Studies of Subdwarf B Stars Michael David Reed Iowa State University
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
White Dwarfs
Chandra X-Ray Observatory X-Ray Astronomy Field Guide White Dwarfs White dwarfs are among the dimmest stars in the universe. Even so, they have commanded the attention of astronomers ever since the first white dwarf was observed by optical telescopes in the middle of the 19th century. One reason for this interest is that white dwarfs represent an intriguing state of matter; another reason is that most stars, including our sun, will become white dwarfs when they reach their final, burnt-out collapsed state. A star experiences an energy crisis and its core collapses when the star's basic, non-renewable energy source - hydrogen - is used up. A shell of hydrogen on the edge of the collapsed core will be compressed and heated. The nuclear fusion of the hydrogen in the shell will produce a new surge of power that will cause the outer layers of the star to expand until it has a diameter a hundred times its present value. This is called the "red giant" phase of a star's existence. A hundred million years after the red giant phase all of the star's available energy resources will be used up. The exhausted red giant will puff off its outer layer leaving behind a hot core. This hot core is called a Wolf-Rayet type star after the astronomers who first identified these objects. This star has a surface temperature of about 50,000 degrees Celsius and is A composite furiously boiling off its outer layers in a "fast" wind traveling 6 million image of the kilometers per hour. -
Meet the Family
Open Astronomy 2014; 1 Research Article Open Access Stephan Geier*, Roy H. Østensen, Peter Nemeth, Ulrich Heber, Nicola P. Gentile Fusillo, Boris T. Gänsicke, John H. Telting, Elizabeth M. Green, and Johannes Schaffenroth Meet the family − the catalog of known hot subdwarf stars DOI: DOI Received ..; revised ..; accepted .. Abstract: In preparation for the upcoming all-sky data releases of the Gaia mission, we compiled a catalog of known hot subdwarf stars and candidates drawn from the literature and yet unpublished databases. The catalog contains 5613 unique sources and provides multi-band photometry from the ultraviolet to the far infrared, ground based proper motions, classifications based on spectroscopy and colors, published atmospheric parameters, radial velocities and light curve variability information. Using several different techniques, we removed outliers and misclassified objects. By matching this catalog with astrometric and photometric data from the Gaia mission, we will develop selection criteria to construct a homogeneous, magnitude-limited all-sky catalog of hot subdwarf stars based on Gaia data. As first application of the catalog data, we present the quantitative spectral analysis of 280 sdB and sdOB stars from the Sloan Digital Sky Survey Data Release 7. Combining our derived parameters with state-of-the-art proper motions, we performed a full kinematic analysis of our sample. This allowed us to separate the first significantly large sample of 78 sdBs and sdOBs belonging to the Galactic halo. Comparing the properties of hot subdwarfs from the disk and the halo with hot subdwarf samples from the globular clusters ω Cen and NGC2808, we found the fraction of intermediate He-sdOBs in the field halo population to be significantly smaller than in the globular clusters. -
X-Ray Sun SDO 4500 Angstroms: Photosphere
ASTR 8030/3600 Stellar Astrophysics X-ray Sun SDO 4500 Angstroms: photosphere T~5000K SDO 1600 Angstroms: upper photosphere T~5x104K SDO 304 Angstroms: chromosphere T~105K SDO 171 Angstroms: quiet corona T~6x105K SDO 211 Angstroms: active corona T~2x106K SDO 94 Angstroms: flaring regions T~6x106K SDO: dark plasma (3/27/2012) SDO: solar flare (4/16/2012) SDO: coronal mass ejection (7/2/2012) Aims of the course • Introduce the equations needed to model the internal structure of stars. • Overview of how basic stellar properties are observationally measured. • Study the microphysics relevant for stars: the equation of state, the opacity, nuclear reactions. • Examine the properties of simple models for stars and consider how real models are computed. • Survey (mostly qualitatively) how stars evolve, and the endpoints of stellar evolution. Stars are relatively simple physical systems Sound speed in the sun Problem of Stellar Structure We want to determine the structure (density, temperature, energy output, pressure as a function of radius) of an isolated mass M of gas with a given composition (e.g., H, He, etc.) Known: r Unknown: Mass Density + Temperature Composition Energy Pressure Simplifying assumptions 1. No rotation à spherical symmetry ✔ For sun: rotation period at surface ~ 1 month orbital period at surface ~ few hours 2. No magnetic fields ✔ For sun: magnetic field ~ 5G, ~ 1KG in sunspots equipartition field ~ 100 MG Some neutron stars have a large fraction of their energy in B fields 3. Static ✔ For sun: convection, but no large scale variability Not valid for forming stars, pulsating stars and dying stars. 4. -
A Search for Radio Pulsations from Neutron Star Companions of Four
Astronomy & Astrophysics manuscript no. 16098˙arxiv c ESO 2018 November 15, 2018 A search for radio pulsations from neutron star companions of four subdwarf B stars Thijs Coenen1, Joeri van Leeuwen2,1, and Ingrid H. Stairs3 1 Astronomical Institute ”Anton Pannekoek,” University of Amsterdam, P.O. Box 94249, 1090 GE, Amsterdam, The Netherlands 2 Stichting ASTRON, PO Box 2, 7990 AA Dwingeloo, The Netherlands 3 Dept. of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, B.C., V6T 1Z1 Canada ABSTRACT We searched for radio pulsations from the potential neutron star binary companions to subdwarf B stars HE 0532-4503, HE 0929- 0424, TON S 183 and PG 1232-136. Optical spectroscopy of these subdwarfs has indicated they orbit a companion in the neutron star mass range. These companions are thought to play an important role in the poorly understood formation of subdwarf B stars. Using the Green Bank Telescope we searched down to mean flux densities as low as 0.2 mJy, but no pulsed emission was found. We discuss the implications for each system. 1. Introduction Several such binary formation channels have been hypoth- esized. For an sdB to form, a light star must lose most of its The study of millisecond pulsars (MSPs) enables several types hydrogen envelope and ignite helium in its core. In these binary of research in astrophysics, ranging from binary evolution (e.g. systems, sdB stars can be formed through phases of Common Edwards & Bailes, 2001), to the potential detection of back- Envelope evolution where the envelope is ejected, or through ground gravitational radiation using a large set of pulsars with stable Roche Lobe overflow stripping the donor star of its hydro- stable timing properties (Jaffe & Backer, 2003). -
The X-Ray Universe 2017 List of Posters
The X-ray Universe 2017 List of Posters A - Solar System, Exoplanets and Star-Planet-Interaction A01 Frederic Marin Transmitted and polarized scattered fluxes by the exoplanet HD 189733b in X-rays B - Star formation, Young Stellar Objects, Cool and Hot Stars B01 Yael Naze A legacy survey of early B-type stars using the RGS B02 Stefan Czesla The coronae of Kepler superflare stars B03 Mauricio Elías Chávez ESTIMATION OF THE STAR FORMATION RATE (SFR) THROUGH DATA ANALYSIS OF SWIFT'S LONG- GRBs FROM 2008 TO 2017 B04 Federico Fraschetti Local protoplanetary disk ionisation by T Tauri star energetic particles B05 Martin A. Guerrero The XMM-Newton View of Wolf-Rayet Bubbles B06 Sandro Mereghetti X-rays as a new tool to study the winds of hot subdwarf stars B07 Yael Naze Zeta Pup variability revisited B08 John Pye A survey of long-term X-ray variability in cool stars B09 Gregor Rauw The flaring activity of pre-main sequence stars in NGC6530 B10 Beate Stelzer Activity and rotation of the X-ray emitting Kepler stars B11 Beate Stelzer Calibrating the time-evolution of the X-ray emission of M dwarfs C - White Dwarfs, Cataclysmic Variables and Novae C01 Andrej Dobrotka XMM-Newton observation of nova like system MV Lyr and search for source of the fast variability detected in Kepler data C02 Cigdem Gamsizkan Reanalysis of high-resolution XMM-Newton data of V2491 Cygni using models of collisionally ionized hot absorbers C03 Isabel J. Lima Simultaneous modelling of X-ray emission and optical polarization of intermediate polars: the case of V405 Aur C04 Arti Joshi XMM-Newton observations of an asynchronously rotating polar CD Ind C05 Sandro Mereghetti The mysterious companion of the hot subdwarf HD 49798 C06 Nasrin Talebpour X-ray Spectra of the Cataclysmic Variable LS Peg using XMM-Newton and SWIFT data Sheshvan D - Isolated Neutron Stars & Magnetars D01 Jaziel G. -
The Sun, Yellow Dwarf Star at the Heart of the Solar System NASA.Gov, Adapted by Newsela Staff
Name: ______________________________ Period: ______ Date: _____________ Article of the Week Directions: Read the following article carefully and annotate. You need to include at least 1 annotation per paragraph. Be sure to include all of the following in your total annotations. Annotation = Marking the Text + A Note of Explanation 1. Great Idea or Point – Write why you think it is a good idea or point – ! 2. Confusing Point or Idea – Write a question to ask that might help you understand – ? 3. Unknown Word or Phrase – Circle the unknown word or phrase, then write what you think it might mean based on context clues or your word knowledge – 4. A Question You Have – Write a question you have about something in the text – ?? 5. Summary – In a few sentences, write a summary of the paragraph, section, or passage – # The sun, yellow dwarf star at the heart of the solar system NASA.gov, adapted by Newsela staff Picture and Caption ___________________________ ___________________________ ___________________________ Paragraph #1 ___________________________ ___________________________ This image shows an enormous eruption of solar material, called a coronal mass ejection, spreading out into space, captured by NASA's Solar Dynamics ___________________________ Observatory on January 8, 2002. Paragraph #2 Para #1 The sun is a hot ball made of glowing gases and is a type ___________________________ of star known as a yellow dwarf. It is at the heart of our solar system. ___________________________ Para #2 The solar system consists of everything that orbits the ___________________________ sun. The sun's gravity holds the solar system together, by keeping everything from planets to bits of dust in its orbit. -
Brown Dwarf: White Dwarf: Hertzsprung -Russell Diagram (H-R
Types of Stars Spectral Classifications: Based on the luminosity and effective temperature , the stars are categorized depending upon their positions in the HR diagram. Hertzsprung -Russell Diagram (H-R Diagram) : 1. The H-R Diagram is a graphical tool that astronomers use to classify stars according to their luminosity (i.e. brightness), spectral type, color, temperature and evolutionary stage. 2. HR diagram is a plot of luminosity of stars versus its effective temperature. 3. Most of the stars occupy the region in the diagram along the line called the main sequence. During that stage stars are fusing hydrogen in their cores. Various Types of Stars Brown Dwarf: White Dwarf: Brown dwarfs are sub-stellar objects After a star like the sun exhausts its nuclear that are not massive enough to sustain fuel, it loses its outer layer as a "planetary nuclear fusion processes. nebula" and leaves behind the remnant "white Since, comparatively they are very cold dwarf" core. objects, it is difficult to detect them. Stars with initial masses Now there are ongoing efforts to study M < 8Msun will end as white dwarfs. them in infrared wavelengths. A typical white dwarf is about the size of the This picture shows a brown dwarf around Earth. a star HD3651 located 36Ly away in It is very dense and hot. A spoonful of white constellation of Pisces. dwarf material on Earth would weigh as much as First directly detected Brown Dwarf HD 3651B. few tons. Image by: ESO The image is of Helix nebula towards constellation of Aquarius hosts a White Dwarf Helix Nebula 6500Ly away. -
Stars IV Stellar Evolution Attendance Quiz
Stars IV Stellar Evolution Attendance Quiz Are you here today? Here! (a) yes (b) no (c) my views are evolving on the subject Today’s Topics Stellar Evolution • An alien visits Earth for a day • A star’s mass controls its fate • Low-mass stellar evolution (M < 2 M) • Intermediate and high-mass stellar evolution (2 M < M < 8 M; M > 8 M) • Novae, Type I Supernovae, Type II Supernovae An Alien Visits for a Day • Suppose an alien visited the Earth for a day • What would it make of humans? • It might think that there were 4 separate species • A small creature that makes a lot of noise and leaks liquids • A somewhat larger, very energetic creature • A large, slow-witted creature • A smaller, wrinkled creature • Or, it might decide that there is one species and that these different creatures form an evolutionary sequence (baby, child, adult, old person) Stellar Evolution • Astronomers study stars in much the same way • Stars come in many varieties, and change over times much longer than a human lifetime (with some spectacular exceptions!) • How do we know they evolve? • We study stellar properties, and use our knowledge of physics to construct models and draw conclusions about stars that lead to an evolutionary sequence • As with stellar structure, the mass of a star determines its evolution and eventual fate A Star’s Mass Determines its Fate • How does mass control a star’s evolution and fate? • A main sequence star with higher mass has • Higher central pressure • Higher fusion rate • Higher luminosity • Shorter main sequence lifetime • Larger -
Stellar Structure and Evolution
Lecture Notes on Stellar Structure and Evolution Jørgen Christensen-Dalsgaard Institut for Fysik og Astronomi, Aarhus Universitet Sixth Edition Fourth Printing March 2008 ii Preface The present notes grew out of an introductory course in stellar evolution which I have given for several years to third-year undergraduate students in physics at the University of Aarhus. The goal of the course and the notes is to show how many aspects of stellar evolution can be understood relatively simply in terms of basic physics. Apart from the intrinsic interest of the topic, the value of such a course is that it provides an illustration (within the syllabus in Aarhus, almost the first illustration) of the application of physics to “the real world” outside the laboratory. I am grateful to the students who have followed the course over the years, and to my colleague J. Madsen who has taken part in giving it, for their comments and advice; indeed, their insistent urging that I replace by a more coherent set of notes the textbook, supplemented by extensive commentary and additional notes, which was originally used in the course, is directly responsible for the existence of these notes. Additional input was provided by the students who suffered through the first edition of the notes in the Autumn of 1990. I hope that this will be a continuing process; further comments, corrections and suggestions for improvements are most welcome. I thank N. Grevesse for providing the data in Figure 14.1, and P. E. Nissen for helpful suggestions for other figures, as well as for reading and commenting on an early version of the manuscript. -
Supernovae Sparked by Dark Matter in White Dwarfs
Supernovae Sparked By Dark Matter in White Dwarfs Javier F. Acevedog and Joseph Bramanteg;y gThe Arthur B. McDonald Canadian Astroparticle Physics Research Institute, Department of Physics, Engineering Physics, and Astronomy, Queen's University, Kingston, Ontario, K7L 2S8, Canada yPerimeter Institute for Theoretical Physics, Waterloo, Ontario, N2L 2Y5, Canada November 27, 2019 Abstract It was recently demonstrated that asymmetric dark matter can ignite supernovae by collecting and collapsing inside lone sub-Chandrasekhar mass white dwarfs, and that this may be the cause of Type Ia supernovae. A ball of asymmetric dark matter accumulated inside a white dwarf and collapsing under its own weight, sheds enough gravitational potential energy through scattering with nuclei, to spark the fusion reactions that precede a Type Ia supernova explosion. In this article we elaborate on this mechanism and use it to place new bounds on interactions between nucleons 6 16 and asymmetric dark matter for masses mX = 10 − 10 GeV. Interestingly, we find that for dark matter more massive than 1011 GeV, Type Ia supernova ignition can proceed through the Hawking evaporation of a small black hole formed by the collapsed dark matter. We also identify how a cold white dwarf's Coulomb crystal structure substantially suppresses dark matter-nuclear scattering at low momentum transfers, which is crucial for calculating the time it takes dark matter to form a black hole. Higgs and vector portal dark matter models that ignite Type Ia supernovae are explored. arXiv:1904.11993v3 [hep-ph] 26 Nov 2019 Contents 1 Introduction 2 2 Dark matter capture, thermalization and collapse in white dwarfs 4 2.1 Dark matter capture . -
Detection and Characterization of Hot Subdwarf Companions of Massive Stars Luqian Wang
Georgia State University ScholarWorks @ Georgia State University Physics and Astronomy Dissertations Department of Physics and Astronomy 8-13-2019 Detection And Characterization Of Hot Subdwarf Companions Of Massive Stars Luqian Wang Follow this and additional works at: https://scholarworks.gsu.edu/phy_astr_diss Recommended Citation Wang, Luqian, "Detection And Characterization Of Hot Subdwarf Companions Of Massive Stars." Dissertation, Georgia State University, 2019. https://scholarworks.gsu.edu/phy_astr_diss/119 This Dissertation is brought to you for free and open access by the Department of Physics and Astronomy at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Physics and Astronomy Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. DETECTION AND CHARACTERIZATION OF HOT SUBDWARF COMPANIONS OF MASSIVE STARS by LUQIAN WANG Under the Direction of Douglas R. Gies, PhD ABSTRACT Massive stars are born in close binaries, and in the course of their evolution, the initially more massive star will grow and begin to transfer mass and angular momentum to the gainer star. The mass donor star will be stripped of its outer envelope, and it will end up as a faint, hot subdwarf star. Here I present a search for the subdwarf stars in Be binary systems using the International Ultraviolet Explorer. Through spectroscopic analysis, I detected the subdwarf star in HR 2142 and 60 Cyg. Further analysis led to the discovery of an additional 12 Be and subdwarf candidate systems. I also investigated the EL CVn binary system, which is the prototype of class of eclipsing binaries that consist of an A- or F-type main sequence star and a low mass subdwarf. -
Chapter 16 the Sun and Stars
Chapter 16 The Sun and Stars Stargazing is an awe-inspiring way to enjoy the night sky, but humans can learn only so much about stars from our position on Earth. The Hubble Space Telescope is a school-bus-size telescope that orbits Earth every 97 minutes at an altitude of 353 miles and a speed of about 17,500 miles per hour. The Hubble Space Telescope (HST) transmits images and data from space to computers on Earth. In fact, HST sends enough data back to Earth each week to fill 3,600 feet of books on a shelf. Scientists store the data on special disks. In January 2006, HST captured images of the Orion Nebula, a huge area where stars are being formed. HST’s detailed images revealed over 3,000 stars that were never seen before. Information from the Hubble will help scientists understand more about how stars form. In this chapter, you will learn all about the star of our solar system, the sun, and about the characteristics of other stars. 1. Why do stars shine? 2. What kinds of stars are there? 3. How are stars formed, and do any other stars have planets? 16.1 The Sun and the Stars What are stars? Where did they come from? How long do they last? During most of the star - an enormous hot ball of gas day, we see only one star, the sun, which is 150 million kilometers away. On a clear held together by gravity which night, about 6,000 stars can be seen without a telescope.