Gnetalesof the Gnetales (modified (modified from Jörgensen from andJörgensen Rydin, and 2015). Rydin, Yellow 2015) arrows. Yellow denote arrows the denote phylogenetic the phylogenetic placement placement of the two of theGnetum two Gnetumspecies investigatedspecies investigated in the present in the present study. ( Bstudy–E) Reproductive. (B–E) Reproductive structures structures and pollination and pollination drops of dropsG. gnemon of G. andgnemonG. luofuenseand G. luofuense.(B) A female. (B) A strobilusfemale strobilus of G. gnemon of G. .(gnemonC) A. male (C) A strobilus male strobilus of G. gnemon of G. gnemonwith sterile with reproductivesterile reproductive units (SRUs) units (SRUs producing) producing pollination pollination drops. drops. (D) A ( femaleD) A female strobilus strobilus of G. luofuenseof G. luofuensewith awith moth a moth sucking sucking pollination pollination drops drops from from a fertile a fertile reproductive reproductive units units (FRU). (FRU) (.E (E)) A A male male strobilusstrobilus of G. luofuense with SRUs producing pollinationpollination drops.drops. Photographs by C. Hou. Pollination drops are essential in gymnosperm reproduction, providing a site for pollen attachment and a medium for germination [[2222–26].]. Gymnosperm pollination drops are composed of carbohydrates, minerals,minerals, lipids, lipids, amino amino acids acids and and proteins proteins [25 –[2528].–28 Among]. Among these these chemicals, chemicals, sugars sugars such assuch sucrose as sucrose are the are main the rewardmain reward for insect forpollinators, insect pollinators, and are and therefore are therefore comparable comparable to floral nectarto floral in angiospermsnectar in angiosperms [25–27,29]. [25 The–27,29 proteins]. The in p theroteins pollination in the dropspollination of gymnosperms drops of gymnosperms are furthermore are involvedfurthermore in involved varied physiological in varied physiological and ecological and ecological processes, processes, such as pollensuch as tube pollen growth tube growth [30,31], carbohydrate[30,31], carbohydrate metabolism metabolism [30] and [30] ovule and protection ovule protection against against fungi and fungi pathogens and pathogens [31–33]. [3 These1–33]. proteins,These prot foundeins, infound the apoplast,in the apoplast, are secreted are secreted by the nucellusby the nucellus and are referredand are referred to as secretome to as secretome proteins. Inproteins. contrast, In thecontrast, proteins the that proteins are not detectedthat are innot the detected apoplast in are the derived apoplast from are the derived breakdown from of the nucellusbreakdown during of the the nucellus formation during of a the pollen formation chamber, of anda pollen are known chamber, as degradomeand are known proteins as degradome [28,34,35]. Degradomeproteins [28,34,35] proteins. D inegradome the pollination proteins drops in of the gymnosperms pollination are drops probably of gymnosperms associated with are degenerated probably megasporesassociated with [36] anddegenerated the nucellus megaspores degeneration [36] mediated and the by programmednucellus degeneration cell death (PCD)mediated [37]. Forby anprogrammed example, acid cell phosphatase death (PCD) activity [37]. For was an found example, in the nucellusacid phosphat of the femalease activity reproductive was found units in of the an Ephedranucellusspecies of the [female38], and reproductive degradome units proteins of an have Ephedra been shownspecies to[38] be, moreand degradome abundant than proteins secretome have proteinsbeen shown in the to pollination be more dropsabundant of several than Ephedrasecretomespecies proteins [34]. in the pollination drops of several Ephedra species [34]. Pollination drops in the Gnetales have a typical function, with fertile reproductive units (FRUs) and sterile reproductive units (SRUs) producing sugar-rich drops as a reward for insect pollinators [7–9,11,19]. A recent study [35] has shown that protein numbers in the pollination drops of FRUs Genes 2019, 10, 800 3 of 21 Pollination drops in the Gnetales have a typical function, with fertile reproductive units (FRUs) and sterile reproductive units (SRUs) producing sugar-rich drops as a reward for insect pollinators [7–9,11,19]. A recent study [35] has shown that protein numbers in the pollination drops of FRUs (henceforth female drops) in G. gnemon L. and W. mirabilis (17 and one, respectively) are considerably fewer than in those of SRUs (male drops, 25 and 138 in the two species, respectively). The reasons why the protein numbers in female and male drops differ so markedly and their association with insect pollination have yet to be convincingly explained. This might be associated with the fact that the total sugar concentration (TSC) in the male drops of G. gnemon was significantly lower than the female drops, although the relative proportion of different sugar types was identical between the female and male drops [27]. In addition, many degradome proteins were reported in the female drops of seven Ephedra species, as well as male drops of G. gnemon and W. mirabilis [34,35]. The degradome proteins are the consequence of cell apoptosis during the formation of the pollen chamber, as reported in
Recommended publications
  • Gymnosperms the MESOZOIC: ERA of GYMNOSPERM DOMINANCE
    Chapter 24 Gymnosperms THE MESOZOIC: ERA OF GYMNOSPERM DOMINANCE THE VASCULAR SYSTEM OF GYMNOSPERMS CYCADS GINKGO CONIFERS Pinaceae Include the Pines, Firs, and Spruces Cupressaceae Include the Junipers, Cypresses, and Redwoods Taxaceae Include the Yews, but Plum Yews Belong to Cephalotaxaceae Podocarpaceae and Araucariaceae Are Largely Southern Hemisphere Conifers THE LIFE CYCLE OF PINUS, A REPRESENTATIVE GYMNOSPERM Pollen and Ovules Are Produced in Different Kinds of Structures Pollination Replaces the Need for Free Water Fertilization Leads to Seed Formation GNETOPHYTES GYMNOSPERMS: SEEDS, POLLEN, AND WOOD THE ECOLOGICAL AND ECONOMIC IMPORTANCE OF GYMNOSPERMS The Origin of Seeds, Pollen, and Wood Seeds and Pollen Are Key Reproductive SUMMARY Innovations for Life on Land Seed Plants Have Distinctive Vegetative PLANTS, PEOPLE, AND THE Features ENVIRONMENT: The California Coast Relationships among Gymnosperms Redwood Forest 1 KEY CONCEPTS 1. The evolution of seeds, pollen, and wood freed plants from the need for water during reproduction, allowed for more effective dispersal of sperm, increased parental investment in the next generation and allowed for greater size and strength. 2. Seed plants originated in the Devonian period from a group called the progymnosperms, which possessed wood and heterospory, but reproduced by releasing spores. Currently, five lineages of seed plants survive--the flowering plants plus four groups of gymnosperms: cycads, Ginkgo, conifers, and gnetophytes. Conifers are the best known and most economically important group, including pines, firs, spruces, hemlocks, redwoods, cedars, cypress, yews, and several Southern Hemisphere genera. 3. The pine life cycle is heterosporous. Pollen strobili are small and seasonal. Each sporophyll has two microsporangia, in which microspores are formed and divide into immature male gametophytes while still retained in the microsporangia.
    [Show full text]
  • Cephalotaxus
    Reprinted from the Winter 1970 issue of t'he THE AMERICA HORTICULTURAL \t{AGAZIl\'E Copyright 1970 by The American Horticultural Society, Inc. Cephalotaxus­ Source of Harringtonine, A Promising New Anti..Cancer Alkaloid ROBERT E. PERDUE, JR.,l LLOYD A. SPETZMAN,l and RICHARD G. POWELL2 The plumyews (Cephalotaxus) are yew-like evergreen trees and shrubs. The genus includes seven species native to southeastern Asia from Japan and Korea to Taiwan and Hainan, and west through China to northeastern India. Two species are in cultivation in the United States, C. harringtoniaJ (Fig. 1 & 2) of which there are several varieties (one often listed as C. drupacea) , and C. fortunii (Fig. 3). The cultivars are shrubs up to about 20 feet in height; most have broad crowns. The linear and pointed leaves are spirally arranged or in two opposite ranks. The upper sur­ Fig. 1. Japanese plumyew (Cephalo­ face is dark shiny green with a conspicu­ taxus harringtonia var. drupacea), an ous mid-rib; the lower surface has a evergreen shrub about 6 ft. high, at broad silvery band on either side of the the USDA Plant Introduction Station, mid-rib. These bands are made up of Glenn Dale, Maryland. This photo­ conspicuous white stomata arranged in graph was made in 1955. The plant is numerous distinct lines. Leaf length is now about 7 ft. high, but the lower variable, from about one inch in varie­ branches have been severely pruned ties of C. harringtonia to three or four to provide material for chemical re­ inches in C. fortunii. The leaves are search.
    [Show full text]
  • Palaeo Leaf Economics Reveal a Shift in Ecosystem Function Associated with the End-Triassic Mass Extinction Event
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/318473239 Palaeo leaf economics reveal a shift in ecosystem function associated with the end-Triassic mass extinction event Article in Nature Plants · July 2017 DOI: 10.1038/nplants.2017.104 CITATIONS READS 7 428 7 authors, including: Wuu Kuang Soh Karen Bacon University College Dublin University of Leeds 14 PUBLICATIONS 79 CITATIONS 15 PUBLICATIONS 167 CITATIONS SEE PROFILE SEE PROFILE Margret Steinthorsdottir Andrew C Parnell Swedish Museum of Natural History Maynooth University 30 PUBLICATIONS 408 CITATIONS 103 PUBLICATIONS 5,129 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Mid-Cretaceous south polar forests View project Response of pan-Arctic permafrost peatlands to rapid climate warming View project All content following this page was uploaded by Wuu Kuang Soh on 24 March 2019. The user has requested enhancement of the downloaded file. ARTICLES PUBLISHED: XX XX 2017 | VOLUME: 3 | ARTICLE NUMBER: 17104 Palaeo leaf economics reveal a shift in ecosystem function associated with the end-Triassic mass extinction event W. K. Soh1*,I.J.Wright2,K.L.Bacon3, T. I. Lenz2, M. Steinthorsdottir4,5,A.C.Parnell6 and J. C. McElwain1 Climate change is likely to have altered the ecological functioning of past ecosystems, and is likely to alter functioning in the future; however, the magnitude and direction of such changes are difficult to predict. Here we use a deep-time case study to evaluate the impact of a well-constrained CO2-induced global warming event on the ecological functioning of dominant plant communities.
    [Show full text]
  • Torreya Taxifolia
    photograph © Abraham Rammeloo Torreya taxifolia produces seeds in 40 Kalmthout Arboretum ABRAHAM RAMMELOO, Curator of the Kalmthout Arboretum, writes about this rare conifer that recently produced seed for the first time. Torreya is a genus of conifers that comprises four to six species that are native to North America and Asia. It is closely related to Taxus and Cephalotaxus and is easily confused with the latter. However, it is relatively easy to distinguish them apart by their leaves. Torreya has needles with, on the underside, two small edges with stomas giving it a green appearance; Cephalotaxus has different rows of stomas, and for this reason the underside is more of a white colour. It is very rare to find Torreya taxifolia in the wild; it is native to a small area in Florida and Georgia. It grows in steep limestone cliffs along the Apalachicola River. These trees come from a warm and humid climate where the temperature in winter occasionally falls below freezing. They grow mainly on north-facing slopes between Fagus grandifolia, Liriodendron tulipifera, Acer barbatum, Liquidambar styraciflua and Quercus alba. They can grow up to 15 to 20 m high. The needles are sharp and pointed and grow in a whorled pattern along the branches. They are 25 to 35 mm long and stay on the tree for three to four years. If you crush them, they give off a strong, sharp odour. The health and reproduction of the adult population of this species suffered INTERNATIONAL DENDROLOGY SOCIETY TREES Opposite Torreya taxifolia ‘Argentea’ growing at Kalmthout Arboretum in Belgium.
    [Show full text]
  • Long-Term Growth Patterns of Welwitschia Mirabilis, a Long-Lived Plant of the Namib Desert (Including a Bibliography)
    Plant Ecology 150: 7–26, 2000. 7 © 2000 Kluwer Academic Publishers. Printed in the Netherlands. Long-term growth patterns of Welwitschia mirabilis, a long-lived plant of the Namib Desert (including a bibliography) Joh R. Henschel & Mary K. Seely Desert Ecological Research Unit, Desert Research Foundation of Namibia, Gobabeb Training and Research Centre, P.O. Box 953, Walvis Bay, Namibia (E-mail: [email protected]) Key words: Episodic events, Long-term ecological research, Namibia, Population dynamics, Seasonality, Sex ratio Abstract Over the past 14 years, long-term ecological research (LTER) was conducted on the desert perennial, Welwitschia mirabilis (Gnetales: Welwitschiaceae), located in the Welwitschia Wash near Gobabeb in the Central Namib Desert. We measured leaf growth of 21 plants on a monthly basis and compared this with climatic data. The population structure as well as its spatial distribution was determined for 110 individuals. Growth rate was 0.37 mm day−1, but varied 22-fold within individuals, fluctuating seasonally and varying between years. Seasonal patterns were correlated with air humidity, while annual differences were affected by rainfall. During three years, growth rate quadrupled following episodic rainfall events >11 mm during mid-summer. One natural recruitment event followed a 13-mm rainfall at the end of summer. Fog did not appear to influence growth patterns and germination. Plant loca- tion affected growth rate; plants growing on the low banks, or ledges, of the main drainage channel grew at a higher rate, responded better and longer to rainfall and had relatively larger leaves than plants in the main channel or its tributaries.
    [Show full text]
  • Plant Classification
    Plant Classification Vascular plants are a group that has a system Non-Vascular plants are low growing plants of tubes (roots, stems and leaves) to help that get materials directly from their them transport materials throughout the surroundings. They have small root-like plant. Tubes called xylem move water from structures called rhizoids which help them the roots to the stems and leaves. Tubes adhere to their substrate. They undergo called phloem move food from the leaves asexual reproduction through vegetative (where sugar is made during propagation and sexual reproduction using photosynthesis) to the rest of the plant’s spores. Examples include bryophytes like cells. Vascular plants reproduce asexually hornworts, liverworts, and mosses. through spores and vegetative propagation (small part of the plant breaks off and forms a new plant) and sexually through pollen (sperm) and ovules (eggs). A gymnosperm is a vascular plant whose An angiosperm is a vascular plant whose seeds are not enclosed in an ovule or fruit. mature seeds are enclosed in a fruit or The name means “naked seed” and the ovule. They are flowering plants that group typically refers to conifers that bear reproduce using seeds and are either male and female cones, have needle-like “perfect” and contain both male and female leaves and are evergreen (leaves stay green reproductive structures or “imperfect” and year round and do not drop their leaves contain only male or female structures. during the fall and winter. Examples include Angiosperm trees are also called hardwoods pine trees, ginkgos and cycads. and they have broad leaves that change color and drop during the fall and winter.
    [Show full text]
  • B.Sc Botany (Sub.) I Group: a General Characters of Gymnosperm
    1 B.Sc Botany (Sub.) I Group: A General Characters of Gymnosperm Gymnosperms are a small group of plants comprising only 70 genera and 725 living species. The word Gymnosperm was used by the Greek botanists Theophrastus in 300 B.C. for the plants with unprotected seeds. Gymnosperms are naked seeded plants. The gymnosperms are characterized by the following features: i. It shows the distinct alternation of generations. ii. Sporophytic generation is the dormant phase of the life cycle. The main plants are sporophyte and the gametophytes are dependent on it throughout. iii. The sporophytic plants are usually tall, woody, perennial trees or shrubs and differentiated into root, stem and leaves. iv. Root- Root is usually well developed tap root system. The stele in root is diarch or polyarch. v. Stem- stems are usually branched but unbranched in Cycas. vi. The leaves may be compound as in Cycas or simple as in Pinus. Internal structure: i. The vascular bundles in stem are arranged in a ring. The bundles are conjoint, collateral and open. ii. The secondary growth is effected by a cambial layer which produces secondary xylem and secondary phloem on the inner and outer side respectively. iii. The secondary wood forming distinct annual ring. Spring wood: It is made up of layer tracheids with the walls and layer lumen. Autumn wood: It is made up of compactly arranged smaller tracheids with thick walls and smaller lumen. iv. The wood may be manoxylic or pycnoxylic and may be monoxylic or polyxylic. Dr. Sanjeev Kumar Vidyarthi, dept. of Botany, Dr. L.K.V.D.
    [Show full text]
  • Characterization of 15 Polymorphic Microsatellite Loci for Cephalotaxus Oliveri (Cephalotaxaceae), a Conifer of Medicinal Importance
    Int. J. Mol. Sci. 2012, 13, 11165-11172; doi:10.3390/ijms130911165 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Short Note Characterization of 15 Polymorphic Microsatellite Loci for Cephalotaxus oliveri (Cephalotaxaceae), a Conifer of Medicinal Importance Yingchun Miao 1,2, Xuedong Lang 2, Shuaifeng Li 2, Jianrong Su 2,* and Yuehua Wang 1,* 1 Department of Botany, School of Life Sciences, Yunnan University, Kunming 650091, China; E-Mail: [email protected] 2 Research Institute of Resource Insects, Chinese Academy of Forest (CAF), Kunming 650224, China; E-Mails: [email protected] (X.L.); [email protected] (S.L.) * Authors to whom correspondence should be addressed; E-Mails: [email protected] (J.S.); [email protected] (Y.W.); Tel.: +86-871-3860017; Fax: +86-871-3860017. Received: 7 August 2012; in revised form: 28 August 2012 / Accepted: 2 September 2012 / Published: 7 September 2012 Abstract: Cephalotaxus oliveri is a scarce medicinal conifer endemic to the south central region of China and Vietnam. A small fragmented population presently exists due to anthropogenic disturbance. C. oliveri has been used for its alkaloids harringtonine and homoharringtonine, which are effective against leucocythemia and lymphadenosarcoma. Monoecious plants have been detected in nature, although they were understood to be dioecious. In order to study the mating system, population genetics and the genetic effects of habitat fragmentation on C. oliveri, 15 polymorphic and 12 monomorphic microsatellite loci were developed for C. oliveri by using the Fast Isolation by AFLP of Sequences Containing repeats (FIASCO) protocol. The polymorphisms were assessed in 96 individuals from three natural populations (32 individuals per population).
    [Show full text]
  • Assessment of Nutritional Composition of Wild Vegetables Consumed by the People of Lebialem Highlands, South Western Cameroon
    Food and Nutrition Sciences, 2017, 8, 647-657 http://www.scirp.org/journal/fns ISSN Online: 2157-9458 ISSN Print: 2157-944X Assessment of Nutritional Composition of Wild Vegetables Consumed by the People of Lebialem Highlands, South Western Cameroon Afui Mathias Mih*, Abwe Mercy Ngone, Lawrence Monah Ndam Department of Botany and Plant Physiology, University of Buea, Buea, Cameroon How to cite this paper: Mih, A.M., Ngone, Abstract A.M. and Ndam, L.M. (2017) Assessment of Nutritional Composition of Wild Vege- Wild vegetables contribute immensely to the culinary basket and livelihoods tables Consumed by the People of Lebialem of rural communities in sub-Saharan Africa, especially among the people of Highlands, South Western Cameroon. Food Lebialem highlands of south western Cameroon where at least 26 such species and Nutrition Sciences, 8, 647-657. are consumed as vegetables. To promote the consumption of these vegetables, https://doi.org/10.4236/fns.2017.86046 the nutritional quality of five preferred species in this area, Amaranthus du- Received: May 19, 2017 bius Mart. Ex Thell., Gnetum africanum Welw., Lomariopsis guineensis (Un- Accepted: June 25, 2017 erw.) Alston, Pennisetum purpureum Schumach and Vernonia amygdalina Published: June 28, 2017 Del., was assessed using standard methods. L. guineensis had the highest car- Copyright © 2017 by authors and bohydrate, protein, calorific value and ash content, and the lowest fat content Scientific Research Publishing Inc. of 4.05%, very rich in K, Ca and Mg and the amino acids leucine, arginine, ly- This work is licensed under the Creative sine, phenylalanine and histidine. The amino acid content was generally Commons Attribution International higher than 25 mg/100g.
    [Show full text]
  • Effect of Ethanol Leaf Extract of Gnetum Africanum on Testosterone and Oestradiol Induced Benign Prostatic Hyperplasia
    Vol. 14(7), pp. 309-316, July, 2020 DOI: 10.5897/JMPR2019.6901 Article Number: 3BA1CF663831 ISSN 1996-0875 Copyright © 2020 Author(s) retain the copyright of this article Journal of Medicinal Plants Research http://www.academicjournals.org/JMPR Full Length Research Paper Effect of ethanol leaf extract of Gnetum africanum on testosterone and oestradiol induced benign prostatic hyperplasia EBENYI Lilian N.1*, YONGABI Kenneth A.1,2, ALI Fredrick U.1, OMINYI Mathias C1, ANYANWU Blessing1 and OGBANSHI Moses E.3 1Department of Biotechnology, Faculty of Science, Ebonyi State University, P. M. B. 043, Abakaliki, Ebonyi State, Nigeria. 2Department of Public Health, Faculty of Health Sciences, Imo State University, Owerri, Imo State, Nigeria. 3Department of Biochemistry, Faculty of Science, Ebonyi State University, Abakaliki, Ebonyi State, Nigeria. Received 28 December, 2019; Accepted 14 April, 2020 The effect of ethanol leaf extract of Gnetum africanum was studied in albino rats induced with benign prostatic hyperplasia. The animals (36) were randomly grouped into six with six rats in each group. Testosterone and oestradiol every other day for 28 days was used to induce hyperplasia. The test groups (2 - 4) were treated with 200, 400 and 800 mg/kg body weight of extract for another 28 days. Group 5 was given the standard drug while group 6 served as negative control. At the end of the treatment period, the rats were sacrificed under anesthesia and blood samples collected for biochemical analysis. The results showed that in the animals exposed to the inducing agents increased significantly (p <0.05) in activity of MDA, ACP and PSA levels whereas there was a significant (p >0.05) decrease in the activities of GR, CAT and SOD as compared with the normal control.
    [Show full text]
  • The Gnetales: Past and Present
    Grana ISSN: 0017-3134 (Print) 1651-2049 (Online) Journal homepage: http://www.tandfonline.com/loi/sgra20 The Gnetales: past and present Catarina Rydin & Carina Hoorn To cite this article: Catarina Rydin & Carina Hoorn (2016) The Gnetales: past and present, Grana, 55:1, 1-4, DOI: 10.1080/00173134.2015.1118530 To link to this article: http://dx.doi.org/10.1080/00173134.2015.1118530 Published online: 25 Jan 2016. Submit your article to this journal Article views: 185 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=sgra20 Download by: [Stockholm University Library] Date: 18 May 2017, At: 03:42 Grana, 2016 Vol. 55, No. 1, 1–4, http://dx.doi.org/10.1080/00173134.2015.1118530 The Gnetales: past and present CATARINA RYDIN 1 & CARINA HOORN2 1Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden, 2Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands Abstract The present issue of GRANA is devoted to pollen morphology and diversity of the Gnetales in time and space. Three papers address fossil pollen and two papers concern pollen of the extant genus Ephedra. Together, the papers of the issue contribute new information relevant for the understanding of the fossil and evolutionary history of the Gnetales, pollination biology in the group and implications for ephedroid pollen as indicators of palaeoclimate. Keywords: Ephedra, Ephedripites, Gnetaceaepollenites, palaeoclimate, pollen, pollination Scientific progress is motivated by knowledge gaps; or et al. 2013, 2014), albeit almost exclusively from a as the physicist Paul Dirac put it: ‘In science one tries relatively short time period in the mid Early Cretac- to tell people, in such a way as to be understood by eous.
    [Show full text]
  • A Global Analysis of the Distribution and Conservation Status Of
    Journal of Biogeography (J. Biogeogr.) (2015) 42, 809–820 SYNTHESIS Fighting their last stand? A global analysis of the distribution and conservation status of gymnosperms Yann Fragniere1,Sebastien Betrisey2,3,Leonard Cardinaux1, Markus Stoffel4,5 and Gregor Kozlowski1,2* 1Natural History Museum Fribourg, CH-1700 ABSTRACT Fribourg, Switzerland, 2Department of Biology Aim Gymnosperms are often described as a marginal and threatened group, and Botanic Garden, University of Fribourg, members of which tend to be out-competed by angiosperms and which therefore CH-1700 Fribourg, Switzerland, 3Conservation Biogeography, Department of preferentially persist at higher latitudes and elevations. The aim of our synthesis Geosciences, University of Fribourg, CH-1700 was to test these statements by investigating the global latitudinal and elevational Fribourg, Switzerland, 4Dendrolab.ch, distribution of gymnosperms, as well as their conservation status, using all extant Institute of Geological Sciences, University of gymnosperm groups (cycads, gnetophytes, ginkgophytes and conifers). 5 Bern, CH-3012 Bern, Switzerland, Institute Location Worldwide. for Environmental Sciences, Climatic Change and Climate Impacts, University of Geneva, Methods We developed a database of 1014 species of gymnosperms containing CH-1227 Carouge, Switzerland latitudinal and elevational distribution data, as well as their global conservation status, as described in the literature. The 1014 species comprised 305 cycads, 101 gnetophytes, the only living representative of ginkgophytes, and 607 conifers. Generalized additive models, frequency histograms, kernel density estimations and distribution maps based on Takhtajan’s floristic regions were used. Results Although the diversity of gymnosperms decreases at equatorial lati- tudes, approximately 50% of the extant species occur primarily between the tropics. More than 43% of gymnosperms can occur at very low elevations (≤ 200 m a.s.l.).
    [Show full text]