The University of Arizona Astronomy & Astrophysics

Total Page:16

File Type:pdf, Size:1020Kb

The University of Arizona Astronomy & Astrophysics THE UNIVERSITY OF ARIZONA ASTRONOMY & ASTROPHYSICS PHD PROGRAM Department of Astronomy & Steward Observatory www.as.arizona.edu Inside Welcome from Graduate Admissions Chair 3 How to Select a Graduate Program 5 Join Our PhD Program and Launch a Career in Astronomy 6 An Inspiring Community Working on the Biggest Problems 7 A Research-focused Program 8 An Unrivaled Suite of Ground-based Telescopes 9 A Cutting-Edge Instrumentation Program 10 Theoretical Astrophysics and Supercomputers 11 Exploring Galaxy and AGN Formation and Evolution 12 Stars and Stellar Evolution 13 Star Formation, Astrochemistry, and ISM 13 An Active Exoplanets and Astrobiology Community 14 Financial Support, Startup Funds, and Living in Tucson 15 How Can You Apply? 16 International Applicants 17 Additional Information 18 2 The University of Arizona - Astronomy and Astrophysics Graduate Program From the Graduate Admission Committee Chair Dear Applicant, Thank you for your interest in the Graduate Program in Astronomy and Astrophysics at The University of Arizona. We are very proud of our graduate students and our Ph.D. program, one of the highest ranked programs in the country, according to the 2011 National Research Council assessment. The atmosphere of the Department is informal and friendly, yet extremely active. Our large and diverse group of faculty, astronomers, postdocs, and graduate students pursue cutting edge research in theory, observation, and Dr. Daniel Apai instrumentation. Our research spans the formation of stars and planets, to galaxy formation and the evolution of the Universe on the largest scales. As a Ph.D. candidate in our The new University-wide Research Data Center provides department you will be trained in astronomical research at our students access to high-end, local supercomputing the highest level. You will depart from our department with resources (275 TFLOPS) including distributed, shared- the skills of a world-class scientist, prepared to be a leader memory, and GPU architectures. Our Department is also in our field. the lead institution in NASA’s Nexus for Exoplanet System The department is led by a large and accomplished faculty. Studies (NExSS) and home to an interdisciplinary team of We have four members of the National Academy of Sciences 25 faculty and 13 students and postdocs studying habitable (Angel, Arnett, G. Rieke, M. Rieke), two MacArthur Fellows exoplanet formation. (“Genius Grants”), including a 2012 winner (Guyon), and Our Center for Astronomy Education is among the multiple winners of Kavli, Sloan, Packard, and Guggenheim nation’s leading science education research groups. At our fellowships. Several of our faculty have received the highest department you will also have the opportunity to minor prizes awarded by the American Astronomical Society and in Astrobiology, Physics, Planetary Sciences, or Optical American Physical Society, including a 2013 winner of the Sciences to better prepare for the challenges that motivate APS Maria Goeppert Mayer Award (Ozel). They are leaders you the most. in international collaborations and instruments, including two instruments for the James Webb Space Telescope. You will have direct access to world-class facilities for ground- based optical, infrared, and submillimeter observational The Astronomy department is a member of the astronomy, and an opportunity to be involved in major space interdisciplinary Theoretical Astrophysics Program, which astronomy and astrochemistry projects. Current facilities involves the Physics, Astronomy, Planetary Sciences, and include the 2x8.4m Large Binocular Telescope, the 6.5m Applied Mathematics departments, as well as the National MMT, the twin 6.5m Magellan telescopes, the 10m Heinrich- Optical Astronomy Observatory, and includes more than Hertz Submillimeter Telescope, the Kitt Peak 12m mm-wave 20 faculty members. Astronomy Department students Telescope, the 2.3m Bok and 1.5m Kuiper telescopes, and do pioneering work on simulations and theory, including the 1.8m Vatican Advanced Technology Telescope. the astrophysics of stars, supernovae, nucleosynthesis, gravitational collapse, and large-scale structure formation. www.as.arizona.edu 3 From the Graduate Admission Committee Chair Steward Observatory is also a leading partner in the of the UA Department of Astronomy. development of the 24.5m Giant Magellan Telescope in Chile, The department is committed to developing excellent and of the VLBI with the Event Horizon Telescope. Survey professional scientists through its Ph.D. program. We welcome science is facilitated by full membership in the SDSS-III and applications from undergraduates in astronomy and related LSST consortia. These activities are complemented by world- sciences, including physics, mathematics, engineering, class programs in instrumentation, including the Center for chemistry, and biology, who are can take advantage of this Astronomical Adaptive Optics, construction of NIRCam for JWST, unique environment. I encourage you to review our website as well as optics and instrumentation for all of our observing for further information. Applications are accepted online, facilities including the future Giant Magellan Telescope. please see the application procedures outlined at the end In our program you will enjoy an academic environment with of this booklet. Applications received by December 15, 2015 a rich history in astronomy and international prestige. Our (December 1, 2015 for international students) will be given graduate program was established in 1927 and in the past full consideration. Please feel free to contact me if I can be of nine decades about 250 astronomers earned their PhD at The assistance. University of Arizona, making our program one of the largest in the country. Our graduates have been extremely successful: We rank among the top institutions in winning prestigious Sincerely yours, Hubble Fellowships upon graduation, including five winners in the last 5 years and 17 over the life of the program. Many of our Dr. Daniel Apai graduates have gone on to prestigious professorships or similar positions of leadership within the astronomy community. A few notable examples include Hans-Walter Rix, Director of the Max-Planck-Institute for Astronomy in Germany, Pete Worden, NASA Ames Center Director, and Buell Jannuzi, former director of Kitt Peak and now Director of Steward Observatory and chair “Our goal is to find the brightest students who will flourish in our program and give them all the resources and support they need to fully realize their potential and grow into successful independent researchers, the leaders of the next generation.” 4 The University of Arizona - Astronomy and Astrophysics Graduate Program “As a graduate student at Steward, I not only had access to some of the biggest telescopes in the world for my research, but also a community of astronomers who still have the same enthusiasm about understanding the universe as when they were kids; my curiosity was constantly fed!” Johanna Teske, 2014 PhD, now Carnegie Origins Postdoctoral Fellow You are about to make an important decision. While The University of Arizona provides great opportunities in astronomy, your job is to find the school where you will flourish and do the kind of science that will open opportunities for you. How to Select a Graduate Program Here are four suggestions to help you think At the same time, what is the breadth of related through the decision: activity? For example, if you are heading into observational astronomy, it might be beneficial to be No one graduate school is so much better than the at a place that builds instruments even if you do not rest that it becomes your only logical choice. All the plan to do that, as it would broaden your perspective. very top programs in the United States are excellent, If you are interested in theory, a vigorous observational and you will do well if the fit is good. A degree from program would surround you with people for whom any good program can open doors for a successful your work could provide insight and who could career in astronomy. You are selecting where you suggest ways to test your ideas. Try to avoid single are going to live, think, and play for the next 4-6 point failures; that is, be sure there are enough years. If you are unhappy, graduate school is not faculty members in your area(s) of interest that your worth the considerable effort required from you. success does not depend entirely on one of them. It is good to consider the totality of educational Think strategically and long-term: You are not only opportunities in the surrounding community, not selecting a program for the next few years, but are just the specific graduate program. Are there related choosing your next steps in becoming an independent departments at the same university? Does the researcher and setting your course in a competitive community contain major additional astronomy field. Many programs offer short-term advantages or centers that might be options for your research, as perks, such as a laptop or a named fellowship, while well as enriching the general academic environment other programs may provide access to better courses, in astronomy? How do the interests of the faculty stronger faculty, or rare resources. align with your scientific interests? What facilities are available for you to conduct your research? To what Good luck in your decision, and by all means come share of those facilities will you have access? visit us to judge how we measure up for you! How to Apply? See page 15! www.as.arizona.edu
Recommended publications
  • Adaptive Optics Imaging of Circumstellar Environments
    Star Formation at High Angular Resolution IAU Symposium, Vol. 221, 2004 M. G. Burton, R. Jayawardhana & T.L. Bourke, eds. Adaptive Optics Imaging of Circumstellar Environments Daniel Apai, Ilaria Pascucci, Hongchi Wang, Wolfgang Brandner and Thomas Henning Max Planck Institute for Astronomy, Kimiqsiuhl 17., Heidelberg, Germany D-69117 Carol Grady NOAO/STIS, Goddard Space Flight Center, Code 681, NASA/GSFC, Greenbelt, MD 20771, USA Dan Potter Steward Observatory, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721, USA Abstract. We present results from our high-resolution, high-contrast imaging campaign targeting the circumstellar environments of young, nearby stars of different masses. The observations have been conducted using the ALFA/CA 3.5m and NACO UT4/VLT adaptive optics systems. In order to enhance the contrast we applied the methods PSF-subtraction and polarimetric differential imaging (PDI). The observations of young stars yielded the identification of numerous new companion candidates, the most interesting one being rv 0.5" from FU Ori. We also obtained high-resolution near-infrared imaging of the circumstellar envelope of SU Aur and AB Aur. Our PDI of the TW Hya circumstellar disk traced back the disk emission as close as 0.1" ~ 6 AU from the star, the closest yet. Our results demonstrate the potential of the adaptive optics systems in achieving high-resolution and high-contrast imaging and thus in the study of circumstellar disks, envelopes and companions. 1. Introduction Young, nearby stars are our prime source of information to study the circum- stellar disk structure and evolution. They are also the ideal targets for adaptive optics (AO) observations, as they are usually bright enough to provide excellent wavefront reference.
    [Show full text]
  • CURRICULUM VITAE for DANIEL APAI Research Interests: Extrasolar Planets; Planet Formation; Planetary Atmospheres; Astrobiology; Space Telescope Architectures
    CURRICULUM VITAE FOR DANIEL APAI Research Interests: Extrasolar Planets; Planet formation; Planetary atmospheres; Astrobiology; Space telescope architectures Professional Appointments 2017 – Associate Professor, Depts. of Astronomy and Planetary Sciences, Univ. of Arizona 2011 – 2017 Assistant Professor, Depts. of Astronomy and Planetary Sciences, Univ. Arizona 2008 – 2011 Assistant Astronomer, Space Telescope Science Institute Education 2004 PhD, University of Heidelberg and Max Planck Institute of Astronomy 2000 MSc in Physics, University of Szeged Recent International Service: Chair, HST–TESS Advisory Committee, Space Telescope Science Institute Science Advisory Committee member, Giant Magellan Telescope Executive Committee member, NASA Exoplanet Program Analysis Group (EXOPAG) Steering Committee member, NASA Nexus for Exoplanet System Science (NExSS) Chair, Exoplanet Science Questions for Direct Imaging Missions, SAG15/EXOPAG Member, Hubble Space Telescope Financial Review Committee Major Approved Programs as Principal Investigator 9 Hubble Space Telescope + 4 Spitzer Space Telescope programs, including: - Extrasolar Storms: Spitzer Exploration Science Program (1,144 Spitzer hour, 24 HST orbits) - Cloud Atlas: Hubble Space Telescope (112 orbits), 12+ refereed papers Earths in Other Solar Systems: $5.7M program (R&A), 45-member team, 140 refereed papers Nautilus: A large-aperture space telescope for a biosignature survey based on diffractive optics, Co-PI of $1.1M Gordon & Betty Moore Foundation grant Advising/Mentoring: Postdoc. Researchers
    [Show full text]
  • Peter Plavchan
    Peter Plavchan Assistant Professor of Astronomy Associate Director, George Mason Observatory PI, EarthFinder NASA Mission Concept Study PI, Astrophysics of Exoplanets Instrumentation Lab Co-PI, MINERVA-Australis Department of Physics & Astronomy Office: (703) 903-5893 George Mason University Cell: (626) 234-1628 Planetary Hall 263 Fax: (703) 993-1269 4400 University Dr, MS 3F3 [email protected] Fairfax, VA 22030 http://exo.gmu.edu twitter:@PlavchanPeter Education University of California, Los Angeles, Los Angeles, CA 2001-2006 MS, PhD in Physics California Institute of Technology, Pasadena, CA 1996-2001 BS in Physics, with honor Awards & Honors College of Science Excellence in Mentoring award nomination 2019 College of Natural and Applied Sciences Research Award, MSU 2017 NASA Group Achievement Award 2017 Citation: For the development and tests at Mauna Kea observatories of a near-infrared Laser Frequency Comb as a wavelength standard for the detection and characterization of exoplanets. NASA Honor Achievement Award, NASA Exoplanet Archive Team 2014 Citation: For outstanding achievement in the rapid and on-budget launch of the NASA Exoplanet Archive NASA Honor Achievement Award, Spitzer Science In-Reach Team 2010 Citation: For outstanding support of Spitzer IRAC Warm Instrument Characterization and significant contributions to NASA and JPL commitments to education of the global community. UCLA Physics Division Fellowship 2001-2006 Kobe International School of Planetary Sciences Fellowship 2005 Astronomy Department Outstanding Teaching
    [Show full text]
  • Hubble Space Telescope Primer for Cycle 18
    January 2010 Hubble Space Telescope Primer for Cycle 18 An Introduction to HST for Phase I Proposers Space Telescope Science Institute 3700 San Martin Drive Baltimore, Maryland 21218 [email protected] Operated by the Association of Universities for Research in Astronomy, Inc., for the National Aeronautics and Space Administration How to Get Started If you are interested in submitting an HST proposal, then proceed as follows: • Visit the Cycle 18 Announcement Web page: http://www.stsci.edu/hst/proposing/docs/cycle18announce Then continue by following the procedure outlined in the Phase I Roadmap available at: http://apst.stsci.edu/apt/external/help/roadmap1.html More technical documentation, such as that provided in the Instrument Handbooks, can be accessed from: http://www.stsci.edu/hst/HST_overview/documents Where to Get Help • Visit STScI’s Web site at: http://www.stsci.edu • Contact the STScI Help Desk. Either send e-mail to [email protected] or call 1-800-544-8125; from outside the United States and Canada, call [1] 410-338-1082. The HST Primer for Cycle 18 was edited by Francesca R. Boffi, with the technical assistance of Susan Rose and the contributions of many others from STScI, in particular Alessandra Aloisi, Daniel Apai, Todd Boroson, Brett Blacker, Stefano Casertano, Ron Downes, Rodger Doxsey, David Golimowski, Al Holm, Helmut Jenkner, Jason Kalirai, Tony Keyes, Anton Koekemoer, Jerry Kriss, Matt Lallo, Karen Levay, John MacKenty, Jennifer Mack, Aparna Maybhate, Ed Nelan, Sami-Matias Niemi, Cheryl Pavlovsky, Karla Peterson, Larry Petro, Charles Proffitt, Neill Reid, Merle Reinhart, Ken Sembach, Paula Sessa, Nancy Silbermann, Linda Smith, Dave Soderblom, Denise Taylor, Nolan Walborn, Alan Welty, Bill Workman and Jim Younger.
    [Show full text]
  • EOS Newsletter May 2019
    PROJECT EOS May 24, 2019 EARTHS IN OTHER SOLAR SYSTEMS Recent Publications On the Mass Function, Multiplicity, and Origins of Wide-Orbit Giant Planets ………………………………. Unlocking CO Depletion in PROJECT EOS Protoplanetary Disks II. Primordial C/H Predictions Inside the CO Snowline ……………………………….. Laboratory evidence for co- condensed oxygen- and carbon-rich meteoritic is part of NASA’s Nexus for stardust from nova outbursts Earths in Other Solar Systems Exoplanetary System Science program, which carries out ……………………………….. coordinated research toward to the goal of searching for and + Line Ratios Reveal N2H determining the frequency of habitable extrasolar planets with Emission Originates above the atmospheric biosignatures in the Solar neighborhood. Midplane in TW Hydrae Our interdisciplinary EOS team includes astrophysicists, ……………………………….. planetary scientists, cosmochemists, material scientists, No Clear, Direct Evidence for chemists and physicists. Multiple Protoplanets The Principal Investigator of EOS is Daniel Apai (University of Orbiting LkCa 15: LkCa 15 Arizona). The project’s lead institutions are The University of bcd are Likely Inner Disk Arizona‘s Steward Observatory and Lunar and Planetary Signals Laboratory. ……………………………….. The EOS Institutional Consortium consists of the Steward The Exoplanet Population Observatory and the Lunar and Planetary Laboratory of the Observation Simulator. II - University of Arizona, the National Optical Astronomy Population Synthesis in the Observatory, the Department of Geophysical Sciences at the Era of Kepler University of Chicago, the Planetary Science Institute, and the Catholic University of Chile. For a complete list of publications, please visit the EOS Library on the SAO/NASA Astrophysics Data System. eos-nexus.org !1 PROJECT EOS May 24, 2019 On the Mass Function, Multiplicity, and Origins of Wide-Orbit Giant Planets Kevin Wagner, Dániel Apai, Kaitlin M.
    [Show full text]
  • EOS Newsletter MARCH 2020
    PROJECT EOS March 15, 2020 EARTHS IN OTHER SOLAR SYSTEMS Recent Publications ACCESS: A Visual toNear-infrared Spectrum of the Hot Jupiter WASP-43b with Evidence of H2O, but No Evidence of Na or K ………………………………. Identifying Exo-Earth Candidates in Direct Imaging Data through PROJECT EOS Bayesian Classification ………………………………. Nautilus: A Very Large-Aperture, Ultralight Space Telescope for Exoplanet Exploration, Time- domain Astrophysics, and Faint Objects ………………………………. EPOS: Exoplanet Population Earths in Other Solar Systems is part of NASA’s Nexus for Observation Simulator Exoplanetary System Science program, which carries out ……………………………….. coordinated research toward to the goal of searching for and ACCESS: the Arizona-CfA- determining the frequency of habitable extrasolar planets with Catolica-Carnegie Exoplanet atmospheric biosignatures in the Solar neighborhood. Spectroscopy Survey Our interdisciplinary EOS team includes astrophysicists, ……………………………….. Exoplanet Population Synthesis in planetary scientists, cosmochemists, material scientists, the Era of Large Exoplanets chemists and physicists. Surveys The Principal Investigator of EOS is Daniel Apai (University of ……………………………….. Arizona). The project’s lead institutions are The University of The Sun-like Stars Opportunity ……………………………….. Arizona‘s Steward Observatory and Lunar and Planetary Life Beyond the Solar System: Laboratory. Remotely Detectable The EOS Institutional Consortium consists of the Steward Biosignatures Observatory and the Lunar and Planetary Laboratory of the ……………………………….. Planet formation and migration University of Arizona, the National Optical Astronomy near the silicate sublimation front Observatory, the Department of Geophysical Sciences at the in protoplanetary disks University of Chicago, the Planetary Science Institute, and the ……………………………….. Catholic University of Chile. Search for L5 Earth Trojans with For a complete list of publications, please visit the DECam EOS Library on the SAO/NASA Astrophysics Data System.
    [Show full text]
  • A New Lens for Life-Searching Space Telescopes 5 August 2019
    A new lens for life-searching space telescopes 5 August 2019 Apai leads the space science half of the team, while UA professor Tom Milster, of the James C. Wyant College of Optical Sciences, leads the optical design of a replicable space telescope dubbed Nautilus. The researchers intend to deploy a fleet of 35 14-meter-wide spherical telescopes, each individually more powerful than the Hubble Space Telescope. Each unit will contain a meticulously crafted 8.5-meter diameter lens, which will be used for astronomical observations. One use particularly exciting for Apai is analyzing starlight as it filters University of Arizona researchers have designed a fleet through planetary atmospheres, a technique which of 35 powerful space telescopes that will search for the could reveal chemical signatures of life. chemical signatures of life on other worlds. Credit: Nautilus team When combined, the telescope array will be powerful enough to characterize 1,000 extrasolar planets from as far away as 1,000 light years. Even The University of Arizona Richard F. Caris Mirror NASA's most ambitious space telescope missions Laboratory is a world leader in the production of are designed to study a handful of potentially Earth- the world's largest telescope mirrors. In fact, it is like extrasolar planets. currently fabricating mirrors for the largest and most advanced earth-based telescope: The Giant "Such a sample may be too small to truly Magellan Telescope. understand the complexity of exo-earths," according to Apai and Milster's co-authored paper, But there are size constraints, ranging from the which was published July 29 in the Astronomical mirror's own weight, which can distort images, to Journal along with several other authors, including the size of our freeways and underpasses that are Steward Observatory astronomer Glenn Schneider needed to transport finished pieces.
    [Show full text]
  • ASTRONOMY 475/575 – Planetary Astrobiology Spring 2019 Class
    ASTRONOMY 475/575 – Planetary Astrobiology Spring 2019 Class meets: T/Th 2:00 pm - 3:15 pm Classroom: Steward Observatory Room 204 Instructors: Dr. Daniel Apai, Dr. Josh Eisner Office: Steward Observatory Rooms N208B and N414 Phone: 621-6534, 626-7645 Email: [email protected] [email protected] Office Hrs: By appointment or whenever the door is open Course Desciption This course will explore the processes related to planet formation, the properties of planets and the planetary conditions required for the emergence of life. We will study the formation of our Solar System and exoplanetary systems, the distribution and properties of exoplanets, and the potential habitability of other planets/moons in our system or extrasolar systems. The course will also review science cases and possible future astrobiology studies, both in situ and via remote sensing, of astrobiologically relevant environments. Toward the end of the semester a few guest lectures will highlight particularly exciting and timely topics. Textbook and Readings There is no required book for this course. For those who would like some additional reading material, we recommend “Planetary Science” by Lissauer and de Pater, and “Earth” by Lunine. Copies should be available in the campus bookstore. Draft lecture notes will be made available on the course website. Some topics are beyond the scope of these sources, and we will draw from journal articles and other sources in these cases. We will also assign several journal ariticles as required reading. Lectures The classes will be devoted to lectures. Professor Eisner will lecture for the first 6 weeks or so, and then Professor Apai will lecture for about 6 weeks.
    [Show full text]
  • Remotely Detectable Biosignatures
    Astro2020 Science White Paper Life Beyond the Solar System: Remotely Detectable Biosignatures Thematic Areas: Planetary Systems Star and Planet Formation Formation and Evolution of Compact Objects Cosmology and Fundamental Physics Stars and Stellar Evolution Resolved Stellar Populations and their Environments Galaxy Evolution Multi-Messenger Astronomy and Astrophysics Principal Author: Name: Shawn D. Domagal-Goldman Institution: NASA Goddard Space Flight Center Email: [email protected] Phone: 301-614-6425 Co-leads: Nancy Y. Kiang, NASA Goddard Institute for Space Studies Niki Parenteau, NASA Ames Research Center Co-authors, including co-authors for prior white paper submissions: Daniel Angerhausen, Center for Space and Habitability and Bern University Daniel Apai, Uniersity of Arizona Giada Arney, NASA Goddard Space Flight Center, Vladimir S. Airapetian, NASA Goddard Space Flight Center, American University Natalie M. Batalha, NASA Ames Reseach Center David L. Blank, University of Southern Queensland David C. Catling, University of Washington Charles S. Cockell, UK Centre for Astrobiology and University of Edinburgh Leroy Cronin, University of Glasgow Sebastian O. Danielache Sophia University Priya DasSarma, Institute of Marine and Environmental Technology, University of Maryland - Baltimore Russell Deitrick, University of Washington Anthony Del Genio, NASA Goddard Institute for Space Studies Cecilia Demergasso, Biotechnology Center, Universidad Catolica´ del Norte Kai Finster, Aarhus University Theresa Fisher, Arizona State
    [Show full text]
  • Life Beyond the Solar System: Remotely Detectable Biosignatures
    Life Beyond the Solar System: Remotely Detectable Biosignatures Shawn Domagal-Goldman 1,NancyY.Kiang2,NikiParenteau3,DavidC.Catling4,Shiladitya DasSarma 5,YukaFujii6,ChesterE.Harman7,AdrianLenardic8,EnricPall´e9,ChristopherT. Reinhard 10,EdwardW.Schwieterman11,JeanSchneider12,HarrisonB.Smith13,Motohide Tamura 14,DanielAngerhausen15,GiadaArney1 ,VladimirS.Airapetian16,NatalieM. Batalha 3 ,CharlesS.Cockell17,LeroyCronin18,RussellDeitrick19,AnthonyDelGenio2 , Theresa Fisher 13 ,DawnM.Gelino20,J.LeeGrenfell21,HilairyE.Hartnett13 ,Siddharth Hegde 22,YasunoriHori23,Bet¨ulKa¸car24,JoshuaKrissansen-Totten4 ,TimothyLyons11 , William B. Moore 25,NorioNarita26,StephanieL.Olson11 Heike Rauer 27,TylerD.Robinson 28,SarahRugheimer29,NickSiegler30,EvgenyaL.Shkolnik13 ,KarlR.Stapelfeldt30 ,Sara Walker 31 1NASA Goddard Space Flight Center,2NASA Goddard Institute for Space Studies,3NASA Ames Research Center,4Dept. Earth and Space Sciences / Astrobiology Program, University of Washington,5Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland,6Earth-Life Science Institute, Tokyo Institute of Technology and NASA Goddard Institute for Space Studies,7Columbia University and NASA Goddard Institute for Space Studies,8Rice Univer- sity ,9Instituto de Astrof´ısica de Canaria, Spain,10School of Earth and Atmospheric Sciences, Georgia Institute of Technology,11Dept. Earth Sciences, University of California, Riverside, California,12Paris Observatory,13School of Earth and Space Exploration, Arizona State University,14University
    [Show full text]
  • Investigating Planet Formation and Composition Through Observations of Carbon and Oxygen Species in Stars, Disks, and Planets
    Connecting the Dots: Investigating Planet Formation and Composition Through Observations of Carbon and Oxygen Species in Stars, Disks, and Planets Item Type text; Electronic Dissertation Authors Teske, Johanna Kavanagh Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 26/09/2021 06:42:44 Link to Item http://hdl.handle.net/10150/318831 CONNECTING THE DOTS: INVESTIGATING PLANET FORMATION AND COMPOSITION THROUGH OBSERVATIONS OF CARBON AND OXYGEN SPECIES IN STARS, DISKS, AND PLANETS by Johanna Kavanagh Teske A Dissertation Submitted to the Faculty of the DEPARTMENT OF ASTRONOMY In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2014 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dis- sertation prepared by Johanna Kavanagh Teske entitled “Connecting the Dots: Investigating Planet Formation and Composition Through Observations of Car- boy and Oxygen Species in Disks, Stars, and Planets” and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Phi- losophy. Date: 11 April 2014 Caitlin Griffith Date: 11 April 2014 Katia Cunha Date: 11 April 2014 Simon Schuler Date: 11 April 2014 Daniel Apai Date: 11 April 2014 George Rieke Final approval and acceptance of this dissertation is contingent upon the candi- date’s submission of the final copies of the dissertation to the Graduate College.
    [Show full text]
  • Curriculum Vitae
    Feige Wang Department of Astronomy and Steward Observatory, The University of Arizona URL: https://feigewang.github.io Email: [email protected] Employment Steward Observatory, The University of Arizona October 2019 { Present NASA Hubble Fellow Department of Physics, UC Santa Barbara November 2017 { September 2019 Postdoctoral Researcher (mentored by Professor Joseph F. Hennawi) Kavli Institute for Astronomy and Astrophysics, Peking University August 2017 - October 2017 Visiting Researcher Steward Observatory, The University of Arizona August 2014 - November 2015 Visting Research Scholar Education Peking University September 2012 - July 2017 Ph.D. in Astrophysics Beijing, CHINA Thesis Title: Quasars at Cosmic Dawn: Discoveries and Probes of the Early Universe. Advisers: Professor Xiaohui Fan and Professor Xue-Bing Wu Shandong University September 2008 - June 2012 Bachelor of Science (Physics) Shandong, CHINA Thesis Title: Star Formation and AGN Activities in Barred Galaxies. Advisor: Professor Chen Cao Research Interests • High-Redshift Quasar/Galaxy • Black Hole Formation and Evolution • Cosmic Reionization History • Metal Content in the Early Universe • Protocluster in the Early Universe Professional Service • August 2020 { present Organizer for the EURECA Seminar at Steward Observatory • May 2020 - Present Member of the Rubin Observatory (LSST) AGN Science Collaboration • May 2020 - Present Member of the Roman Space Telescope (WFIRST) Cosmic Dawn Science Investigation Team • May 2017 - Present Referee for AJ, ApJ, ApJL, ApJS
    [Show full text]