Řízená Termojaderná Fúze Pro Každého

Total Page:16

File Type:pdf, Size:1020Kb

Řízená Termojaderná Fúze Pro Každého ŘÍZENÁ TERMOJADERNÁ FÚZE PRO KAŽDÉHO MILAN ŘÍPA JAN MLYNÁŘ VLADIMÍR WEINZETTL FRANTIŠEK ŽÁČEK PUBLIKACE BYLA VYDÁNA PŘI PŘÍLEŽITOSTI 50. VÝROČÍ ZALOŽENÍ MOTTO ÚSTAVU FYZIKY PLAZMATU AKADEMIE VĚD ČESKÉ REPUBLIKY, V. V. I. Nyní je všem jasné, že první úvahy o tom, jak se dveře do vytoužené komnaty mimořádně vysokých teplot otevřou hladce a bez skřípotu, se při prvním nárazu tvůrčí energie fyziků ukázaly falešné, stejně jako naděje hříšníka vstoupit v království nebeské, aniž by prošel očistcem. Pokud snad mohou být nějaké pochybnosti o tom, že problém termojaderné syntézy bude vyřešen, pak pouze není jasné, jak dlouho se v očistci zdržíme. Z něho musíme vystoupit s ideální vakuovou technikou, přesně určenou geometrií magnetických siločar, s naprogramovanými režimy elektrických obvodů, nesouce v rukou klidné, stabilní vysokoteplotní plazma, čisté jako mysl teoretického fyzika, ještě nenarušeného setkáním s experimentálními fakty. L. A. Arcimovič PODĚKOVÁNÍ OBSAH První vydání Předmluvy 6 Děkuji vedení Ústavu fyziky plazmatu AV ČR, v. v. i., v čele s ředitelem prof. Ing. Dr. Pavlem Chráskou, DrSc., Minulost a budoucnost termojaderné fúze v datech ▯ Milan Řípa 8 že nám umožnilo knížku napsat. Děkuji svým spolupracovníkům-spoluautorům, RNDr. Janu Mlynářovi, Ph.D., Přínos O. A. Lavrentěva k výzkumu termojaderné fúze ▯ Milan Řípa 16 Mgr. Vladimíru Weinzettlovi, Ing. Františku Žáčkovi, CSc., za neuvěřitelně příjemnou, povzbudivou a inspirující Proč právě termojaderná fúze? ▯ Vladimír Weinzettl 19 tvůrčí atmosféru. Děkuji dalším zaměstnancům Ústavu fyziky plazmatu, kteří pomohli radou: Ing. Jiřímu Matějíč- Plazma a princip termojaderné fúze ▯ Milan Řípa 22 kovi, Ph.D., Ing. Ivanu Ďuranovi, doc. Ing. Pavlu Šunkovi, CSc., Ph.D., RNDr. Karlu Koláčkovi, CSc., Ing. Jiřímu Magnetické a inerciální udržení ▯ Milan Řípa, Jiří Limpouch 25 Ullschmiedovi, CSc., a RNDr. Jaroslavu Štrausovi. Jsem rád, že mohu za totéž poděkovat dlouholetému zaměst- Princip tokamaku ▯ Vladimír Weinzettl 33 nanci Fyzikálního ústavu AV ČR Ing. Otu Štirandovi, CSc., prof. RNDr. Milanu Tichému, DrSc., z Matematicko-fy- Historie termojaderné fúze ve světě ▯ Milan Řípa 39 zikální fakulty UK a zejména děkuji doc. Ing. Jiřímu Limpouchovi, CSc., z Fakulty jaderné a fyzikálně inženýrské Historie termojaderné fúze v České republice ▯ František Žáček 53 ČVUT za cenné připomínky k popisu inerciálního udržení. Nemohu zapomenout na jazykovou korekturu Významná termojaderná zařízení ▯ Milan Řípa, Jan Mlynář 56 a připomínky Ing. Marie Dufkové (Energetická společnost ČEZ, a. s.), Roberta a Michaely Čapkových, stejně tak ITER ▯ Milan Řípa 81 na mimořádně pečlivé přečtení rukopisu paní Irenou Webrovou (Tiskový odbor Akademie věd České republiky). Měření parametrů plazmatu tokamaku COMPASS – diagnostika ▯ Vladimír Weinzettl 90 Tak malá knížečka a tolik lidí přispělo k jejímu napsání a vydání… Termojaderné technologie ▯ Milan Řípa 102 Mezinárodní spolupráce České republiky v oblasti termojaderné fúze ▯ Milan Řípa 107 Milan Řípa, editor Budoucnost termojaderné fúze ▯ Jan Mlynář 110 V Praze 15. dubna 2005 Doslov ▯ Milan Řípa 113 Fúze na internetu ▯ Vladimír Weinzettl 114 Výkladový slovník ▯ Milan Řípa, František Žáček 117 Předpony pro vedlejší jednotky 144 Druhé a zejména třetí, přepracované vydání Literatura ▯ Milan Řípa, Jan Mlynář 145 Děkuji řediteli Ing. Petru Křenkovi, CSc., že nám umožnil přepracovat a vydat mimořádně úspěšnou knížku a po- Resumé – Controlled Thermonuclear Fusion for Everybody 149 chopitelně děkuji spoluautorům RNDr. Vladimíru Weinzettlovi, Ph.D., Ing. Žáčkovi, CSc., RNDr. Janu Mlynářovi, Autoři 150 Ph.D., za aktualizaci „svých kapitol“, RNDr. Vladimíru Weinzettlovi, Ph.D., za napsání zcela nové a užitečné kapitoly „Měření parametrů plazmatu – diagnostika“ a RNDr. Janu Mlynářovi, Ph.D., za podrobné přečtení tex- tu, které se stalo východiskem pro aktualizační práci ostatních autorů. Děkuji redaktorce ITER Newsline Sabině Griffi thové, která obratem odpovídala na zvídavé otázky. Děkuji zástupkyni společnosti ČEZ Ing. Marii Dufkové za to, že zajistila grafi cké zpracování knížky a bude se podílet na její distribuci. Milan Řípa V Praze 15. dubna 2011 6 ŘÍZENÁ TERMOJADERNÁ FÚZE PRO KAŽDÉHO PŘEDMLUVA 7 PŘEDMLUVA První vydání více než čtyřicet let TOKAMAK! Takže skutečnost předběhla vizi pana profesora o sedm roků! Výkon 16 MW Spolu s kolegy z Ústavu fyziky plazmatu AV ČR jsme se v roce 20. výročí generování prvního plazmatu na dosud tokamaku JET v roce 1997 je menší než příkon ohřevu plazmatu a reakce trvala jen dvě sekundy. Připravova- největším tokamaku na světě – evropském JET – pokusili sepsat, a v roce, který by měl rozhodnout o místě ný mezinárodní tokamak ITER příkon ohřevu zesílí nejméně desetkrát, a protože vinutí elektromagnetů bude stavby termojaderného reaktoru ITER poskytnout co nejširší veřejnosti základní informace o tom, co termoja- supravodivé, výboj zhasne až po více než deseti minutách. derná energie pro společnost znamená. Důraz jsme kladli na historii, na cestu, kterou vědci a technici museli Třetí otázka se týká stavu prací na ITER. Tomuto tématu se podrobně věnuje kapitola se stejným názvem. Práce zvládnout, než dospěli ke stavbě ITER. Ostatně projektované termojaderné zařízení ITER (původně International na jihu Francie pokračují ovšem pravidelným tempem a to, co platí dnes, kdy knížku píšeme, bude v okamžiku Thermonuclear Experimental Reactor) latinsky znamená CESTA… jejího vydání překonáno. Doporučujeme navštívit stránky http://www.iter.org či Facebook patřící ITER. Knížce dominují dvě kapitoly: obsáhlý přehled historie výzkumu fúze v datech zakončený výhledem do její Pět let je v historii výzkumu řízené termojaderné fúze hodně. Začal se stavět mezinárodní tokamak ITER, v Čes- nejbližší budoucnosti a přehled velkých termojaderných zařízení. Odborné termíny a zkratky jsou vysvětleny ké republice fungují dokonce dva tokamaky: COMPASS v Ústavu fyziky plazmatu AV ČR, v. v. i., a GOLEM na buď poznámkami v textu pod čarou nebo ve Výkladovém slovníku. Další informace o fúzi najdete v kapitole Fakultě jaderné a fyzikálně inženýrské ČVUT, tamtéž obhájili diplomové práce první studenti zaměření Fyzika Literatura nebo Fúze na internetu. a technika termojaderné fúze. Ve výzkumu fúze se objevily nové fyzikální, technologické a dokonce i historické poznatky. V neposlední řadě nezaháleli autoři a během pěti let nabyli nových zkušeností. Určitě všichni uvítali Milan Řípa, Jan Mlynář, možnost třetího vydání nesmírně úspěšné knížečky. Třetí vydání doznalo oproti předešlým řady změn. Vznikla Vladimír Weinzettl, František Žáček nová kapitola Přínos O. A. Lavrentěva k výzkumu termojaderné fúze, byl podstatně rozšířen Výkladový slovní- ček, kde jsme ponechali anglické ekvivalenty, jsou doplněny kapitoly Významná termojaderná zařízení, Minulost a budoucnost termojaderné fúze v datech, Historie termojaderné fúze v Česku a ITER, je zcela přepracována Druhé a zejména třetí vydání kapitola Historie termojaderné fúze ve světě. Pochopitelně byly opraveny věcné chyby a překlepy prvních dvou Záhy po zveřejnění informace v denním tisku bylo první vydání knížky, kterou Ústav fyziky plazmatu AV ČR posí- vydání. lal zájemcům zdarma, rozebráno. Naštěstí se objevila nabídka Energetické společnosti ČEZ, a. s., vydat knížku Tři z autorů pravidelně přednášejí na vysokých školách. Dva se věnují popularizaci řízené termojaderné fúze stejným nákladem podruhé a zařadit ji do svého velkorysého programu energetického vzdělávání mládeže Svět formou článků a přednášek na středních školách a dva jsou členy Public Information Network při European energie. V druhém vydání jsme doplnili aktuální informace o projektu ITER a rozšířili Výkladový slovník. Rovněž Fusion Development Agreement – neformálního sdružení evropských popularizátorů fúze. Jmenované aktivity jsme zahrnuli připomínky čtenářů prvního vydání týkající se srozumitelnosti textu. nesmírně pomohly při aktualizaci knížky. Poslední poznámka se týká jazykového vybavení autorů. Celá čtveřice Pravidelný kontakt autorů s veřejností identifi koval tři opakující se otázky. Zcela zásadní je rozdíl mezi štěpnou zná ruštinu, což je v případě termojaderné fúze trefa do černého, neboť nejúspěšnější termojaderné zařízení a slučovací (fúzní) jadernou reakcí. To, že si lidé pod pojmem jaderná energie představí v lepším případě Teme- tokamak vymysleli v Moskvě. lín a v horším případě Černobyl či Fukušimu, nelze mít laikům za zlé. Jedním z úkolů knížky je zdůraznit zásadní Věříme, že i třetí vydání bude stejně úspěšné jako dvě předchozí. rozdíly mezi oběma typy jaderných reakcí. Štěpný reaktor v každém okamžiku obsahuje desítky tun paliva. V reaktoru probíhá řetězová reakce. Jak použité palivo, tak odpad tvořený mnoha různými prvky jsou a zůstá- Milan Řípa, Jan Mlynář, vají radioaktivní stovky tisíc let. Naproti tomu slučovací či fúzní reaktor v každém okamžiku obsahuje gramová Vladimír Weinzettl, František Žáček množství paliva. Reakce není řetězová a jakákoli nestandardní situace znamená okamžité vyhasnutí jaderné reakce. Primární palivo deuterium a lithium ani odpad helium nejsou radioaktivní. Druhá otázka zní „kdy?“. Kdy bude fúze vyrábět elektřinu? Věřme, že kritická bude polovina tohoto století. Mimochodem média ráda papouškují tezi o jediné platné konstantě ve fúzním výzkumu: „V kterémkoli okamži- ku platí, že fúze bude fungovat za 20 let.“ V roce 1955 na 1. mezinárodní konferenci o mírovém využití atomové energie v Ženevě totiž významný indický vědec Homi Bhabha prohlásil, že do 20 let bude známa metoda jak uvolnit jadernou energii pomocí fúze.
Recommended publications
  • Validation of Equilibrium Tools on the COMPASS Tokamak Jakub Urban, L
    Validation of equilibrium tools on the COMPASS tokamak Jakub Urban, L. C. Appel, J. F. Artaud, Blaise Faugeras, Josef Havlicek, Michael Komm, Ivan Lupelli, Matěj Peterka To cite this version: Jakub Urban, L. C. Appel, J. F. Artaud, Blaise Faugeras, Josef Havlicek, et al.. Validation of equi- librium tools on the COMPASS tokamak. SOFT 2014, 2014, San Sebastian, Spain. hal-01105044 HAL Id: hal-01105044 https://hal.archives-ouvertes.fr/hal-01105044 Submitted on 9 Oct 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Validation of equilibrium tools on the COMPASS tokamak J. Urbana, L.C. Appelb, J.F. Artaudc, B. Faugerasd, J. Havliceka,e, M. Komma, I. Lupellib, M. Peterkaa,e aInstitute of Plasma Physics ASCR, Za Slovankou 3, 182 00 Praha 8, Czech Republic bCCFE, Culham Science Centre, Abingdon, Oxfordshire, UK cCEA, IRFM, F-13108 Saint Paul Lez Durance, France dLaboratoire J.A. Dieudonn´e,UMR 7351, Universit´ede Nice Sophia-Antipolis, Parc Valrose, 06108 Nice Cedex 02, France eDepartment of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University in Prague, V Holeˇsoviˇck´ach 2, 180 00 Praha 8, Czech Republic Abstract Various MHD (magnetohydrodynamic) equilibrium tools, some of which being recently developed or considerably updated, are used on the COMPASS tokamak at IPP Prague.
    [Show full text]
  • Engineering Optimization of Stellarator Coils Lead to Improvements in Device Maintenance
    2015 IEEE 26th Symposium on Fusion Engineering (SOFE 2015) Austin, Texas, USA 31 May – 4 June 2015 IEEE Catalog Number: CFP15SOF-POD ISBN: 978-1-4799-8265-3 Copyright © 2015 by the Institute of Electrical and Electronics Engineers, Inc All Rights Reserved Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923. For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved. ***This publication is a representation of what appears in the IEEE Digital Libraries. Some format issues inherent in the e-media version may also appear in this print version. IEEE Catalog Number: CFP15SOF-POD ISBN (Print-On-Demand): 978-1-4799-8265-3 ISBN (Online): 978-1-4799-8264-6 ISSN: 1078-8891 Additional Copies of This Publication Are Available From: Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: [email protected] Web: www.proceedings.com TABLE OF CONTENTS ENGINEERING OPTIMIZATION OF STELLARATOR COILS LEAD TO IMPROVEMENTS IN DEVICE MAINTENANCE ..................................................................................................................................................1 T. Brown, J. Breslau, D. Gates, N. Pomphrey, A. Zolfaghari NSTX TOROIDAL FIELD COIL TURN TO TURN SHORT DETECTION .................................................................7 S. Ramakrishnan, W.
    [Show full text]
  • Visible Light Measurements on the COMPASS Tokamak
    Visible light measurements on the COMPASS tokamak by Olivier Van Hoey Faculty of Engineering Department of Applied Physics Head of the department: Prof. Dr. Ir. C. Leys Visible light measurements on the COMPASS tokamak by Olivier Van Hoey Promoter: Prof. Dr. Ir. G. Van Oost Copromoter: D. Naydenkova The research reported in this thesis was performed at the Institute of Plasma Physics AS CR, Za Slovankou 1782/3, 182 00 Prague 8, Czech Republic Thesis submitted in order to obtain the degree of Master of Physics and Astronomy, option: Research Academic year 2009-2010 The most exciting phrase to hear in science, the one that heralds new discoveries, is not 'Eureka!', but 'That's funny...' - Isaac Asimov. Give me a lever long enough and a fulcrum on which to place it, and I shall move the world - Archimedes Nothing in life is to be feared. It is only to be understood - Marie Curie No amount of experimentation can ever prove me right; a single experiment can prove me wrong - Albert Einstein The science of today is the technology of tomorrow - Edward Teller Allowance to loan The author gives permission to make this thesis available for consultation and to copy parts of the thesis for personal use. Any other use is limited by the restrictions of copy- right, in particular with regard to the obligation to mention the source explicitly when citing results from this thesis. Olivier Van Hoey May 20, 2010 i Acknowledgment The achievement of this thesis was not possible without the help and support of a lot of people.
    [Show full text]
  • STATUS of FUSION ENERGY Impact & Opportunity for Alberta Volume II
    STATUS OF FUSION ENERGY Impact & Opportunity for Alberta Volume II Appendices Prepared by Alberta/Canada Fusion Energy Program March 2014 ALBERTA COUNCIL OF TECHNOLOGIES Gratefully acknowledges the support of: Alberta Energy Stantec Corporation University of Alberta Alberta/Canada Fusion Energy Advisory Committee Gary Albach Nathan Armstrong Brian Baudais Will Bridge Robert Fedosejevs Peter Hackett Chris Holly Jerry Keller Brian Kryska Axel Meisen Rob Pitcairn Klaas Rodenburg John Rose Glenn Stowkowy Martin Truksa Gary Woloshyniuk Perry Kinkaide Allan Offenberger A special thank you is extended to the institutions (identified in this report) that were visited and to the many persons who so graciously hosted our site visits, provided the briefing material presented in this status report and thereby assisted our fusion assessment. Report Authors Allan Offenberger Robert Fedosejevs Klaas Rodenburg Perry Kinkaide Contact: Dr. Perry Kinkaide [email protected] 780-990-5874 Dr. Allan Offenberger [email protected] 780-483-1740 i TABLE OF CONTENTS Page List of Acronyms ………………………………………………………………………….. iii List of Figures……………………………………………………………………………… iv Appendix A: Assessment of Major Global Fusion Technologies 1.0 Context - Global Energy Demand……………………………………………………… 1 1.0.1 Foreward ……………………………………………………………………… 1 1.0.2 Energy Trends………………………………………………………………… 2 1.0.3 Energy From Fusion Reactions……………………………………………… 4 1.1 Major Approaches to Fusion Energy………………………………………………….. 7 1.1.1 Introduction……………………………………………………………………. 7 1.1.2 Fusion Reactions & the Fuel Cycle………………………………………….. 8 1.1.3 IFE Approaches to Fusion…………………………………………………… 11 1.1.3.1 Introduction………………………………………………………….. 11 1.1.3.2 Indirect Drive…………………………………………………………14 1.1.3.3 Direct Drive…………………………………………………………. 16 1.1.3.4 Fast Ignition………………………………………………………… 17 1.1.3.5 Shock Ignition………………………………………………………..19 1.1.3.6 IFE Power Reactor Systems……………………………………….20 1.1.3.7 Modeling Codes…………………………………………………….
    [Show full text]
  • Assessment of DEMO Reactors for Fusion Power Utilization
    九州大学学術情報リポジトリ Kyushu University Institutional Repository Assessment of DEMO Reactors for Fusion Power Utilization Elserafy, Hatem Interdisciplinary Graduate school of Engineering Sciences, Kyushu University https://doi.org/10.5109/2174854 出版情報:Evergreen. 5 (4), pp.18-25, 2018-12. Green Asia Education Center バージョン:published 権利関係: EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, Vol. 05, Issue 04, pp.18-25, December 2018 (Review Article) Assessment of DEMO Reactors for Fusion Power Utilization Hatem Elserafy Interdisciplinary Graduate school of Engineering Sciences, Kyushu University, Japan *Author to whom correspondence should be addressed, E-mail: [email protected] (Received November 15, 2018; accepted December 27, 2018). Given the undeniable climate change caused by global warming, decreasing the carbon footprint by using alternative energy sources became necessary. Thermonuclear fusion energy is one of the strongest candidates when it comes to alternative energy sources since it is safe, has negligible carbon footprint and its yield is incomparable to any other alternative. Credential as fusion performance may be; feasibility and economic attractiveness are something to be considered. The next stage fusion reactors are called DEMOnstration (DEMO) and are being assessed by various sources in terms of performance. In this work, DEMO fusion reactors are to be reviewed and their specifications are to be analyzed in terms of feasibility, while demonstrating how the tritium fueling stage not only presents a challenge for calculating fusion power costs, but also that fusion energy requires further R&D before it can be integrated into the power grid. Keywords: thermonuclear fusion, DEMO, TBR. 1. Introduction thought of as the most promising unexploited energy source [6].
    [Show full text]
  • Iter: Os Caminhos Da Energia De Fusão E O Brasil (2015)
    ITER Os caminhos da energia de fusão e o Brasil MINISTÉRIO DAS RELAÇÕES EXTERIORES Ministro de Estado Embaixador Mauro Luiz Iecker Vieira Secretário -Geral Embaixador Sérgio França Danese FUNDAÇÃO ALEXANDRE DE GUSMÃO Presidente Embaixador Sérgio Eduardo Moreira Lima Instituto de Pesquisa de Relações Internacionais Diretor Embaixador José Humberto de Brito Cruz Centro de História e Documentação Diplomática Diretor Embaixador Maurício E. Cortes Costa Conselho Editorial da Fundação Alexandre de Gusmão Presidente Embaixador Sérgio Eduardo Moreira Lima Membros Embaixador Ronaldo Mota Sardenberg Embaixador Jorio Dauster Magalhães e Silva Embaixador Gonçalo de Barros Carvalho e Mello Mourão Embaixador José Humberto de Brito Cruz Embaixador Julio Glinternick Bitelli Ministro Luís Felipe Silvério Fortuna Professor Francisco Fernando Monteoliva Doratioto Professor José Flávio Sombra Saraiva Professor Eiiti Sato A Fundação Alexandre de Gusmão, instituída em 1971, é uma fundação pública vinculada ao Ministério das Relações Exteriores e tem a finalidade de levar à sociedade civil informações sobre a realidade internacional e sobre aspectos da pauta diplomática brasileira. Sua missão é promover a sensibilização da opinião pública nacional para os temas de relações internacionais e para a política externa brasileira. Augusto Pestana ITER Os caminhos da energia de fusão e o Brasil Brasília, 2015 Direitos de publicação reservados à Fundação Alexandre de Gusmão Ministério das Relações Exteriores Esplanada dos Ministérios, Bloco H Anexo II, Térreo 70170 ‑900 Brasília–DF Telefones:(61) 2030 ‑6033/6034 Fax:(61) 2030 ‑9125 Site: www.funag.gov.br E ‑mail: [email protected] Equipe Técnica: Eliane Miranda Paiva Fernanda Antunes Siqueira Gabriela Del Rio de Rezende Luiz Antônio Gusmão André Luiz Ventura Ferreira Projeto Gráfico e Capa: Yanderson Rodrigues Programação Visual e Diagramação: Gráfica e Editora Ideal Impresso no Brasil 2015 P476 Pestana, Augusto.
    [Show full text]
  • LANL Fusion Capabilities
    LANL Fusion Capabilities INFUSE workshop Jan 22-23, 2019 1 Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA Los Alamos has a long history of fusion research James Tuck, Ivy Mike, 1952 Perhapsatron, 1953 • Today magnetic and inertial fusion work resides in the Physics Division, Theory Division, and X Division (Weapons). There are also related capabilities in detectors, radiation damage, and tritium handling. • Dr. John Kline ( [email protected] ) is the present Fusion Energy Sciences (and Inertial Fusion) program manager, and a point-of-contact. 2 Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA 3 Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA FRC’s were developed in Russia and Los Alamos FRC’s are high beta plasmas, with many interesting features 4 Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA Today FRC plasmas are still being explored 5 Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA Magnetized Plasma Team in P-24 Plasma Physics We do experimental plasma work for FES, APRA-E, and NNSA sponsors, with national and international partners, including small businesses. We use our knowledge of plasma diagnostics, pulsed power expertise, and HED plasmas in the areas of fusion energy, weapons support, and basic plasma science. Team Leader: Glen Wurden ([email protected]) Staff: Hsu, Weber, Langendorf, Dunn, Shimada Postdocs: Tom Byvank, Kevin Yates, John Boguski Student: Chris Roper (Summer) 6 Managed by Triad National Security, LLC for the U.S.
    [Show full text]
  • Thermonuclear AB-Reactors for Aerospace
    1 Article Micro Thermonuclear Reactor after Ct 9 18 06 AIAA-2006-8104 Micro -Thermonuclear AB-Reactors for Aerospace* Alexander Bolonkin C&R, 1310 Avenue R, #F-6, Brooklyn, NY 11229, USA T/F 718-339-4563, [email protected], [email protected], http://Bolonkin.narod.ru Abstract About fifty years ago, scientists conducted R&D of a thermonuclear reactor that promises a true revolution in the energy industry and, especially, in aerospace. Using such a reactor, aircraft could undertake flights of very long distance and for extended periods and that, of course, decreases a significant cost of aerial transportation, allowing the saving of ever-more expensive imported oil-based fuels. (As of mid-2006, the USA’s DoD has a program to make aircraft fuel from domestic natural gas sources.) The temperature and pressure required for any particular fuel to fuse is known as the Lawson criterion L. Lawson criterion relates to plasma production temperature, plasma density and time. The thermonuclear reaction is realised when L > 1014. There are two main methods of nuclear fusion: inertial confinement fusion (ICF) and magnetic confinement fusion (MCF). Existing thermonuclear reactors are very complex, expensive, large, and heavy. They cannot achieve the Lawson criterion. The author offers several innovations that he first suggested publicly early in 1983 for the AB multi- reflex engine, space propulsion, getting energy from plasma, etc. (see: A. Bolonkin, Non-Rocket Space Launch and Flight, Elsevier, London, 2006, Chapters 12, 3A). It is the micro-thermonuclear AB- Reactors. That is new micro-thermonuclear reactor with very small fuel pellet that uses plasma confinement generated by multi-reflection of laser beam or its own magnetic field.
    [Show full text]
  • Footnotes for ATOMIC ADVENTURES
    Footnotes for ATOMIC ADVENTURES Secret Islands, Forgotten N-Rays, and Isotopic Murder - A Journey into the Wild World of Nuclear Science By James Mahaffey While writing ATOMIC ADVENTURES, I tried to be careful not to venture off into subplots, however interesting they seemed to me, and keep the story flowing and progressing at the right tempo. Some subjects were too fascinating to leave alone, and there were bits of further information that I just could not abandon. The result is many footnotes at the bottom of pages, available to the reader to absorb at his or her discretion. To get the full load of information from this book, one needs to read the footnotes. Some may seem trivia, but some are clarifying and instructive. This scheme works adequately for a printed book, but not so well with an otherwise expertly read audio version. Some footnotes are short enough to be inserted into the audio stream, but some are a rambling half page of dense information. I was very pleased when Blackstone Audio agreed wholeheartedly that we needed to include all of my footnotes in this version of ATOMIC ADVENTURES, and we came up with this added feature: All 231 footnotes in this included text, plus all the photos and explanatory diagrams that were included in the text. I hope you enjoy reading some footnotes while listening to Keith Sellon-Wright tell the stories in ATOMIC ADVENTURES. James Mahaffey April 2017 2 Author’s Note Stories Told at Night around the Glow of the Reactor Always striving to beat the Atlanta Theater over on Edgewood Avenue, the Forsyth Theater was pleased to snag a one-week engagement of the world famous Harry Houdini, extraordinary magician and escape artist, starting April 19, 1915.1 It was issued an operating license, no.
    [Show full text]
  • Re-Examining the Role of Nuclear Fusion in a Renewables-Based Energy Mix
    Re-examining the Role of Nuclear Fusion in a Renewables-Based Energy Mix T. E. G. Nicholasa,∗, T. P. Davisb, F. Federicia, J. E. Lelandc, B. S. Patela, C. Vincentd, S. H. Warda a York Plasma Institute, Department of Physics, University of York, Heslington, York YO10 5DD, UK b Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH c Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, L69 3GJ, UK d Centre for Advanced Instrumentation, Department of Physics, Durham University, Durham DH1 3LS, UK Abstract Fusion energy is often regarded as a long-term solution to the world's energy needs. However, even after solving the critical research challenges, engineer- ing and materials science will still impose significant constraints on the char- acteristics of a fusion power plant. Meanwhile, the global energy grid must transition to low-carbon sources by 2050 to prevent the worst effects of climate change. We review three factors affecting fusion's future trajectory: (1) the sig- nificant drop in the price of renewable energy, (2) the intermittency of renewable sources and implications for future energy grids, and (3) the recent proposition of intermediate-level nuclear waste as a product of fusion. Within the scenario assumed by our premises, we find that while there remains a clear motivation to develop fusion power plants, this motivation is likely weakened by the time they become available. We also conclude that most current fusion reactor designs do not take these factors into account and, to increase market penetration, fu- sion research should consider relaxed nuclear waste design criteria, raw material availability constraints and load-following designs with pulsed operation.
    [Show full text]
  • Article Thermonuclear Bomb 5 7 12
    1 Inexpensive Mini Thermonuclear Reactor By Alexander Bolonkin [email protected] New York, April 2012 2 Article Thermonuclear Reactor 1 26 13 Inexpensive Mini Thermonuclear Reactor By Alexander Bolonkin C&R Co., [email protected] Abstract This proposed design for a mini thermonuclear reactor uses a method based upon a series of important innovations. A cumulative explosion presses a capsule with nuclear fuel up to 100 thousands of atmospheres, the explosive electric generator heats the capsule/pellet up to 100 million degrees and a special capsule and a special cover which keeps these pressure and temperature in capsule up to 0.001 sec. which is sufficient for Lawson criteria for ignition of thermonuclear fuel. Major advantages of these reactors/bombs is its very low cost, dimension, weight and easy production, which does not require a complex industry. The mini thermonuclear bomb can be delivered as a shell by conventional gun (from 155 mm), small civil aircraft, boat or even by an individual. The same method may be used for thermonuclear engine for electric energy plants, ships, aircrafts, tracks and rockets. ----------------------------------------------------------------------- Key words: Thermonuclear mini bomb, thermonuclear reactor, nuclear energy, nuclear engine, nuclear space propulsion. Introduction It is common knowledge that thermonuclear bombs are extremely powerful but very expensive and difficult to produce as it requires a conventional nuclear bomb for ignition. In stark contrast, the Mini Thermonuclear Bomb is very inexpensive. Moreover, in contrast to conventional dangerous radioactive or neutron bombs which generates enormous power, the Mini Thermonuclear Bomb does not have gamma or neutron radiation which, in effect, makes it a ―clean‖ bomb having only the flash and shock wave of a conventional explosive but much more powerful (from 1 ton of TNT and more, for example 100 tons).
    [Show full text]
  • Cavitation-Induced Fusion: Proof of Concept Vol
    1 Fomitchev-Zamilov: Cavitation-Induced Fusion: Proof of Concept Vol. 9 Cavitation-Induced Fusion: Proof of Concept Max I. Fomitchev-Zamilov Quantum Potential Corporation, 200 Innovation Blvd, Suite 254, State College, PA 16803 e-mail: [email protected] Cavitation-induced fusion (also known as bubble fusion or sonofusion) has been a topic of much debate and controversy and is generally (albeit incorrectly) perceived as unworkable. In this paper we present the theoretical foundations of cavitation-induced fusion and summarize the experimental results of the research conducted in the past 20 years. Based on the systematic study of all available data we conclude that the cavitation-induced fusion is feasible, doable, and can be used for commercial power generation. We present the results of our own research and disclose a commercial reactor prototype. threatened), to tenure and promotion issues and academic 1. Introduction misconduct (Krivit, 2011). As a result of the ensuing Nuclear fusion (which powers the sun) is the energy of the “bubblegate” scandal Taleyarkhan’s career was destroyed future: 10 microgram of deuterium is equivalent to a barrel of (Reich, 2009) and CIF research became a taboo. oil. Deuterium is cheap, plentiful and easily extracted from What was forgotten amid the outburst of emotions is that water. Unlike uranium fission in modern nuclear power plants cavitation-induced fusion is a fruitful area of research that must be deuterium fusion does not produce radioactive waste. Yet continued: no less than 7 independent peer-reviewed reports despite 40 years of research and over $20B in government exist demonstrating neutron emissions from collapsing spending (Chu, 2008) on inertial/magnetic confinement cavitation bubbles; even heavily criticized experiments by projects (ICF/MCF) the fusion power remains out of reach: to Taleyarkhan’s group have been successfully repeated (Xu & this date there are no fusion reactors capable of sustained Butt, 2005), (Forringer, Robbins, & Martin, 2006), (Bugg, 2006).
    [Show full text]