Handleiding Streamen Op Youtube / Facebook Handleiding Met Achtergrond En Praktische Tips Voor Een Online Publiekslezing of Kijkavond

Total Page:16

File Type:pdf, Size:1020Kb

Handleiding Streamen Op Youtube / Facebook Handleiding Met Achtergrond En Praktische Tips Voor Een Online Publiekslezing of Kijkavond Handleiding streamen op Youtube / Facebook Handleiding met achtergrond en praktische tips voor een online publiekslezing of kijkavond. ontdek. beleef. beoefen. knvws.nl Handleiding livestreamen In de coronacrisis zijn verenigingen en sterrenwachten creatief in hoe ze contact met het publiek houden. Verschillende sterrenwachten experimenteren met livestreams van lezingen en kijkavonden. Christian Mass is actief als voorzitter bij sterrenwacht Limburg te Heerlen. Als sterrenwacht zijn zij i.v.m. de coronacrisis virtueel actief geworden. We vroegen hen om een korte handleiding te maken over het livestreamen. Dat deed hij graag, mede in de hoop dat collega-sterrenwachten en verenigingen hier iets mee kunnen. In deze handleiding zal door Christian Mass worden toegelicht hoe je een livestream opzet, en zul je een test stream gaan opzetten. Deze handleiding is vooral bedoeld voor Youtube en Facebook. Wil je weten hoe je een livestream opzet op Instagram, download dan de aparte handleiding hiervoor. Tot slot vind je aan het eind van deze handleiding tevens een aantal opmerkingen in een FAQ, gebaseerd op de ervaringen die ze bij de Sterrenwacht Limburg tot dusver hebben opgedaan. De opbouw is dus als volgt: 1. Technische opzet van livestream: hard- en softwarebenodigdheden en hoe te verbinden met streaming services zoals YouTube en Facebook Live. 2. Tips gebaseerd op ervaringen; 3. Frequently Asked Questions Technische opzet Om te livestreamen heb je vier dingen nodig: 1. Hardware Met hardware bedoel ik: een microfoon en camera. Dat kan vanalles zijn maar hoe meer je hierin kunt investeren, des te beter wordt de kwaliteit. Je kunt een webcam gebruiken met ingebouwde microfoon of een losse microfoon zoals de Trust Streaming microfoon die ik zelf gebruik. Die laatste is geeft een redelijk goed geluid. Een webcam microfoon is kwa geluid meestal heel matig en werkt enkel als je dicht bij de webcam zit. Voor de camera kun je vanalles gebruiken. Mooi is natuurlijk iets van een DSLR waarvan je de HDMI-output op je computer kunt aansluiten maar onze sterrenwacht heeft dat niet. We doen het dus met een HD-webcam die een ok beeld geeft maar beperkt is in donkere omgevingen. 2. Software Als software gebruik je streaming software die jouw inputs (micofoon, video, plaatjes, muziek etc) bundelt en doorstuurt naar de streaming server van YouTube of Facebook. Ik gebruik Open Broadcast Software (OBS). Dit is een open source softwarepakket dat gratis is en een grote community heeft. Het is verder beschikbaar voor Windows, OS X en Linux. Download dit pakket via www.obsproject.com. 1 3. Stream service Daarmee bedoel ik dat je moet bepalen via welk kanaal je wilt streamen? Wij streamen via YouTube en Facebook. YouTube heeft de beste videokwaliteit daar Facebook Live beperkt is tot 720p. Wij begonnen de eerste keer alleen op Facebook omdat we daar het grootste bereik hebben maar nu streamen we ook naar YouTube op HD (1920x1080 oftewel 1080p); 4. Een internetverbinding met voldoende upload. Voor een HD-stream + overhead heb je ongeveer 7 mbit/s aan upload nodig. Als je in de stad zit dan is dit waarschijnlijk geen probleem. Zit je wat verder afgelegen? Test dan even je uploadsnelheid. Zeker ADSL-verbindingen hebben hier nog wel eens moeite mee. Haal je de upload niet? Overweeg dan om met een lagere resolutie te streamen (720p of zelfs oldskool 360p). Als je streamt met te weinig upload dan krijg je last van video-artefacten en onderbroken geluid. Open Broadcast Software (OBS) Het belangrijkste is dat je handigheid krijgt in het besturen van OBS. OBS is logisch en redelijk makkelijk. We gaan daarom hieronder even het hoofdscherm bekijken: 1) Dit is het scherm dat naar het gebruikte platform (YouTube/Facebook/Vimeo etc) wordt gestuurd. Dit zien je kijkers dus op dit moment. Belangrijk om dit scherm in de gaten te houden. 2) Dit zijn de “Scenes”: Een scene is in principe een schermlayout. Hier zie je dat scene “Intro” actief is en die zie je dan ook op het scherm (1). Je verandert live van scenes door op de gewenste scene te klikken. Zie de scene als een alinea van je verhaal. 3) Iedere scene bevat “sources”. Dat zijn simpelweg je inputs voor deze scene. In het geval van hierboven zie een source genaamd AchtergrondFilm staan. Dat is dus de achtergrond die nu zichtbaar is (zonnestelsel met Melkweg). Ook zie je BKMusic staan. Dat is de muziek die tijdens de intro draait. Overlay is in dit geval de witte tekst en 2 iconen. Je kunt de namen van de sources zelf bepalen. Onder sources (inputs) kun je vanalles toevoegen. Zie hieronder: Je ziet hier dus allerlei handige inputs. Je zult Audio Input Capture voor de meeste scenes gebruiken. Dat is nodig voor je microfoon. Ook Game Capture is interessant. Hiermee kun je bijvoorbeeld het beeld van je Stellarium doorspelen naar OBS. Als je nu Audio Input Capture en Game Capture combineert in één scene dan kun je dus al live langs de sterrenhemel gaan terwijl je via de microfoon toelicht wat er te zien is. Zo simpel kan het al! VLC Video Source wordt ook veel gebruikt. Daarmee kun je filmpjes doorlussen naar je publiek. Installeer hiervoor wel even VLC Player. Dat is een bekende, gratis mediaspeler. Check: www.videolan.org Als je de lijst verder bekijkt dan zie je dat je in een scene heel wat kunt combineren. 4) Audio mixer - Hiermee “mix” je het inkomende geluid. Dat is o.a. het geluid van een filmpje dat je afspeelt, je microfoongeluid of geluid van achtergrondmuziek. Dit is kritisch want als je hier niet naar kijkt dan kan het zomaar zijn dat alle geluidsbronnen tegelijk op standje 10 doorkomen of dat je juist niets hoort. Ook belangrijk is dat je het geluid kunt aan- en uitzetten. Let hierop zodat je geen “open mic” hebt en per ongeluk 300 kijkers meedeelt wat je vanochtend hebt gegeten (of nog erger…) 5) Als je live van scene verwisselt. Bijvoorbeeld van je intro-scene naar je hoofdscene, dan kun je kiezen voor een transitie zodat het vloeiend verloopt. 6) Dit is je controlepaneel voor de stream. Heel belangrijk: Hier start en stop je de datastream naar je platform. Je kunt het gestreamde ook tegelijkertijd opnemen en opslaan op je harde schijf. Dit moet je computer wel aankunnen want bedenk dat je naast OBS ook andere software laat lopen zoals misschien Stellarium, Space Engine, Cartes du Ciel etc etc. 3 Scenes – extra informatie Scenes zijn superbelangrijk dus laten we nog even naar een andere scene kijken van bovenstaande scherm: Dit is een van de hoofdscenes genaamd: “MAINSCENE_CHRISCAM”. Kijk ook naar de sources. Je ziet hier typische sources zoals SSLogo (sterrenwacht logo rechtsboven), Video Capture Device (webcam input), CHRIS_MIC (mijn microfoon input) en MUSIC_IN (achtergrondmuziek – staat uit). Het scherm dat naar de kijkers gaat zag er zo uit: 4 Hoe gaat het streamen in zijn werk? In principe verbind je OBS met het platform via een unieke logincode of streaming key die je van hen krijgt. Hieronder gebruik ik YouTube als voorbeeld: 1) Ga naar YouTube en log in met het account waarmee je gaat streamen. 2) Ga naar “Go Live” 3) Vul hier de gewenste gegevens in. Gebruik een makkelijke titel en omschrijf in een korte zin wat je gaat streamen. Houd het kort daar ervaring leert dat de meeste mensen de beschrijving nauwelijks lezen. Wellicht valt het je ook op dat ik “No, It’s not made for kids” heb aangevinkt. Het nadeel van YouTube is dat, als je aangeeft dat het geschikt is voor kinderen, de comment- sectie wordt uitgezet. M.a.w. kijkers kunnen niet live reageren. Als je het live reageren niet zo belangrijk vindt dan kun je “Yes” aanvinken. Anders zul je “No” moeten kiezen. Zorg er dan voor dat je een collega laat inloggen op YouTube en maak diegene een “moderator”. Zie FAQ aan het einde van dit document. Klik op “create stream”. De stream is nog lang niet actief. Ik geef met een rode kleur aan vanaf welk punt de stream live is. 4) Nu zie je het onderstaande scherm met belangrijke info. We beginnen met “stream settings”. Dit is kopieer-plakwerk. Je hebt nu nodig: de stream key en eventueel de stream url. Deze ga je namelijk invoeren bij OBS. Let op: de stream key verandert voor iedere stream-sessie. Dit is zodat niemand kan streamen via jouw account. Je kunt ook kiezen voor een “persistant key” en dan blijft ie altijd gelijk. Zorg er dan wel voor dat je hem niet per ongeluk doorgeeft. 5 Ga nu naar de Settings van OBS door rechts op het hoofdscherm op de “Settings”-knop te drukken en ga dan naar het Streaming submenu. Aldaar selecteer je onder Service je platform. In ons geval is dat YouTube. Dan plak je de Key in de “Stream key”. Let op dat je geen spaties o.i.d. meepakt! De key moet exact overeenkomen. Klik op ok. Je bent nu klaar om te streamen. 5) Klik op de scene die je als eerste gaat gebruiken. Zorg dat deze actief is. 6 LET OP: De stappen die hieronder volgen zorgen ervoor dat je live gaat! De roodgekleurde stap (stap 9) is de stap waarop je het signaal daadwerkelijk doorzet naar je platform. Doe dit als je er daadwerkelijk klaar voor bent. 6) Onder OBS klik je nu op “start streaming”. Je bent nog niet live. 7) Nu heb je een verbinding met je platform opgebouwd maar je bent nog niet live. Check nu of de stream “gezond” is. In OBS rechtsonder zie je dat rechtsonder. Als het blokje groen is dan is het goed, is het geel dan is het kritisch en kunnen er framedrops zijn.
Recommended publications
  • Model Optimization for Deep Space Exploration Via Simulators and Deep Learning
    Model Optimization for Deep Space Exploration via Simulators and Deep Learning James Bird1,∗, Kellan Colburn2,∗, Linda Petzold1, Philip Lubin2 Abstract Machine learning, and eventually true artificial intelligence techniques, are extremely im- portant advancements in astrophysics and astronomy. We explore the application of deep learning using neural networks in order to automate the detection of astronomical bodies for future exploration missions, such as missions to search for signatures or suitability of life. The ability to acquire images, analyze them, and send back those that are important, as determined by the deep learning algorithm, is critical in bandwidth-limited applications. Our previous foundational work solidified the concept of using simulator images and deep learning in order to detect planets. Optimization of this process is of vital importance, as even a small loss in accuracy might be the difference between capturing and completely missing a possibly-habitable nearby planet. Through computer vision, deep learning, and simulators we introduce methods that optimize the detection of exoplanets. We show that maximum achieved accuracy can hit above 98% for multiple model architectures, even with a relatively small training set. Keywords: computer vision, simulator, deep learning, space, universe, exoplanet, object detection, novelty detection, neural network, machine learning, transfer learning, interstellar travel, planet detection 1. Introduction This paper will address some of the challenges and possibilities of exoplanet
    [Show full text]
  • Vol. 47, No. 2 June 2018 a New Star Appears in Europe Page 14 Journal
    Online PDF: ISSN 233333-9063 Vol. 47, No. 2 June 2018 Journal of the International Planetarium Society A New Star Appears in Europe Page 14 Reach for the stars... and beyond. ZEISS powerdome IV // INSPIRATION MADE BY ZEISS True Hybrid with brilliant stars and perfect renderings from a single source ZEISS powerdome IV brings many new features to your star theater: an integrated planetarium for earthbound and extraterrestrial astronomy with seamless transitions between optical and digital star fields (True Hybrid) | The universe from Earth via the solar system and Milky Way galaxy to the very edge of the observable space | Stereo projection | 8k performance | 10 bit color depth for smooth gradients | HEVC codec for efficient video renderings free of artifacts | All constellation figures, individually and in groups without any mutual overlapping | Telescope function for deep-sky imagery applying Astronomy Visualization Metadata | Complete image set of all Messier objects | Customizable polar lights, comets with gas and dust tails, and shooting stars with a great variety of parameters for location, brightness, colors and appearance | Simulation of day and night with dusk and dawn coloring of sky and panorama images | Customizable weather effects such as clouds, rain, fog, snow, rainbow, halos, air and light pollution effects | Digital rights management to secure your productions | Remote service for quick help, and much more from the only company serving planetariums for nearly a century. www.zeiss.com/planetariums zeiss-ad_pdIV_letter_x3.indd
    [Show full text]
  • Candidate Paolo GALLO
    POLITECNICO DI TORINO Master’s Degree in Computer Engineering Master’s Degree Thesis Development of a real-time solution for an interactive VR representation of large star catalogues Supervisors Candidate Prof. Andrea SANNA Paolo GALLO April, 2021 Abstract This thesis takes place in the context of Virtual Reality and Data Visualization techniques applied to large astronomical datasets. The goal of this work is to improve and extend the already existing Astra Data Navigator application, built with the Unity game engine, and make it capable of loading and displaying large star catalogues in a realistic and real-time 3D environment. The software was built in theVR laboratory of ALTEC - Aerospace Logistics Technology Engineering Company - while interfacing with other European projects such as NEANIAS and ESA’s Gaia mission, which is particularly relevant to this work. The catalogue of celestial objects observed by the Gaia astrometric satellite is the largest collection of stars available to date, counting over 1.8 billion entries; being able to navigate and interact with this data in 3D would be extremely useful for both scientific and educational purposes, but mostVR tools are limited to a much smaller object count and cannot be extended further. On the data management side, the application (which has an integrated star catalogue but also supports external data sources in the form of CSV files or SQL databases) offers the choice between two different modes: the user can choose to load all of the available data at startup and store it in the system memory, which requires more resources and increased loading time but then provides a seamless navigation of the 3D environment, or he can opt for a dynamic loading solution (better suited for large catalogues), that only selects relevant data based on the current observer position, saving a lot of resources but introducing additional loading times that interrupt the navigation experience.
    [Show full text]
  • Cloud-Based Visual Discovery in Astronomy: Novel EOSC Services for Exploring Large Scale Catalogues
    Novel EOSC services for Emerging Atmosphere, Underwater and Space Challenges 2021 April Cloud-Based Visual Discovery in Astronomy: Novel EOSC Services for Exploring Large Scale Catalogues Modern radioastronomy is currently undergoing a revolution e.g. with a new generation of interferometers such as the game changing Square-Kilometre Array (SKA)1, which is an international collaboration involving over 100 scientific and technological partners from 20 countries; upon its completion this will be the largest radio interferometer on earth. Such instrumentation infrastructures spearhead the next generation all-sky surveys towards a brand-new paradigm shift as multiwavelength all-sky surveys are expected to replace traditionally executed single-object observations, enabling to perform novel statistical studies and thus revealing previously unknown patterns and trends2. The scientific community is facing an emerging flurry of enormously large, incredibly rich and highly complex data volumes, e.g. when fully operational SKA is expected to generate data rates largely exceeding the global Internet traffic. The associated science-ready data products will pose extremely challenging technological demands on traditional approaches, e.g. analysis and imaging software tools will have to be adapted at various levels, if not completely re-designed from scratch, so as to run efficiently at scale with satisfactory performances. An earlier blog article3 discussed recent technological advances in the game engines and virtual reality fields relating to NEANIAS4 which is exploiting new tools and approaches to prototype services for agile, fit-for-purpose and sustainable offerings accessible through the European Open Science Cloud (EOSC5) to handle emerging, next generation radioastronomy data. The NEANIAS S1 services6 are delivering optimised cloud- based visual discovery for multiwavelength astrophysics datasets, ensuring scalability and exploiting innovative interfaces through virtual reality.
    [Show full text]
  • Space Engine Pc Game Free Download
    space engine pc game free download SpaceEngine Free Download (v0.990.42) SpaceEngine is a 1:1 scale science-based Universe simulator, featuring billions upon billions of galaxies, nebulae, stars, and planets, all shown at their full real-world scale. Explore Earth and our neighboring worlds in the Solar System, orbit a black hole in a galaxy billions of light-years away, or visit anything in between seamlessly, with no transitions. All of time and space are yours to explore – cruise between the stars at a million times the speed of light, and accelerate time to watch the orbital motions of a thousand worlds play out before your eyes. Every planet you encounter in your journey will feature procedural 3D terrain with detailed textures. Everything you see in the sky – stars and galaxies, planets and moons, asteroids and comets, black holes and neutron stars, star clusters and nebulae – are yours to explore at the press of a button. Spacecraft with Newtonian physics and pilot-assist autopilot features (in early development but fully usable) are yours to fly anywhere in the universe in the Flight Simulator mode. SpaceEngine is also very friendly for creators of mods and add-ons – create your own planets, star systems, even galaxies, import your own spacecraft models, create custom GUI skins, and more, all easily sharable with others. How to Download & Install SpaceEngine. Click the Download button below and you should be redirected to UploadHaven. Wait 5 seconds and click on the blue ‘download now’ button. Now let the download begin and wait for it to finish.
    [Show full text]
  • Kosmos : a Virtual 3-D Universe John Judnich Santa Clara University
    Santa Clara University Scholar Commons Computer Engineering Senior Theses Engineering Senior Theses 6-12-2013 Kosmos : a virtual 3-D universe John Judnich Santa Clara University Follow this and additional works at: https://scholarcommons.scu.edu/cseng_senior Part of the Computer Engineering Commons Recommended Citation Judnich, John, "Kosmos : a virtual 3-D universe" (2013). Computer Engineering Senior Theses. 3. https://scholarcommons.scu.edu/cseng_senior/3 This Thesis is brought to you for free and open access by the Engineering Senior Theses at Scholar Commons. It has been accepted for inclusion in Computer Engineering Senior Theses by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Santa Clara University DEPARTMENT of COMPUTER ENGINEERING Date: June 12, 2013 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY John Judnich ENTITLED Kosmos: A Virtual 3-D Universe BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF BACHELOR OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING 1 KOSMOS: A VIRTUAL 3-D UNIVERSE by John Judnich SENIOR DESIGN PROJECT REPORT Submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Engineering School of Engineering Santa Clara University Santa Clara, California June 12, 2013 2 ABSTRACT Kosmos is an application enabling interactive visualization of a fictional 3D universe. It offers users the opportunity to explore and experience an aesthetically pleasing virtual environment complete with billions of high-resolution planets and stars. Kosmos integrates several novel 3D rendering techniques in terrain rendering, large-scale particle systems, etc. to make this level of graphical realism and scale possible.
    [Show full text]
  • Big World Around Tiny Star Puts New Spin on Planet Formation 26 September 2019, by Marcia Dunn
    Big world around tiny star puts new spin on planet formation 26 September 2019, by Marcia Dunn massive planets may also exist around low-mass stars." Morales and his team maintain that gravitational instability in a young star's disk of gas and dust could, in some cases, result in the quick formation of huge gas planets—even when the star is minuscule. This new world is "an extraordinary candidate" for this process, said Hubert Klahr of Max Planck Institute for Astronomy in Germany, part of the research team. "This find prompts us to review our models." Jupiter-like planet with a blueish colour orbiting a cool red dwarf. Credit: © CARMENES/RenderArea/J. Bollaín/C. Gallego A giant world discovered around a tiny star is putting a new spin on how planets form. Astronomers reported Thursday they've found a Jupiter-like planet orbiting a star that's a mere 12% the mass of our sun. There may even be another big gas planet lurking in this system 31 light-years away. The Spanish-led team wrote in the journal Science Comparison of GJ 3512 to the Solar System and other that the newly confirmed planet did not form the nearby red-dwarf planetary systems. Planets around a usual, gradual way, where a solid core of merging solar-mass stars can grow until they start accreting gas particles takes shape before a gas buildup. and become giant planets such as Jupiter, in a few Instead, in a surprise to scientists, the planet millions of years. But we thought that small stars such as seems to have arisen straight from gas.
    [Show full text]
  • SN-Engine, a Scale-Free Geometric Modelling Environment
    SN-Engine, a Scale-free Geometric Modelling Environment T.A. Zhukov Abstract We present a new scale-free geometric modelling environment designed by the author of the paper. It allows one to consistently treat geometric objects of arbitrary size and offers extensive analytic and computational support for visualization of both real and artificial sceneries. Keywords: Geometric Modelling, Virtual Reality, Game Engine, 3D Visualization, Procedu- ral Generation. 1 INTRODUCTION Geometric modelling of real-world and imaginary objects is an important task that is ubiquitous in modern computer science. Today, geometric modelling environments (GME) are widely used in cartography [5], architecture [26], geology [24], hydrology [20], and astronomy [27]. Apart from being used for modelling, importing and storing real-world data, GMEs are crucially important in computer games industry [12]. Creating a detailed model of a real-world or imaginary environment is a task of great com- putational complexity. Modelling various physical phenomena like gravity, atmospheric light scattering, terrain weathering, and erosion processes requires full use of modern computer alge- bra algorithms as well as their efficient implementation. Finding exact and numeric solutions to differential, difference, and algebraic equations by means of computer algebra methods (see [7] and the references therein) is at the core of the crucial algorithms of modern geometric modelling environments. There exist a wide variety of geometric modelling environments, both universal and highly specialized. They include three-dimensional planetariums like SpaceEngine or Celestia, virtual Earth engine Outerra, procedural scenery generator Terragen, 3D computer graphics editors Autodesk 3ds Max, Blender, Houdini, and 3D game engines like Unreal Engine 4, CryEngine 3, arXiv:2006.12661v1 [cs.GR] 22 Jun 2020 and Unity.
    [Show full text]
  • CORDIS Results Pack on Exoplanets a Thematic Collection of Innovative EU-Funded Research Results
    ISSN 2599-8293 CORDIS Results Pack on exoplanets A thematic collection of innovative EU-funded research results November 2019 The race to find new planets and life beyond our solar system Research and Innovation Contents 3 Can planets beyond the Editorial solar system support life? Numerical models tell us For many years exoplanets, planets beyond our solar system, existed merely in theory and science fiction storylines. While there were those who believed in their existence, there were no means of detecting planets light years ahead. 4 This, however, changed radically over the last two decades with advances in Chemical fingerprints technology and capabilities in observation, both on Earth and in space. With of stars give clues to these advancements, exoplanets were no longer an idea or part of a story, they exoplanet make-up were real; and this CORDIS Results Pack will highlight some of the most exciting EU-funded research in the ongoing hunt for planets beyond our solar system. Today, exoplanetary research is developing at a startling rate. There have been more than 4 000 6 exoplanets discovered outside our solar system, illustrating just how diverse the planets in our galaxy are. There is an ongoing race to discover extra-solar ‘Earth-like’ planets where some form of Dusty disks act as a life may have evolved and could therefore, feasibly, host life one day in the future. nursery for nascent planets In the pursuit of exoplanets discovery Horizon 2020, the EU’s EUR 77 billion research and innovation funding programme for the period 2014-2020, supports scientific excellence in Europe and has contributed to high-profile scientific breakthroughs such as the discovery of exoplanets as seen with the SPECULOOS project, covered 8 as part of this pack.
    [Show full text]
  • Advances in Deep Space Exploration Via Simulators & Deep Learning
    Advances in Deep Space Exploration via Simulators & Deep Learning James Bird1,∗, Linda Petzold1, Philip Lubin2, Julia Deacon3 Abstract The NASA Starlight and Breakthrough Starshot programs conceptualizes fast interstellar travel via small relativistic spacecraft that are propelled by directed energy. This process is radically different from traditional space travel and trades large and slow spacecraft for small, fast, inexpensive, and fragile ones. The main goal of these wafer satellites is to gather useful images during their deep space journey. We introduce and solve some of the main problems that accompany this concept. First, we need an object detection system that can detect planets that we have never seen before, some containing features that we may not even know exist in the universe. Second, once we have images of exoplanets, we need a way to take these images and rank them by importance. Equipment fails and data rates are slow, thus we need a method to ensure that the most important images to humankind are the ones that are prioritized for data transfer. Finally, the energy on board is minimal and must be conserved and used sparingly. No exoplanet images should be missed, but using energy erroneously would be detrimental. We introduce simulator-based methods that leverage artificial intelligence, mostly in the form of computer vision, in order to solve all three of these issues. Our results confirm that simulators provide an extremely rich training environment that surpasses that of real images, and can be used to train models on features that have yet to be observed by humans. We also show that the immersive and adaptable environment provided by the simulator, combined with deep learning, lets us navigate and save energy in an otherwise implausible way.
    [Show full text]
  • Procedurally Generating an Artificial Galaxy
    Procedurally Generating an Artificial Galaxy Department of Statistics Bachelor Thesis, 15 ECTS Supervisor: Björn Holmquist March 2016 Author: Olof Elfwering Abstract The idea of procedurally generating artificial worlds has been around for a long time. It is used both for CGI effects in movies and, more prominently, for video games. It is done by big companies and small teams; professionals as well as beginners and hobbyists. It is an instrumental tool that enables even the smallest of development teams to create large worlds. While there is a lot of inspiration to draw from, the undertaking may be daunting for the beginner. The goal of this paper is to give an introduction to some of the concepts by taking us through the steps to procedurally generate a virtual galaxy full of stars and planets. Something simple that can be taken much further. We analyse statistical data and observations of space to create about 30 equations that superficially mimics a spiral galaxy with 100 billion solar systems, all with the help of some basic probability theory. Sammanfattning Idén om att processuellt generera artificiella världar är gammal. Metoden används både för CGI effekter i filmer och, framförallt, för tevespel. Det görs av stora företag och mindre studios; av professionella programmerare såväl som nybörjare och hobbyister. Det är ett kraftfullt verktyg som möjliggör även små team att skapa enorma världar. Men även om det finns mycket inspiration att hämta kan det framstå som en svår uppgift för nybörjaren. Målet med denna uppsats är att ge en introduktion till några av de grundläggande koncepten genom att gå igenom stegen för att processuellt generera en virtuell galax full med stjärnor och planeter.
    [Show full text]
  • IAU100: 1919-2019: 100 Years
    International Astronomical Union IAU100: 1919-2019: 100 years. Uniting our World to Explore the Universe Foreword The International Astronomical Union (IAU) will celebrate its 100th anniversary in 2019 under the theme “Uniting our World to Explore the Universe”. Following the remarkable success of the Inter- national Year of Astronomy 2009, this will be a global celebration highlighting the major achieve- ments of astronomy in the past century, with a strong emphasis on the use of astronomy as a tool for education, development and diplomacy. Astronomy embodies a unique combination of science and technology, and is also deeply rooted in our cultures and history. The inspirational aspects of astronomy, the common heritage of the sky and its cultural and historical significance, all place astronomy in a privileged position for enga- ging with the public and for helping us realise how much our society has evolved over time. For instance, one hundred years ago we did not know much about our own galaxy, whether there were planets outside the solar system or that light was not the only carrier to disentangle the mysteries of the universe. Nowadays we know that the Universe is composed by billions of galaxies, we have found over 3700 planets orbiting other stars and with the gravitational waves detections we have entered a new era of multimessenger astronomy. All of these have been possible thanks to crucial technological advancements during the past century and international collaboration. Thus, the IAU 100th anniversary provides a wonderful opportunity to highlight to the world the fantastic science, technology and inspiration that astronomy has brought us over the past cen- tury.
    [Show full text]