REVIEW ARTICLE published: 28 November 2014 doi: 10.3389/fphar.2014.00262 Biological redundancy of endogenous GPCR ligands in the gut and the potential for endogenous functional selectivity Georgina L. Thompson1, Meritxell Canals1 and Daniel P.Poole1,2 * 1 Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia 2 Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia Edited by: This review focuses on the existence and function of multiple endogenous agonists Dominique Massotte, Institut des of the somatostatin and opioid receptors with an emphasis on their expression in the Neurosciences Cellulaires et Intégratives, France gastrointestinal tract. These agonists generally arise from the proteolytic cleavage of prepropeptides during peptide maturation or from degradation of peptides by extracellular Reviewed by: Jakub Fichna, Medical University of or intracellular endopeptidases. In other examples, endogenous peptide agonists for the Lodz, Poland same G protein-coupled receptors can be products of distinct genes but contain high Pamela J. Hornby, Johnson & sequence homology. This apparent biological redundancy has recently been challenged Johnson, USA by the realization that different ligands may engender distinct receptor conformations *Correspondence: linked to different intracellular signaling profiles and, as such the existence of distinct Daniel P.Poole, Drug Discovery Biology, Monash Institute of ligands may underlie mechanisms to finely tune physiological responses. We propose that Pharmaceutical Sciences, 381 Royal further characterization of signaling pathways activated by these endogenous ligands will Parade, Parkville, VIC 3052, Australia provide invaluable insight into the mechanisms governing biased agonism. Moreover, these e-mail:
[email protected] ligands may prove useful in the design of novel therapeutic tools to target distinct signaling pathways, thereby favoring desirable effects and limiting detrimental on-target effects.