water Article Optimal Calibration of Evaporation Models against Penman–Monteith Equation Dagmar Dlouhá , Viktor Dubovský * and Lukáš Pospíšil Department of Mathematics, Faculty of Civil Engineering, VSB-TU Ostrava, Ludvíka Podéštˇe1875/17, 708 00 Ostrava, Czech Republic;
[email protected] (D.D.);
[email protected] (L.P.) * Correspondence:
[email protected] Abstract: We present an approach for the calibration of simplified evaporation model parameters based on the optimization of parameters against the most complex model for evaporation estimation, i.e., the Penman–Monteith equation. This model computes the evaporation from several input quantities, such as air temperature, wind speed, heat storage, net radiation etc. However, sometimes all these values are not available, therefore we must use simplified models. Our interest in free water surface evaporation is given by the need for ongoing hydric reclamation of the former Ležáky–Most quarry, i.e., the ongoing restoration of the land that has been mined to a natural and economically usable state. For emerging pit lakes, the prediction of evaporation and the level of water plays a crucial role. We examine the methodology on several popular models and standard statistical measures. The presented approach can be applied in a general model calibration process subject to any theoretical or measured evaporation. Keywords: model calibration; evaporation; Penman–Monteith equation; optimization; cross-validation Citation: Dlouhá, D.; Dubovský, V.; Pospíšil, L. Optimal Calibration of 1. Introduction Evaporation Models against Evaporation and evapotranspiration play a crucial role in water management in a Penman–Monteith Equation. Water 2021, 13, 1484. https://doi.org/ wide range of human activities and thus there is a strong need for accurate estimates.