Sexual Behavior, Cannibalism, and Mating Plugs As Sticky Traps in the Orb Weaver Spider Leucauge Argyra (Tetragnathidae)

Total Page:16

File Type:pdf, Size:1020Kb

Sexual Behavior, Cannibalism, and Mating Plugs As Sticky Traps in the Orb Weaver Spider Leucauge Argyra (Tetragnathidae) Sexual behavior, cannibalism, and mating plugs as sticky traps in the orb weaver spider Leucauge argyra (Tetragnathidae) Anita Aisenberg & Gilbert Barrantes Naturwissenschaften The Science of Nature ISSN 0028-1042 Volume 98 Number 7 Naturwissenschaften (2011) 98:605-613 DOI 10.1007/s00114-011-0807- y 1 23 Your article is protected by copyright and all rights are held exclusively by Springer- Verlag. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your work, please use the accepted author’s version for posting to your own website or your institution’s repository. You may further deposit the accepted author’s version on a funder’s repository at a funder’s request, provided it is not made publicly available until 12 months after publication. 1 23 Author's personal copy Naturwissenschaften (2011) 98:605–613 DOI 10.1007/s00114-011-0807-y ORIGINAL PAPER Sexual behavior, cannibalism, and mating plugs as sticky traps in the orb weaver spider Leucauge argyra (Tetragnathidae) Anita Aisenberg & Gilbert Barrantes Received: 5 April 2011 /Revised: 6 May 2011 /Accepted: 7 May 2011 /Published online: 24 May 2011 # Springer-Verlag 2011 Abstract Unpublished field observations in Leucauge seem to determine copulation duration by altering the argyra, a tropical orb weaver spider, suggest the occurrence timing of mating plug formation and through sexual of conspicuous mating plugs that could reduce or prevent cannibalism. This is the first case reported of a mating remating attempts. Otherwise, the sexual behavior of this plug as a sticky trap for males. species remains unknown. The aims of this study were to describe the courtship behavior and copulation in L. argyra Keywords Genital plug . Plug removal . Sexual and investigate mating plug formation in this species. cannibalism . Sexual selection Fourteen virgin females and 12 plugged females were exposed to up to three males and checked for mating plug formation. Of the 12 virgins that copulated, nine produced Introduction plugs (five immediately after copulation), and the five plugged females that copulated produced another mating Mating plugs are widespread in various animal taxa, from plug immediately after copulation. We did not detect the insects and arachnids to reptiles, birds, and mammals transfer of any male substance during copulation but (Drummond 1984; Andrade 1996; Gomiendo et al. 1998; observed a whitish liquid emerging from female genital Knoflach 1998; Wigby and Chapman 2004;Simmons ducts. Plug formation was positively associated with male 2001; Mattoni and Peretti 2004; Aisenberg and Eberhard twanging during courtship. One virgin and four plugged 2009; Leonard and Córdoba-Aguilar 2010; Uhl et al. 2010). females cannibalized males. In seven trials with virgins and These plugs are composed by sperm, glandular products, in three trials with plugged females, the male’s palp adhered parts of spermatophores or male genitalia, and in some to a substance that emerged from female genital ducts and cases the male’s entire body that remains attached to female spread on her genital plate. The male had to struggle genitalia (Uhl et al. 2010). Mating plugs are thought to energetically to free his glued palp; two of these males were function primarily to prevent or minimize female future cannibalized while trying to release their palps. Females mating attempts and consequently, favor the paternity of the copulating male. However, plugs could also have other functions presumably beneficial to females as prevent sperm Communicated by: Sven Thatje desiccation or minimize sperm loss (Boorman and Parker A. Aisenberg (*) 1976;Huber1995, 2005; Simmons 2001; Uhl et al. 2010). Laboratorio de Etología, Ecología y Evolución, Though most mating plugs consist of parts of male Instituto de Investigaciones Biológicas Clemente Estable, genitalia or substances transferred by males, in some cases Av. Italia 3318, CP 11600 Montevideo, Uruguay they are formed by a mixture of female and male e-mail: [email protected] transferred substances or exclusively by female substances (Méndez 2004; Uhl et al. 2010). In the orb-weaving spider G. Barrantes Leucauge mariana (Keyserling 1881) (Tetragnathidae), Escuela de Biología, Universidad de Costa Rica, Ciudad Universitaria, substances transferred by both sexes are necessary to San José, Costa Rica compose an efficient mating plug (Eberhard and Huber Author's personal copy 606 Naturwissenschaften (2011) 98:605–613 1998;Méndez2004; Aisenberg and Eberhard 2009). Larger with L. mariana (Eberhard et al. 1993). We obtained virgin numbers of short male genital insertions and of rhythmic adult females by allowing penultimate females to molt in pushes of the male’s front legs against female’slegsduring captivity. Each penultimate female was maintained in a copulation are associated with a higher probability of female cylindrical glass jar (5–10 cm diameter and 8 cm height) supplying her substance and efficient plug formation in this covered with a thin mesh lid and was monitored everyday species (Aisenberg and Eberhard 2009). This was the first to record molting occurrence. Each jar was provided with a description of female participation in mating plug formation piece of wet cotton and two small branches with leaves. as a possible mechanism of cryptic female choice based on After molting to maturity, each virgin female (n=14) and female selection on the basis of male copulatory courtship. each female collected at the field with a complete genital The genus Leucauge White 1841 comprises more than plug (n=12) was placed on a glass terrarium of 30 cm 100 spider species, but sexual behavior has been studied in length, 16 cm width, and 20 cm height. We attached a only few species (Eberhard and Huber 1998). Male cardboard horizontal frame near the top as substrate for web copulatory courtship seems to be widespread in this genus construction and placed a small plant inside the terrarium to (Eberhard 1994; Castro 1995; Eberhard and Huber 1998) provide humidity and an additional substrate for construc- and mating plugs have been observed at least in three tion of the web. Spiders were offered a prey three times a species: L. mariana, Leucauge venusta (Walckenaer 1841) week: a Tenebrio molitor larvae (Tenebrionidae) or an adult and Leucauge argyra (Walckenaer 1841) (Castro 1995; fly (Sarcophagidae or Calliphorideae). The plants were Eberhard and Huber 1998). Cheliceral clasping between sprayed everyday with water. sexes prior to copulation also occurs in these three Between 1 and 5 days after the female molted to Leucauge species, though it is absent or varies (males seize maturity or 5 days after an adult female with a genital plug female chelicerae) in other species of Tetragnathidae had been captured, each female was exposed to one male (Eberhard 1994; Castro 1995; Eberhard and Huber 1998; that was placed on the border of the orb web. If the female Aisenberg and Eberhard 2009; Aisenberg 2009). Spiders of did not mate after 30 min of male courtship, she was this genus are thus interesting for studies of sperm exposed to a second male within 1 h and then to a third competition, female choice, and the evolution of mating male if the second was not accepted. Females that rejected strategies. three consecutive males were discarded. If spiders courted L. argyra is an orb-weaving spider that constructs but did not copulate, we ended the trial when one spider approximately horizontal orb webs in lowland wet areas abandoned the terrarium, when both spiders remained in Costa Rica (Eberhard 2001). In some sites, this species is motionless for 15 min, or when the female attacked and extremely abundant year round and during the rainy season injured the male or cannibalized him. For determining males are frequently observed guarding penultimate female periods of experimentation, we followed previous studies close to molt (W.G. Eberhard, G. Barrantes and A. on L. mariana (Aisenberg 2009; Aisenberg and Eberhard Aisenberg, unpublished data). Unpublished field observa- 2009) and preliminary observations on the study species. tions show that females of this species have conspicuous Individuals were used once and were randomly assigned mating plugs largely covering their epigyna; their sexual to each trial. The temperature during the trials averaged behavior, however, is unknown. The objectives of this 24.44±1.46°C, range: 21–26. The arena was illuminated study were to describe courtship and copulation in L. with a fiber optic lamp and all trials were recorded with a argyra and investigate mating plug formation in this SONY DCR TRV50 digital video camera (SONY, San species. Additionally, we tested whether plug production Diego, CA, USA) equipped with +4 close-up lenses. is related to female and/or male sexual behavior and tried to Immediately after copulation, each female was observed elucidate the effectiveness of genital plugs in preventing and photographed under a Wild model M3Z dissecting female rematings. microscope (Wild Company, New York, USA), to check for mating plug occurrence, and was checked again 24 h later. All plugged females were inspected before the expositions Materials and methods and after copulation to check if mating plugs were intact or presented slits. Partial plugs were those mating plugs that We collected 14 penultimate females, 12 adult females with covered only part of female epigynum, in contrast to genital plugs that covered entirely their epigynum, and 35 complete plugs that covered both
Recommended publications
  • Biogeography of the Caribbean Cyrtognatha Spiders Klemen Čandek1,6,7, Ingi Agnarsson2,4, Greta J
    www.nature.com/scientificreports OPEN Biogeography of the Caribbean Cyrtognatha spiders Klemen Čandek1,6,7, Ingi Agnarsson2,4, Greta J. Binford3 & Matjaž Kuntner 1,4,5,6 Island systems provide excellent arenas to test evolutionary hypotheses pertaining to gene fow and Received: 23 July 2018 diversifcation of dispersal-limited organisms. Here we focus on an orbweaver spider genus Cyrtognatha Accepted: 1 November 2018 (Tetragnathidae) from the Caribbean, with the aims to reconstruct its evolutionary history, examine Published: xx xx xxxx its biogeographic history in the archipelago, and to estimate the timing and route of Caribbean colonization. Specifcally, we test if Cyrtognatha biogeographic history is consistent with an ancient vicariant scenario (the GAARlandia landbridge hypothesis) or overwater dispersal. We reconstructed a species level phylogeny based on one mitochondrial (COI) and one nuclear (28S) marker. We then used this topology to constrain a time-calibrated mtDNA phylogeny, for subsequent biogeographical analyses in BioGeoBEARS of over 100 originally sampled Cyrtognatha individuals, using models with and without a founder event parameter. Our results suggest a radiation of Caribbean Cyrtognatha, containing 11 to 14 species that are exclusively single island endemics. Although biogeographic reconstructions cannot refute a vicariant origin of the Caribbean clade, possibly an artifact of sparse outgroup availability, they indicate timing of colonization that is much too recent for GAARlandia to have played a role. Instead, an overwater colonization to the Caribbean in mid-Miocene better explains the data. From Hispaniola, Cyrtognatha subsequently dispersed to, and diversifed on, the other islands of the Greater, and Lesser Antilles. Within the constraints of our island system and data, a model that omits the founder event parameter from biogeographic analysis is less suitable than the equivalent model with a founder event.
    [Show full text]
  • Comparative Functional Morphology of Attachment Devices in Arachnida
    Comparative functional morphology of attachment devices in Arachnida Vergleichende Funktionsmorphologie der Haftstrukturen bei Spinnentieren (Arthropoda: Arachnida) DISSERTATION zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) an der Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt von Jonas Otto Wolff geboren am 20. September 1986 in Bergen auf Rügen Kiel, den 2. Juni 2015 Erster Gutachter: Prof. Stanislav N. Gorb _ Zweiter Gutachter: Dr. Dirk Brandis _ Tag der mündlichen Prüfung: 17. Juli 2015 _ Zum Druck genehmigt: 17. Juli 2015 _ gez. Prof. Dr. Wolfgang J. Duschl, Dekan Acknowledgements I owe Prof. Stanislav Gorb a great debt of gratitude. He taught me all skills to get a researcher and gave me all freedom to follow my ideas. I am very thankful for the opportunity to work in an active, fruitful and friendly research environment, with an interdisciplinary team and excellent laboratory equipment. I like to express my gratitude to Esther Appel, Joachim Oesert and Dr. Jan Michels for their kind and enthusiastic support on microscopy techniques. I thank Dr. Thomas Kleinteich and Dr. Jana Willkommen for their guidance on the µCt. For the fruitful discussions and numerous information on physical questions I like to thank Dr. Lars Heepe. I thank Dr. Clemens Schaber for his collaboration and great ideas on how to measure the adhesive forces of the tiny glue droplets of harvestmen. I thank Angela Veenendaal and Bettina Sattler for their kind help on administration issues. Especially I thank my students Ingo Grawe, Fabienne Frost, Marina Wirth and André Karstedt for their commitment and input of ideas.
    [Show full text]
  • Function of Copulatory Plugs in House Mice: Mating Behaviour and Paternity
    1 Function of copulatory plugs in house mice: mating behaviour and paternity 2 outcomes of rival males 3 4 Andreas Sutter1,3, Leigh W. Simmons2, Anna K. Lindholm1 and Renée C. Firman2 5 6 1Institute of Evolutionary Biology and Environmental Studies, University of Zurich, 7 Winterthurerstrasse 190, 8057 Zurich, Switzerland. 8 2Centre for Evolutionary Biology, School of Animal Biology (M092), The University of Western 9 Australia, Crawley, 6009, Australia. 10 3 E-mail:[email protected] 11 12 Corresponding author: Andreas Sutter, IEU – Animal Behavior, Winterthurerstrasse 190, 8057 13 Zürich, Switzerland; Tel: +41 79 545 9015; email: [email protected]; 14 15 Abbreviated title: Function of copulatory plugs 16 1 17 Abstract 18 Polyandry is widespread across animal taxa, and subjects males to intense post-copulatory sexual 19 selection which favors adaptations that enhance a male’s paternity success, either by decreasing the 20 risk of sperm competition and/or by increasing the competitiveness of the ejaculate. Copulatory 21 plugs deposited by males are thought to have evolved in the context of sperm competition. 22 However, experimental studies that assess the function of copulatory plugs remain scarce. 23 Moreover, most studies have used unnatural manipulations, such as ablating plug-producing male 24 glands or interrupting copulations. Here, we investigated whether repeated ejaculation affects plug 25 size in a mammalian model species, the house mouse. When males experience short periods of 26 sexual rest we found that plug size decreased over repeated ejaculations so that time since last 27 ejaculation can be applied as an approximation for plug size.
    [Show full text]
  • Sperm Competition and Male Social Dominance in the Bank Vole (Myodes Glareolus)
    SPERM COMPETITION AND MALE SOCIAL DOMINANCE IN THE BANK VOLE (MYODES GLAREOLUS) Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy by Jean-Fran^ois Lemaitre 1 Table of contents List of Tables.......................................................................................................................................6 List of Figures.....................................................................................................................................8 Declaration of work conducted.................................................................................................... 10 Abstract ......................................................................................................................................13 Chapter 1: General introduction............................................................................................... 15 1.1 Chapter overview........................................................................................................... 15 1.2 Sexual selection..... .......................................................................................................... 15 (a) Sexual selection............................................................................................................... 15 (b) Sexual selection and sex-roles........................................................................................16 (c) Pre-copulatory sexual selection......................................................................................18
    [Show full text]
  • Seasonal Abundance and Diversity O F Web-Building Spiders in Relation to Habita T Structure on Barro Colorado Island, Panama
    Lubin, Y . D. 1978 . Seasonal abundance and diversity of web-building spiders in relation to habita t structure on Barro Colorado Island, Panama . J. Arachnol. 6 :31-51 . SEASONAL ABUNDANCE AND DIVERSITY O F WEB-BUILDING SPIDERS IN RELATION TO HABITA T STRUCTURE ON BARRO COLORADO ISLAND, PANAMA Yael D . Lubin Smithsonian Tropical Research Institute P. O. Box 2072, Balboa, Canal Zone ABSTRAC T Web-building spiders were censused by a visual censuring method in tropical forest understory o n Barro Colorado Island (BCI), Panama Canal Zone. An overall trend of low numbers of spiders in th e late dry season and early wet season (March to May) was seen on all transects . The majority of th e species on the transects had wet season distribution patterns . Some species which occurred year-round on the forest transects had wet season distributions on a clearing-edge transect . A shortage of flyin g insect prey or dessication may have been responsible for the observed distributions . Species diversity and diversity of web types followed the overall seasonal pattern of spider abun- dance. The diversities of species and of web types were greatest on the forest transect with the highes t diversity of structural supports for spider webs . Web density, however, was greatest on the transect a t the edge of a small clearing . Faunal composition, diversity of web types, and seasonal patterns of distribution of spiders on th e BCI transects differed markedly from similar measures derived from censuses taken in a tropica l montane habitat in New Guinea . The differences were attributed in part to differences in the habitat s and in the evenness of the climate .
    [Show full text]
  • Copulatory Plugs Inhibit the Reproductive Success of Rival Males
    doi: 10.1111/jeb.12956 Copulatory plugs inhibit the reproductive success of rival males R. MANGELS1 ,K.TSUNG1 ,K.KWAN&M.D.DEAN Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA Keywords: Abstract copulatory plug; Ejaculated proteins play important roles in reproductive fitness. In many mate guarding; species, seminal fluid coagulates and forms what has been referred to as a sperm competition. copulatory plug in the female’s reproductive tract. In mice, previous work demonstrated that knockout males missing a key seminal fluid protein were unable to form a plug and less successful at siring litters in noncompetitive matings (one female, one male), probably the result of reduced sperm trans- port or insufficient stimulation of the female. Here, we extend these previ- ous studies to competitive matings (one female, two males) and make two key insights. First, when first males were unable to form a plug, they lost almost all paternity to second males to mate. Thus, the copulatory plugs of second males could not rescue the reduced fertility of first males. Second, we showed that the copulatory plug of first males effectively blocked fertil- ization by second males, even if first males were vasectomized. Taken together, our experiments demonstrated that first males lost almost all paternity if they never formed a plug. We discuss our results in the context of natural populations, where in spite of the strong effects seen here, preg- nant female mice regularly carry litters fertilized by more than one male. Masumoto, 1993; Uhl et al., 2010), insects (Parker, 1970; Introduction Dickinson & Rutowski, 1989; Orr & Rutowski, 1991; Characterizing the function of ejaculated proteins is Rogers et al., 2009), reptiles (Devine, 1975; Herman, critical to a comprehensive understanding of reproduc- 1994; Friesen et al., 2013) and mammals (Devine, 1975; tive health and evolutionary fitness.
    [Show full text]
  • Courtship, Copulation, and Sperm Transfer in Leucauge Mariana (Araneae, Tetragnathidae) with Implications for Higher Classification
    1998. The Journal of Arachnology 26 :342-368 COURTSHIP, COPULATION, AND SPERM TRANSFER IN LEUCAUGE MARIANA (ARANEAE, TETRAGNATHIDAE) WITH IMPLICATIONS FOR HIGHER CLASSIFICATION William G . Eberhard : Smithsonian Tropical Research Institute, and Escuela de Biologia, Universidad de Costa Rica, Ciudad Universitaria, Costa Rica Bernhard A. Huber': Escuela de Biologia, Universidad de Costa Rica, Ciudad Universitaria, Costa Rica ABSTRACT . The courtship behavior of male Leucauge mariana (Keyserling 1881) spiders that occurred both prior to and during copulation is described, along with the positions and movements of the male genitalia . The great variation in male behavior suggests that it does not function in species recognition . Several kinds of female response are necessary if a male is to successfully inseminate her. Males made two types of insertion, involving different movements of palpal sclerites, and copulations with virgin females differed quantitatively and qualitatively from those with non-virgins . Males deposited encapsulated sperm and other material in an outer chamber of the female's spermatheca early in copulation . Later stages of copulation involved deposition of material on the surface of the female's epigynum that sometimes resulted, with the apparent addition of material by the female, in the formation of a plug on the epigynum . Sperm were decapsulated in the female soon after insemination, perhaps as a result of the action of a female glandular product, and later were found in two other chambers of her spermathecae. Contrary to previous discussions, male and female cheliceral clasping behavior accompanying copulation does not explain why the palpal morphology of these spiders is relatively simple. Cheliceral clasping was similar, though not identical, to that of several other tetragnathine spiders .
    [Show full text]
  • Do the Size and Age of Mating Plugs Alter Their Efficacy in Protecting Paternity?
    Behav Ecol Sociobiol (2014) 68:1321–1328 DOI 10.1007/s00265-014-1742-7 ORIGINAL PAPER Do the size and age of mating plugs alter their efficacy in protecting paternity? Katrin Kunz & Melanie Witthuhn & Gabriele Uhl Received: 19 November 2013 /Revised: 28 April 2014 /Accepted: 9 May 2014 /Published online: 10 June 2014 # Springer-Verlag Berlin Heidelberg 2014 Abstract An obvious means to secure paternity is the pro- of theoretical considerations on the evolution of effective duction of a mating plug that blocks the female genital open- mating plugs. ing after mating. Although the mechanical efficacy and per- sistence of plugs on/in the female genital openings are key Keywords Mating plug . Sexual selection . Sperm traits that determine the degree of paternity protection, these competition . Monopolization . Paternity protection . Dwarf factors have hardly been explored. We therefore investigated spider . Erigoninae the influence of the size of the amorphous plug material (experimentally terminated mating duration as a proxy) and age of the mating plug (time interval between copulations with Introduction two successive males) on the efficacy of the plug by analysing the mating success of subsequent males in the dwarf spider In polyandrous species, post-copulatory male-male competi- Oedothorax retusus (Linyphiidae: Erigoninae). Overall, sub- tion occurs if sperm of different males are stored within the sequent males attempted to mate in 82 % of trials but only female genital tract (Parker 1970). Polyandry is widespread in 32.5 % of these resulted in copulation, demonstrating that the various animal taxa and has led to numerous behavioural, plugs are effective safeguards against remating. Remating physiological and morphological male adaptations against probability was significantly higher after previous short cop- sperm competition (Birkhead and Møller 1998;Parker1998; ulations (~small plug size) compared to long copulations Simmons 2001; Eberhard 2009).
    [Show full text]
  • The Predatory Behavior of Rhomphaea Sp. from New Zealand
    Whitehouse, M . E. A. 1987 . "Spider eat spider": the predatory behavior of Rhomphaea sp. from New Zealand . J. Arachnol ., 15 :355-362 . "SPIDER EAT SPIDER": THE PREDATORY BEHAVIOR O F RHOMPHAEA SP. FROM NEW ZEALAND Mary E. A. Whitehouse University of Canterbury Christchurch 1, New Zealand ABSTRACT Rhomphaea sp. from New Zealand captures other spiders which wander onto its web, and venture s onto other spiders' webs to capture the resident . Rhomphaea captures spiders by using aggressive mimicry to lure the victim and by throwing a sticky triangular net over the prey . The importance of this unusual method of capturing spiders is discussed in relation to the evolution of this spider . INTRODUCTION This work examines the predatory behavior of Rhomphaea Simon, a genus of elusive, solitary spiders whose predatory behavior is unknown other than tha t they eat other spiders (Eberhard 1979; Smith Trail 1980; Horton 1982) . The behavior of Rhomphaea is of special interest because species from a closel y related genus, Argyrodes, capture spiders by using stealth (Eberhard 1979) , aggressive mimicry (Whitehouse 1986), and engage in an unusual form o f foraging—kleptoparasitism (Vollrath 1976; Whitehouse 1986). Currently there is conjecture surrounding the degree to which the genera Argyrodes and Rhomphaea are related . Exline and Levi (1962) merge d Rhomphaea with the genus Argyrodes, but some workers disagree with the grouping (e.g., Simon 1895; Forster pers . comm. : opinion based on New Zealand species). More information on the foraging behaviors of the two groups of spider s is needed to ascertain if the behavioral characteristics of the two groups support the merger .
    [Show full text]
  • Species List for Garey Park-Inverts
    Species List for Garey Park-Inverts Category Order Family Scientific Name Common Name Abundance Category Order Family Scientific Name Common Name Abundance Arachnid Araneae Agelenidae Funnel Weaver Common Arachnid Araneae Thomisidae Misumena vatia Goldenrod Crab Spider Common Arachnid Araneae Araneidae Araneus miniatus Black-Spotted Orbweaver Rare Arachnid Araneae Thomisidae Misumessus oblongus American Green Crab Spider Common Arachnid Araneae Araneidae Argiope aurantia Yellow Garden Spider Common Arachnid Araneae Uloboridae Uloborus glomosus Featherlegged Orbweaver Uncommon Arachnid Araneae Araneidae Argiope trifasciata Banded Garden Spider Uncommon Arachnid Endeostigmata Eriophyidae Aceria theospyri Persimmon Leaf Blister Gall Rare Arachnid Araneae Araneidae Gasteracantha cancriformis Spinybacked Orbweaver Common Arachnid Endeostigmata Eriophyidae Aculops rhois Poison Ivy Leaf Mite Common Arachnid Araneae Araneidae Gea heptagon Heptagonal Orbweaver Rare Arachnid Ixodida Ixodidae Amblyomma americanum Lone Star Tick Rare Arachnid Araneae Araneidae Larinioides cornutus Furrow Orbweaver Common Arachnid Ixodida Ixodidae Dermacentor variabilis American Dog Tick Common Arachnid Araneae Araneidae Mangora gibberosa Lined Orbweaver Uncommon Arachnid Opiliones Sclerosomatidae Leiobunum vittatum Eastern Harvestman Uncommon Arachnid Araneae Araneidae Mangora placida Tuft-legged Orbweaver Uncommon Arachnid Trombidiformes Anystidae Whirligig Mite Rare Arachnid Araneae Araneidae Mecynogea lemniscata Basilica Orbweaver Rare Arachnid Eumesosoma roeweri
    [Show full text]
  • Hairy Kisses: Tactile Cheliceral Courtship Affects Female Mating Decisions in Leucauge Mariana (Araneae, Tetragnathidae)
    Behav Ecol Sociobiol DOI 10.1007/s00265-014-1844-2 ORIGINAL PAPER Hairy kisses: tactile cheliceral courtship affects female mating decisions in Leucauge mariana (Araneae, Tetragnathidae) Anita Aisenberg & Gilbert Barrantes & William G. Eberhard Received: 8 September 2014 /Revised: 27 October 2014 /Accepted: 30 October 2014 # Springer-Verlag Berlin Heidelberg 2014 Abstract Sexual selection is thought to be an important force had similar effects that likely reduced the male’schancesof driving the evolution of sexually dimorphic morphology and paternity: female receptivity to re-mating increased, copulato- behavior, but direct experimental tests of the functions of ry plug formation decreased, and interruptions during copula- species-specific details of morphology are rare and usually tion became more frequent. As expected under the stimulation incomplete. The males of most species of the large spider hypothesis, blocking female sensory abilities generally had family Tetragnathidae possess large sexually dimorphic che- greater effects on these responses than modifying male stim- licerae that are used when the sexes lock together before and ulatory structures. during mating. In Leucauge mariana, the female’schelicerae clasp those of the male; mating does not begin until the Keywords Sexual selection . Cryptic female choice . female’s chelicerae seize the male and does not end until they Experimental manipulation . Cheliceral clasp . Leucauge release him. In addition, females contribute material to form genital plugs in the female’s genitalia. Male chelicerae have sexually dimorphic and species-specific setae and ledges in areas that contact the female during cheliceral clasps. We Introduction tested the hypothesis that stimuli from these structures trigger mating processes that are controlled by the female which Studies of the male stimulation of females during sexual could increase male reproductive success.
    [Show full text]
  • New Spiders of the Families Tetragnathidae, Nephilidae and Clubionidae (Arachnida, Araneae) from Izu and Ogasawara Islands, Tokyo
    Bull. Natl. Mus. Nat. Sci., Ser. A, 37(1), pp. 15–26, March 22, 2011 New Spiders of the Families Tetragnathidae, Nephilidae and Clubionidae (Arachnida, Araneae) from Izu and Ogasawara Islands, Tokyo Hirotsugu Ono Department of Zoology, National Museum of Nature and Science, 3–23–1, Hyakunin-cho, Shinjuku-ku, Tokyo, 169–0073 Japan E-mail: [email protected] (Received 29 October 2010; accepted 9 February 2011) Abstract Three new spiders of the families Tetragnathidae, Nephilidae and Clubionidae (Arach- nida, Araneae) from Hachijojima and Mikurajima Islands of the Izu Islands, and Chichijima Island of the Ogasawara Islands are described under the names, Leucauge nagashimai sp. nov. (Tetra- gnathidae), Nephila clavata caerulescens subsp. nov. (Nephilidae) and Clubiona oceanica sp. nov. (Clubionidae). Leucauge nagashimai resembles Chinese Leucauge bimaculata and liui, both de- scribed by Zhu, Song et Zhang (2003), but differs from the two species by the details of female genitalia, especially in the shape of spermathecae. Clubiona oceanica belongs to the species group of Clubiona hystrix defined by Deeleman-Reinhold (2001) and stands close to Clubiona maipai Jäger et Dankittipakul, 2010 from Thailand, Clubiona kuu Jäger et Dankittipakul, 2010 from Laos, Clubiona damirkovaci Deeleman-Reinhold, 2001 from Peninsular Malaysia and Clubiona hitchinsi Saaristo, 2002 from Seychelles Islands, but is distinguishable from these known species by the structure of female genitalia, especially the position of intromittent orifices and the condition of in- tromittent canals and in details of tibial apophysis and embolus of male palpal organ. Nephila clavata caerulescens is described for the populations of Nephila clavata on Hachijojima and Mikurajima Islands, which show a remarkable variation on the coloration of the body not mimic to the color pattern of vespid wasps.
    [Show full text]