The Common Evolution of Geometry and Architecture from a Geodetic Point of View
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter 11. Three Dimensional Analytic Geometry and Vectors
Chapter 11. Three dimensional analytic geometry and vectors. Section 11.5 Quadric surfaces. Curves in R2 : x2 y2 ellipse + =1 a2 b2 x2 y2 hyperbola − =1 a2 b2 parabola y = ax2 or x = by2 A quadric surface is the graph of a second degree equation in three variables. The most general such equation is Ax2 + By2 + Cz2 + Dxy + Exz + F yz + Gx + Hy + Iz + J =0, where A, B, C, ..., J are constants. By translation and rotation the equation can be brought into one of two standard forms Ax2 + By2 + Cz2 + J =0 or Ax2 + By2 + Iz =0 In order to sketch the graph of a quadric surface, it is useful to determine the curves of intersection of the surface with planes parallel to the coordinate planes. These curves are called traces of the surface. Ellipsoids The quadric surface with equation x2 y2 z2 + + =1 a2 b2 c2 is called an ellipsoid because all of its traces are ellipses. 2 1 x y 3 2 1 z ±1 ±2 ±3 ±1 ±2 The six intercepts of the ellipsoid are (±a, 0, 0), (0, ±b, 0), and (0, 0, ±c) and the ellipsoid lies in the box |x| ≤ a, |y| ≤ b, |z| ≤ c Since the ellipsoid involves only even powers of x, y, and z, the ellipsoid is symmetric with respect to each coordinate plane. Example 1. Find the traces of the surface 4x2 +9y2 + 36z2 = 36 1 in the planes x = k, y = k, and z = k. Identify the surface and sketch it. Hyperboloids Hyperboloid of one sheet. The quadric surface with equations x2 y2 z2 1. -
Calculus & Analytic Geometry
TQS 126 Spring 2008 Quinn Calculus & Analytic Geometry III Quadratic Equations in 3-D Match each function to its graph 1. 9x2 + 36y2 +4z2 = 36 2. 4x2 +9y2 4z2 =0 − 3. 36x2 +9y2 4z2 = 36 − 4. 4x2 9y2 4z2 = 36 − − 5. 9x2 +4y2 6z =0 − 6. 9x2 4y2 6z =0 − − 7. 4x2 + y2 +4z2 4y 4z +36=0 − − 8. 4x2 + y2 +4z2 4y 4z 36=0 − − − cone • ellipsoid • elliptic paraboloid • hyperbolic paraboloid • hyperboloid of one sheet • hyperboloid of two sheets 24 TQS 126 Spring 2008 Quinn Calculus & Analytic Geometry III Parametric Equations (§10.1) and Vector Functions (§13.1) Definition. If x and y are given as continuous function x = f(t) y = g(t) over an interval of t-values, then the set of points (x, y)=(f(t),g(t)) defined by these equation is a parametric curve (sometimes called aplane curve). The equations are parametric equations for the curve. Often we think of parametric curves as describing the movement of a particle in a plane over time. Examples. x = 2cos t x = et 0 t π 1 t e y = 3sin t ≤ ≤ y = ln t ≤ ≤ Can we find parameterizations of known curves? the line segment circle x2 + y2 =1 from (1, 3) to (5, 1) Why restrict ourselves to only moving through planes? Why not space? And why not use our nifty vector notation? 25 Definition. If x, y, and z are given as continuous functions x = f(t) y = g(t) z = h(t) over an interval of t-values, then the set of points (x,y,z)= (f(t),g(t), h(t)) defined by these equation is a parametric curve (sometimes called a space curve). -
Projective Geometry: a Short Introduction
Projective Geometry: A Short Introduction Lecture Notes Edmond Boyer Master MOSIG Introduction to Projective Geometry Contents 1 Introduction 2 1.1 Objective . .2 1.2 Historical Background . .3 1.3 Bibliography . .4 2 Projective Spaces 5 2.1 Definitions . .5 2.2 Properties . .8 2.3 The hyperplane at infinity . 12 3 The projective line 13 3.1 Introduction . 13 3.2 Projective transformation of P1 ................... 14 3.3 The cross-ratio . 14 4 The projective plane 17 4.1 Points and lines . 17 4.2 Line at infinity . 18 4.3 Homographies . 19 4.4 Conics . 20 4.5 Affine transformations . 22 4.6 Euclidean transformations . 22 4.7 Particular transformations . 24 4.8 Transformation hierarchy . 25 Grenoble Universities 1 Master MOSIG Introduction to Projective Geometry Chapter 1 Introduction 1.1 Objective The objective of this course is to give basic notions and intuitions on projective geometry. The interest of projective geometry arises in several visual comput- ing domains, in particular computer vision modelling and computer graphics. It provides a mathematical formalism to describe the geometry of cameras and the associated transformations, hence enabling the design of computational ap- proaches that manipulates 2D projections of 3D objects. In that respect, a fundamental aspect is the fact that objects at infinity can be represented and manipulated with projective geometry and this in contrast to the Euclidean geometry. This allows perspective deformations to be represented as projective transformations. Figure 1.1: Example of perspective deformation or 2D projective transforma- tion. Another argument is that Euclidean geometry is sometimes difficult to use in algorithms, with particular cases arising from non-generic situations (e.g. -
P. 1 Math 490 Notes 7 Zero Dimensional Spaces for (SΩ,Τo)
p. 1 Math 490 Notes 7 Zero Dimensional Spaces For (SΩ, τo), discussed in our last set of notes, we can describe a basis B for τo as follows: B = {[λ, λ] ¯ λ is a non-limit ordinal } ∪ {[µ + 1, λ] ¯ λ is a limit ordinal and µ < λ}. ¯ ¯ The sets in B are τo-open, since they form a basis for the order topology, but they are also closed by the previous Prop N7.1 from our last set of notes. Sets which are simultaneously open and closed relative to the same topology are called clopen sets. A topology with a basis of clopen sets is defined to be zero-dimensional. As we have just discussed, (SΩ, τ0) is zero-dimensional, as are the discrete and indiscrete topologies on any set. It can also be shown that the Sorgenfrey line (R, τs) is zero-dimensional. Recall that a basis for τs is B = {[a, b) ¯ a, b ∈R and a < b}. It is easy to show that each set [a, b) is clopen relative to τs: ¯ each [a, b) itself is τs-open by definition of τs, and the complement of [a, b)is(−∞,a)∪[b, ∞), which can be written as [ ¡[a − n, a) ∪ [b, b + n)¢, and is therefore open. n∈N Closures and Interiors of Sets As you may know from studying analysis, subsets are frequently neither open nor closed. However, for any subset A in a topological space, there is a certain closed set A and a certain open set Ao associated with A in a natural way: Clτ A = A = \{B ¯ B is closed and A ⊆ B} (Closure of A) ¯ o Iτ A = A = [{U ¯ U is open and U ⊆ A}. -
Molecular Symmetry
Molecular Symmetry Symmetry helps us understand molecular structure, some chemical properties, and characteristics of physical properties (spectroscopy) – used with group theory to predict vibrational spectra for the identification of molecular shape, and as a tool for understanding electronic structure and bonding. Symmetrical : implies the species possesses a number of indistinguishable configurations. 1 Group Theory : mathematical treatment of symmetry. symmetry operation – an operation performed on an object which leaves it in a configuration that is indistinguishable from, and superimposable on, the original configuration. symmetry elements – the points, lines, or planes to which a symmetry operation is carried out. Element Operation Symbol Identity Identity E Symmetry plane Reflection in the plane σ Inversion center Inversion of a point x,y,z to -x,-y,-z i Proper axis Rotation by (360/n)° Cn 1. Rotation by (360/n)° Improper axis S 2. Reflection in plane perpendicular to rotation axis n Proper axes of rotation (C n) Rotation with respect to a line (axis of rotation). •Cn is a rotation of (360/n)°. •C2 = 180° rotation, C 3 = 120° rotation, C 4 = 90° rotation, C 5 = 72° rotation, C 6 = 60° rotation… •Each rotation brings you to an indistinguishable state from the original. However, rotation by 90° about the same axis does not give back the identical molecule. XeF 4 is square planar. Therefore H 2O does NOT possess It has four different C 2 axes. a C 4 symmetry axis. A C 4 axis out of the page is called the principle axis because it has the largest n . By convention, the principle axis is in the z-direction 2 3 Reflection through a planes of symmetry (mirror plane) If reflection of all parts of a molecule through a plane produced an indistinguishable configuration, the symmetry element is called a mirror plane or plane of symmetry . -
Squaring the Circle in Elliptic Geometry
Rose-Hulman Undergraduate Mathematics Journal Volume 18 Issue 2 Article 1 Squaring the Circle in Elliptic Geometry Noah Davis Aquinas College Kyle Jansens Aquinas College, [email protected] Follow this and additional works at: https://scholar.rose-hulman.edu/rhumj Recommended Citation Davis, Noah and Jansens, Kyle (2017) "Squaring the Circle in Elliptic Geometry," Rose-Hulman Undergraduate Mathematics Journal: Vol. 18 : Iss. 2 , Article 1. Available at: https://scholar.rose-hulman.edu/rhumj/vol18/iss2/1 Rose- Hulman Undergraduate Mathematics Journal squaring the circle in elliptic geometry Noah Davis a Kyle Jansensb Volume 18, No. 2, Fall 2017 Sponsored by Rose-Hulman Institute of Technology Department of Mathematics Terre Haute, IN 47803 a [email protected] Aquinas College b scholar.rose-hulman.edu/rhumj Aquinas College Rose-Hulman Undergraduate Mathematics Journal Volume 18, No. 2, Fall 2017 squaring the circle in elliptic geometry Noah Davis Kyle Jansens Abstract. Constructing a regular quadrilateral (square) and circle of equal area was proved impossible in Euclidean geometry in 1882. Hyperbolic geometry, however, allows this construction. In this article, we complete the story, providing and proving a construction for squaring the circle in elliptic geometry. We also find the same additional requirements as the hyperbolic case: only certain angle sizes work for the squares and only certain radius sizes work for the circles; and the square and circle constructions do not rely on each other. Acknowledgements: We thank the Mohler-Thompson Program for supporting our work in summer 2014. Page 2 RHIT Undergrad. Math. J., Vol. 18, No. 2 1 Introduction In the Rose-Hulman Undergraduate Math Journal, 15 1 2014, Noah Davis demonstrated the construction of a hyperbolic circle and hyperbolic square in the Poincar´edisk [1]. -
Elliptic Geometry Hawraa Abbas Almurieb Spherical Geometry Axioms of Incidence
Elliptic Geometry Hawraa Abbas Almurieb Spherical Geometry Axioms of Incidence • Ax1. For every pair of antipodal point P and P’ and for every pair of antipodal point Q and Q’ such that P≠Q and P’≠Q’, there exists a unique circle incident with both pairs of points. • Ax2. For every great circle c, there exist at least two distinct pairs of antipodal points incident with c. • Ax3. There exist three distinct pairs of antipodal points with the property that no great circle is incident with all three of them. Betweenness Axioms Betweenness fails on circles What is the relation among points? • (A,B/C,D)= points A and B separates C and D 2. Axioms of Separation • Ax4. If (A,B/C,D), then points A, B, C, and D are collinear and distinct. In other words, non-collinear points cannot separate one another. • Ax5. If (A,B/C,D), then (B,A/C,D) and (C,D/A,B) • Ax6. If (A,B/C,D), then not (A,C/B,D) • Ax7. If points A, B, C, and D are collinear and distinct then (A,B/C,D) , (A,C/B,D) or (A,D/B,C). • Ax8. If points A, B, and C are collinear and distinct then there exists a point D such that(A,B/C,D) • Ax9. For any five distinct collinear points, A, B, C, D, and E, if (A,B/E,D), then either (A,B/C,D) or (A,B/C,E) Definition • Let l and m be any two lines and let O be a point not on either of them. -
Higher Dimensional Conundra
Higher Dimensional Conundra Steven G. Krantz1 Abstract: In recent years, especially in the subject of harmonic analysis, there has been interest in geometric phenomena of RN as N → +∞. In the present paper we examine several spe- cific geometric phenomena in Euclidean space and calculate the asymptotics as the dimension gets large. 0 Introduction Typically when we do geometry we concentrate on a specific venue in a particular space. Often the context is Euclidean space, and often the work is done in R2 or R3. But in modern work there are many aspects of analysis that are linked to concrete aspects of geometry. And there is often interest in rendering the ideas in Hilbert space or some other infinite dimensional setting. Thus we want to see how the finite-dimensional result in RN changes as N → +∞. In the present paper we study some particular aspects of the geometry of RN and their asymptotic behavior as N →∞. We choose these particular examples because the results are surprising or especially interesting. We may hope that they will lead to further studies. It is a pleasure to thank Richard W. Cottle for a careful reading of an early draft of this paper and for useful comments. 1 Volume in RN Let us begin by calculating the volume of the unit ball in RN and the surface area of its bounding unit sphere. We let ΩN denote the former and ωN−1 denote the latter. In addition, we let Γ(x) be the celebrated Gamma function of L. Euler. It is a helpful intuition (which is literally true when x is an 1We are happy to thank the American Institute of Mathematics for its hospitality and support during this work. -
+ 2R - P = I + 2R - P + 2, Where P, I, P Are the Invariants P and Those of Zeuthen-Segre for F
232 THE FOURTH DIMENSION. [Feb., N - 4p - (m - 2) + 2r - p = I + 2r - p + 2, where p, I, p are the invariants p and those of Zeuthen-Segre for F. If I is the same invariant for F, since I — p = I — p, we have I = 2V — 4p — m = 2s — 4p — m. Hence 2s is equal to the "equivalence" in nodes of the point (a, b, c) in the evaluation of the invariant I for F by means of the pencil Cy. This property can be shown directly for the following cases: 1°. F has only ordinary nodes. 2°. In the vicinity of any of these nodes there lie other nodes, or ordinary infinitesimal multiple curves. In these cases it is easy to show that in the vicinity of the nodes all the numbers such as h are equal to 2. It would be interesting to know if such is always the case, but the preceding investigation shows that for the applications this does not matter. UNIVERSITY OF KANSAS, October 17, 1914. THE FOURTH DIMENSION. Geometry of Four Dimensions. By HENRY PARKER MANNING, Ph.D. New York, The Macmillan Company, 1914. 8vo. 348 pp. EVERY professional mathematician must hold himself at all times in readiness to answer certain standard questions of perennial interest to the layman. "What is, or what are quaternions ?" "What are least squares?" but especially, "Well, have you discovered the fourth dimension yet?" This last query is the most difficult of the three, suggesting forcibly the sophists' riddle "Have you ceased beating your mother?" The fact is that there is no common locus standi for questioner and questioned. -
Golden Ratio: a Subtle Regulator in Our Body and Cardiovascular System?
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/306051060 Golden Ratio: A subtle regulator in our body and cardiovascular system? Article in International journal of cardiology · August 2016 DOI: 10.1016/j.ijcard.2016.08.147 CITATIONS READS 8 266 3 authors, including: Selcuk Ozturk Ertan Yetkin Ankara University Istinye University, LIV Hospital 56 PUBLICATIONS 121 CITATIONS 227 PUBLICATIONS 3,259 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: microbiology View project golden ratio View project All content following this page was uploaded by Ertan Yetkin on 23 August 2019. The user has requested enhancement of the downloaded file. International Journal of Cardiology 223 (2016) 143–145 Contents lists available at ScienceDirect International Journal of Cardiology journal homepage: www.elsevier.com/locate/ijcard Review Golden ratio: A subtle regulator in our body and cardiovascular system? Selcuk Ozturk a, Kenan Yalta b, Ertan Yetkin c,⁎ a Abant Izzet Baysal University, Faculty of Medicine, Department of Cardiology, Bolu, Turkey b Trakya University, Faculty of Medicine, Department of Cardiology, Edirne, Turkey c Yenisehir Hospital, Division of Cardiology, Mersin, Turkey article info abstract Article history: Golden ratio, which is an irrational number and also named as the Greek letter Phi (φ), is defined as the ratio be- Received 13 July 2016 tween two lines of unequal length, where the ratio of the lengths of the shorter to the longer is the same as the Accepted 7 August 2016 ratio between the lengths of the longer and the sum of the lengths. -
Properties of Euclidean Space
Section 3.1 Properties of Euclidean Space As has been our convention throughout this course, we use the notation R2 to refer to the plane (two dimensional space); R3 for three dimensional space; and Rn to indicate n dimensional space. Alternatively, these spaces are often referred to as Euclidean spaces; for example, \three dimensional Euclidean space" refers to R3. In this section, we will point out many of the special features common to the Euclidean spaces; in Chapter 4, we will see that many of these features are shared by other \spaces" as well. Many of the graphics in this section are drawn in two dimensions (largely because this is the easiest space to visualize on paper), but you should be aware that the ideas presented apply to n dimensional Euclidean space, not just to two dimensional space. Vectors in Euclidean Space When we refer to a vector in Euclidean space, we mean directed line segments that are embedded in the space, such as the vector pictured below in R2: We often refer to a vector, such as the vector AB shown below, by its initial and terminal points; in this example, A is the initial point of AB, and B is the terminal point of the vector. While we often think of n dimensional space as being made up of points, we may equivalently consider it to be made up of vectors by identifying points and vectors. For instance, we identify the point (2; 1) in two dimensional Euclidean space with the vector with initial point (0; 0) and terminal point (2; 1): 1 Section 3.1 In this way, we think of n dimensional Euclidean space as being made up of n dimensional vectors. -
The Motion of Point Particles in Curved Spacetime
Living Rev. Relativity, 14, (2011), 7 LIVINGREVIEWS http://www.livingreviews.org/lrr-2011-7 (Update of lrr-2004-6) in relativity The Motion of Point Particles in Curved Spacetime Eric Poisson Department of Physics, University of Guelph, Guelph, Ontario, Canada N1G 2W1 email: [email protected] http://www.physics.uoguelph.ca/ Adam Pound Department of Physics, University of Guelph, Guelph, Ontario, Canada N1G 2W1 email: [email protected] Ian Vega Department of Physics, University of Guelph, Guelph, Ontario, Canada N1G 2W1 email: [email protected] Accepted on 23 August 2011 Published on 29 September 2011 Abstract This review is concerned with the motion of a point scalar charge, a point electric charge, and a point mass in a specified background spacetime. In each of the three cases the particle produces a field that behaves as outgoing radiation in the wave zone, and therefore removes energy from the particle. In the near zone the field acts on the particle and gives rise toa self-force that prevents the particle from moving on a geodesic of the background spacetime. The self-force contains both conservative and dissipative terms, and the latter are responsible for the radiation reaction. The work done by the self-force matches the energy radiated away by the particle. The field’s action on the particle is difficult to calculate because of its singular nature:the field diverges at the position of the particle. But it is possible to isolate the field’s singular part and show that it exerts no force on the particle { its only effect is to contribute to the particle's inertia.