Chinquapin the Newsletter of the Southern Appalachian Botanical Society

Total Page:16

File Type:pdf, Size:1020Kb

Chinquapin the Newsletter of the Southern Appalachian Botanical Society chinquapin The Newsletter of the Southern Appalachian Botanical Society Volume 17, No. 3 Fall 2009 On Charles Darwin’s reading of William Bartram’s Travels by James T. Costa The double Darwin anniversary year of 2009—being the bicentennial Darwin, who authored poetical works on botany among many other of Darwin’s birth and the sesquicentennial of the publication of his things. William achieved fame of his own among these learned men. Origin of Species—presented me with an excuse to explore intersec- His Travels, appearing in 1792 in England, had a major impact on tions between the great English naturalist and another of my favorite Romantic writers of the time, including Wordsworth, Shelley, and naturalists, one whose contributions were largely made in the century Coleridge—writers who in turn knew the Darwins as well as the fam- previous to Darwin, and a continent away. I am referring to William ily of Charles’s other distinguished grandfather, Josiah Wedgwood. Bartram, of course. Bartram died when Darwin was just a lad of 14 years, but his explorations in the American southeast had become A later generation of naturalists drew on William Bartram less for well known in the circles that included the Darwin family. His father poetic inspiration than for his detailed and accurate natural history John Bartram’s fame preceded him in those circles, both as a renowned observations. Charles Darwin was foremost among them. Darwin horticulturist whose talents fueled the passion for American plants became convinced of evolution, or transmutation, in the parlance of in Georgian England (earning his the title of Botanist to the King the day, just 14 years after Bartram’s death. That was March of 1837, in 1765), and as a correspondent to the Royal Society through his five months after returning from his voyage around the world aboard friend and English agent Peter Collinson. The elder Bartram was also HMS Beagle, but he did not reveal his ideas to the world until the co-founder of the American Philosophical Society with Benjamin publication of his epochal Origin of Species some two decades later Franklin, member of the influential Lunar Society that often met in 1859. The time in between was devoted to an expansive research at the Lichfield home of Charles’s remarkable grandfather Erasmus program, resulting in several books and dozens of articles. He was all the while amassing evidence in support of his ideas, drawing from such far-ranging subjects as domestication, behavior, paleontology, hybridization, anatomy, and geographical distribution of plants and animals. He corresponded with dozens of naturalists, devised experi- ments, made meticulous observations, and, perhaps above all, read voraciously. Accounts of travel and exploration figure prominently in Darwin’s reading. He kept a journal of the books he read, and I counted over 110 entries with “voyage,” “journey,” “travel,” “expedition,” “exploration,” “tour,” “narrative,” “ramble,” “visit,” “sojourn,” or “wandering” in the title between 1838 and 1860 (Vorzimmer 1975). Bartram’s Travels is listed in April of 1839. At the end of the C Notebook (one of Darwin’s notebooks devoted to his inves- tigations of transmutation; see Barrett et al. 1987), in a section headed “Books examined: with William Bartram [reference to] Species,” we find the c. 1808 by Charles Wilson Peale In the public domain Continues on page 4, see Darwin on Bartram 2 Chinquapin 17 (3) The Newsletter of the Southern Appalachian Botanical Society SABS Officers & Editors Closing out the Darwin Year Southeast to Southeast Conley K. McMullen, President Department of Biology, MSC 7801 This doubly significant year for remembering Your Chinquapin editor has now spent half James Madison University Charles Darwin—the centenary of his birth of this year in to southeast’s: the southeast of Harrisonburg, VA 22807 on February 12 and the sesquicentennial of the United States in Georgia where I’ve lived (540) 568-3805 · fax (540) 568-3333 the publishing of On the Origin of Species on for 30 years and in the southeast panhandle [email protected] November 24—is now closing out with a of Alaska, commonly abbreviated SEAK. Howard S. Neufeld, Past President special double issue of Chinquapin. With six months in each place, here are some Department of Biology ruminations on my experience. 572 Rivers Street No doubt readers have enjoyed symposia, Appalachian State University speakers and various celebrations remember- I missed the Smokies! With the incredible Boone, NC 28608 ing and recognizing the impact Darwin has grandeur of the steep and rugged moun- (828) 262-2683 · fax (828) 262-2127 had on science. For those of you who have tains of Alaska, I found a longing for the [email protected] not had the opportunity to hear or read Jim rounded mountains of my adopted home. Charles N. Horn, Treasurer Costa’s unique story of the connection of My list of flowering plants encountered—in Biology Department Darwin with our own region will find his flower—in the Juneau area totalled only 155 2100 College Street article fascinating. species. I could do that in a single afternoon Newberry College in the Smokies in April! The diversity of the Newberry, SC 29108 This article is longer than usually Alaskan rainforest simply cannot compare (803) 321-5257 · fax (803) 321-5636 Chinquapin [email protected] publishes, and rather than eliminate our regu- with the old and complex landscape of the lar columns or split this article in two, we’ve Southern Appalachians. Michael Held, Membership Secretary decided to conclude 2009 with a double issue Department of Biology including the article in its entirety along with I missed trilliums! With Tom Patrick’s help Saint Peter’s College everything you’ve come to expect. and as a field companion, I’ve seen nearly Jersey City, NJ 07306 all of the species Georgia, the center of the (201) 761-6439 [email protected] Here’s a bit of a challenge to our readers: do trillium universe, claims and must admit to you have a story to share about someone who having become a bit complacent about these Ruth Douglas, Recording Secretary has a connection to you that has gone on to spring beauties. The closest trillium to Juneau 108 Wildflower Drive do some especially important science? To give is the Pacific trillium Trillium( ovatum) on Charlottesville, VA 22911 an illustration related to our celebration: Vancouver Island nearly 800 miles south. (434) 293-6538 [email protected] Darwin’s last paper focused on the movement of I missed deciduous trees! Yes there are George Johnson, Editor-in-Chief of freshwater bivalves between water bodies, and deciduous trees in the rainforest, but noth- Castanea gave the example of a clam clamped to the leg of ing like the Southern Appalachians. On my Department of Biological Sciences a water beetle. Darwin received the beetle and its hikes, all I have to know are a small handful Arkansas Tech University bivalve cargo from an amateur naturalist named of trees: Sitka spruce, western and mountain Russellville, AR 72801 Walter Crick. Darwin died within weeks, but Walter hemlock, Alaska yellow cedar and pond pine (479) 968-0312 Crick’s grandson, Francis Crick, would uncover the for the conifers; black cottonwood, Sitka and [email protected] structure of DNA 70 years later. red alder and four species of willow for the Audrey Mellichamp, Managing Editor [http://www.strangescience.net/darwin.htm] deciduous trees. Diversity of species is just of Castanea not there. 3036 Ventosa Drive The Complete Work of Charles Charlotte, NC 28205 The geology is just as messy! Learning geol- [email protected] Darwin Online ogy in the southeast US isn’t easy as the Scott Ranger, Editor of Chinquapin In the event that you’ve not come across this landscape has had over 200 million years to 1963 Ferry Drive NE reference—probably only a few readers— erode and become covered with saprolite and Marietta, GA 30066 here is a link to all of Darwin’s works online an immense forest covering the rocks. With at (770) 429-1836 · cell (404) 210-3088 where you can examine images of the original least four major mountian-building tectonic [email protected] publications, download them as a PDF, or events, the rock has been smeared, cracked, read them as simple text. It is probably the crushed and metamorphosed so much that in most complete collection of Darwin’s works many places it is nearly impossible to tell what in any single place, here available to all with the original material was. Wile very young, an internet connection. Many high quality SEAK was created by some seven island arc images are available for purchase and images collisions of material, mostly from the South of actual manuscripts may be viewed but are Pacific, becoming accreted to the margin not available for use without permission from of North America. Where not covered by a the owner of the manuscript. thick forest, the rock is often extremely steep http://darwin-online.org.uk/ and inaccessible for study. The Newsletter of the Southern Appalachian Botanical Society Chinquapin 17 (3) 3 Botanical Excursionsby George Ellison Barbara Hallowell & Her Fern Finder the best approach in Fern Finder was to make it clear that species-level or many years I’ve been identifications in those genera might be difficult, if not impossible. Fusing Anne C. and Aside from those sorts of considerations, Barbara’s guide helped make Barbara G. Hallowell’s basic fern identification “fun”—not a daunting task that tends to be Fern Finder: A Guide to put off and never gotten around to. Native Ferns of Central and Northeastern United States After graduating from Swarthmore College with a major in biology, and Eastern Canada (1981) she taught science and biology before marrying Tom Hallowell.
Recommended publications
  • Monotropa Hypopitys L. Yellow Bird's-Nest
    Monotropa hypopitys L. Yellow Bird's-nest Starting references Family Monotropaceae IUCN category (2001) Endangered. Habit Saprophytic ± chlorophyll-less perennial herb. Habitat Leaf litter in shaded woodlands, most frequent under Fagus and Corylus on calcareous substrates, and under Pinus on more acidic soils. Also in damp dune-slacks, where it is usually associated with Salix repens. From 0-395 m. Reasons for decline Distribution in wild Country Locality & Vice County Sites Population (10km2 occurences) (plants) Scotland East Perth 1 Fife & Kinross 1 England North-east Yorkshire 1 West Lancashire 1 S. Northumberland 1 Leicestershire 1 Nottinghamshire 2 Derbyshire 2 S. Lancashire 5 Westmorland 2 South Devon 1 N. Somerset 3 S. Wiltshire 2 Dorset 1 Isle of Wight 2 Hampshire 10 Sussex 3 Kent 3 Surrey 6 Berkshire 5 Oxfordshire 5 Buckinghamshire 4 Suffolk 2 Norfolk 5 Bedfordshire 1 Northamptonshire 1 Gloucestershire 7 Monmouthshire 3 Herefordshire 1 Worcestershire 1 Warwickshire 1 Staffordshire 2 Shropshire 1 Wales Glamorgan 1 Carmarthenshire 4 Merioneth 2 Denbighshire 2 Anglesey 4 Ex situ Collections Gardens close to the region of distribution of the species 1 University of Dundee Botanic Garden 2 Branklyn Garden (NTS) 3 St Andrews Botanic Garden 4 Moor Bank Garden 5 University of Durham Botanic Garden 6 Yorkshire Museum & Gardens 7 Sheffield Botanical Gardens 8 Firs Botanical Grounds 9 University of Manchester Botanical & Exp. Grounds 10 City of Liverpool Botanic Gardens 11 Ness Botanic Gardens 12 Chester Zoological Gardens 13 Treborth Botanic
    [Show full text]
  • The Genomic Impact of Mycoheterotrophy in Orchids
    fpls-12-632033 June 8, 2021 Time: 12:45 # 1 ORIGINAL RESEARCH published: 09 June 2021 doi: 10.3389/fpls.2021.632033 The Genomic Impact of Mycoheterotrophy in Orchids Marcin J ˛akalski1, Julita Minasiewicz1, José Caius2,3, Michał May1, Marc-André Selosse1,4† and Etienne Delannoy2,3*† 1 Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdansk,´ Gdansk,´ Poland, 2 Institute of Plant Sciences Paris-Saclay, Université Paris-Saclay, CNRS, INRAE, Univ Evry, Orsay, France, 3 Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay, Orsay, France, 4 Sorbonne Université, CNRS, EPHE, Muséum National d’Histoire Naturelle, Institut de Systématique, Evolution, Biodiversité, Paris, France Mycoheterotrophic plants have lost the ability to photosynthesize and obtain essential mineral and organic nutrients from associated soil fungi. Despite involving radical changes in life history traits and ecological requirements, the transition from autotrophy Edited by: Susann Wicke, to mycoheterotrophy has occurred independently in many major lineages of land Humboldt University of Berlin, plants, most frequently in Orchidaceae. Yet the molecular mechanisms underlying this Germany shift are still poorly understood. A comparison of the transcriptomes of Epipogium Reviewed by: Maria D. Logacheva, aphyllum and Neottia nidus-avis, two completely mycoheterotrophic orchids, to other Skolkovo Institute of Science autotrophic and mycoheterotrophic orchids showed the unexpected retention of several and Technology, Russia genes associated with photosynthetic activities. In addition to these selected retentions, Sean W. Graham, University of British Columbia, the analysis of their expression profiles showed that many orthologs had inverted Canada underground/aboveground expression ratios compared to autotrophic species. Fatty Craig Barrett, West Virginia University, United States acid and amino acid biosynthesis as well as primary cell wall metabolism were among *Correspondence: the pathways most impacted by this expression reprogramming.
    [Show full text]
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • Checklist of the Vascular Plants of Redwood National Park
    Humboldt State University Digital Commons @ Humboldt State University Botanical Studies Open Educational Resources and Data 9-17-2018 Checklist of the Vascular Plants of Redwood National Park James P. Smith Jr Humboldt State University, [email protected] Follow this and additional works at: https://digitalcommons.humboldt.edu/botany_jps Part of the Botany Commons Recommended Citation Smith, James P. Jr, "Checklist of the Vascular Plants of Redwood National Park" (2018). Botanical Studies. 85. https://digitalcommons.humboldt.edu/botany_jps/85 This Flora of Northwest California-Checklists of Local Sites is brought to you for free and open access by the Open Educational Resources and Data at Digital Commons @ Humboldt State University. It has been accepted for inclusion in Botanical Studies by an authorized administrator of Digital Commons @ Humboldt State University. For more information, please contact [email protected]. A CHECKLIST OF THE VASCULAR PLANTS OF THE REDWOOD NATIONAL & STATE PARKS James P. Smith, Jr. Professor Emeritus of Botany Department of Biological Sciences Humboldt State Univerity Arcata, California 14 September 2018 The Redwood National and State Parks are located in Del Norte and Humboldt counties in coastal northwestern California. The national park was F E R N S established in 1968. In 1994, a cooperative agreement with the California Department of Parks and Recreation added Del Norte Coast, Prairie Creek, Athyriaceae – Lady Fern Family and Jedediah Smith Redwoods state parks to form a single administrative Athyrium filix-femina var. cyclosporum • northwestern lady fern unit. Together they comprise about 133,000 acres (540 km2), including 37 miles of coast line. Almost half of the remaining old growth redwood forests Blechnaceae – Deer Fern Family are protected in these four parks.
    [Show full text]
  • Conservation Strategy for Allotropa Virgata (Candystick), U.S
    CONSERVATION STRATEGY FOR ALLOTROPA VIRGATA (CANDYSTICK), U.S. FOREST SERVICE, NORTHERN AND INTERMOUNTAIN REGIONS by Juanita Lichthardt Conservation Data Center Natural Resource Policy Bureau October, 1995 Idaho Department of Fish and Game 600 South Walnut, P.O. Box 25 Boise, Idaho 83707 Jerry M. Conley, Director Cooperative Challenge Cost-share Project Nez Perce National Forest Idaho Department of Fish and Game Purchase Order No.:95-17-20-001 ACKNOWLEDGMENTS I am grateful to the following Forest Service sensitive plant coordinators and botanists who went out of their way to provide valuable consultation, maps, and data: Leonard Lake, Linda Pietarinen, Jim Anderson, Quinn Carver, Alexia Cochrane, and John Joy. These same people are largely responsible for our current level of knowledge about Allotropa virgata. Special thanks to Janet Johnson and Marilyn Olson who found the time to show me Allotropa sites on the Bitterroot and Payette National Forests, respectively. Steve Shelly, Montana Natural Heritage Program/US Forest Service, initiated this project and provided thoughtful review. I hope that this document provides both the practical guidance and theoretical basis needed for a coordinated effort by management agencies toward conservation of Allotropa virgata. i ABSTRACT This conservation strategy provides recommendations for management of National Forest lands supporting and adjoining populations of Allotropa virgata (candystick), a plant species designated as sensitive in Regions 1 and 4 of the US Forest Service. Allotropa virgata presents a special conservation challenge because it is part of a three-way symbiosis involving conifers and their ectomycorrhizal fungi. First, the current state of our knowledge of the species is summarized, including distribution, habitat, ecology, population biology, monitoring results, past impacts, and perceived threats.
    [Show full text]
  • Pigment Composition of Putatively Achlorophyllous Angiosperms
    Plant Pl. Syst. Evol. 210:105-111 (1998) Systematics and Evolution © Springer-Verlag 1998 Printed in Austria Pigment composition of putatively achlorophyllous angiosperms MICHAEL P. CUMMINGS and NICHOLAS A. WELSCHMEYER Received August 15, 1996; in revised version February 10, 1997 Key words: Angiospermae, Lennoaceae, Monotropaceae, Orobanchaceae, Orchidaceae. - Chlorophyll, carotenoid, pigment, high-performance liquid chromatography. Abstract: Chlorophyll and carotenoid pigment composition was determined for ten species of putatively achlorophyllous angiosperms using high-performance liquid chromatography. Four families were represented: Lennoaceae (Pholisma arenarium); Monotropaceae (Allotropa virgata, Monotropa uniflora, Pterospora andromedea, Sarcodes sanguinea); Orobanchaceae (Epifagus virginiana, Orobanche cooperi, O. unißora); Orchidaceae (Cephalanthera austinae, Corallorhiza maculata). Chlorophyll a was detected in all taxa, but chlorophyll b was only detected in Corallorhiza maculata. The relative amount of chlorophyll and chlorophyll-related pigments in these plants is greatly reduced compared to fully autotrophic angiosperms. One of the most conspicuous features of plants is green coloration conferred by the presence of the pigment chlorophyll. However achlorophyllous plants, as their name implies, are thought to lack chlorophyll and other pigments associated with photosynthesis. This lack of chlorophyll is thought to be associated with the nonphotosynthetic habit, and hence the completely heterotrophic nature of holoparasites
    [Show full text]
  • Selected Wildflowers of the Modoc National Forest Selected Wildflowers of the Modoc National Forest
    United States Department of Agriculture Selected Wildflowers Forest Service of the Modoc National Forest An introduction to the flora of the Modoc Plateau U.S. Forest Service, Pacific Southwest Region i Cover image: Spotted Mission-Bells (Fritillaria atropurpurea) ii Selected Wildflowers of the Modoc National Forest Selected Wildflowers of the Modoc National Forest Modoc National Forest, Pacific Southwest Region U.S. Forest Service, Pacific Southwest Region iii Introduction Dear Visitor, e in the Modoc National Forest Botany program thank you for your interest in Wour local flora. This booklet was prepared with funds from the Forest Service Celebrating Wildflowers program, whose goals are to serve our nation by introducing the American public to the aesthetic, recreational, biological, ecological, medicinal, and economic values of our native botanical resources. By becoming more thoroughly acquainted with local plants and their multiple values, we hope to consequently in- crease awareness and understanding of the Forest Service’s management undertakings regarding plants, including our rare plant conservation programs, invasive plant man- agement programs, native plant materials programs, and botanical research initiatives. This booklet is a trial booklet whose purpose, as part of the Celebrating Wildflowers program (as above explained), is to increase awareness of local plants. The Modoc NF Botany program earnestly welcomes your feedback; whether you found the book help- ful or not, if there were too many plants represented or too few, if the information was useful to you or if there is more useful information that could be added, or any other comments or concerns. Thank you. Forest J. R. Gauna Asst.
    [Show full text]
  • Invisible Connections: Introduction to Parasitic Plants Dr
    Invisible Connections: Introduction to Parasitic Plants Dr. Vanessa Beauchamp Towson University What is a parasite? • An organism that lives in or on an organism of another species (its host) and benefits by deriving nutrients at the other's expense. Symbiosis https://www.superpharmacy.com.au/blog/parasites-protozoa-worms-ectoparasites Food acquisition in plants: Autotrophy Heterotrophs (“different feeding”) • True parasites: obtain carbon compounds from host plants through haustoria. • Myco-heterotrophs: obtain carbon compounds from host plants via Image Credit: Flickr User wackybadger, via CC mycorrhizal fungal connection. • Carnivorous plants (not parasitic): obtain nutrients (phosphorus, https://commons.wikimedia.org/wiki/File:Pin nitrogen) from trapped insects. k_indian_pipes.jpg http://www.welivealot.com/venus-flytrap- facts-for-kids/ Parasite vs. Epiphyte https://chatham.ces.ncsu.edu/2014/12/does-mistletoe-harm-trees-2/ By © Hans Hillewaert /, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6289695 True Parasitic Plants • Gains all or part of its nutrition from another plant (the host). • Does not contribute to the benefit of the host and, in some cases, causing extreme damage to the host. • Specialized peg-like root (haustorium) to penetrate host plants. https://www.britannica.com/plant/parasitic-plant https://chatham.ces.ncsu.edu/2014/12/does-mistletoe-harm-trees-2/ Diversity of parasitic plants Eudicots • Parasitism has evolved independently at least 12 times within the plant kingdom. • Approximately 4,500 parasitic species in Monocots 28 families. • Found in eudicots and basal angiosperms • 1% of the dicot angiosperm species • No monocot angiosperm species Basal angiosperms Annu. Rev. Plant Biol. 2016.67:643-667 True Parasitic Plants https://www.alamy.com/parasitic-dodder-plant-cuscuta-showing-penetration-parasitic-haustor The defining structural feature of a parasitic plant is the haustorium.
    [Show full text]
  • Pityopus Californicus (Eastw.) H.F
    Pityopus californicus (Eastw.) H.F. Copel. synonym: Monotropa californica Eastw., Pityopus californica (Eastw.) H.F. Copel., Pityopus oregonus Small pine-foot Monotropaceae - indian pipe family status: State Threatened, BLM strategic, USFS strategic rank: G4G5 / S1 General Description: Perennial, saprophytic fleshy herb with brittle roots and unbranched stems; pinkish, cream-colored or yellowish, drying to black; 1-10 cm. Leaves scalelike, nongreen, and sessile. Floral Characteristics: Inflorescence a terminal raceme or solitary flowers, emerging from the soil erect, not persistent after seed dispersal. Flowers axillary, bracted. Sepals 4-5, free, the lateral 2 often folded, clasping the corolla, the others lying flat against the corolla. Petals 4-5, free, cylindric, cream-colored to yellowish; the outside of the corolla is more or less hairless, the inside is densely hairy. Stamens generally 8, with erect, horseshoe-shaped anthers, unawned, dehiscent by 1 unified slit. Styles less than 5 mm long, stigma less than 5 mm wide, funnel-shaped, yellowish, subtended by a ring of hairs. O vary chamber 1, but may appear greater than 1 due to intrusion of parietal placentation. Fruits: Berries less than 1 cm. Identifiable June to July. Identif ication Tips: There is only one species of Pityopus in the Pacific Northwest. Pleuricos pora fimbriolata is related, but its flowers are hairless inside and out; its anthers are elongate (3-4 mm) and not horseshoe-shaped; and its stigma is less than 2.5 mm wide, crownlike, and not subtended by hairs. In contrast, the flowers of Pityopus californicus are densely hairy inside; its anthers are horseshoe-shaped and not elongate; and its stigma is less than 5 mm wide, more or less funnel-shaped, and subtended by a ring of hairs.
    [Show full text]
  • A Natural Resource Condition Assessment for Sequoia and Kings Canyon National Parks Appendix 14 – Plants of Conservation Concern
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science A Natural Resource Condition Assessment for Sequoia and Kings Canyon National Parks Appendix 14 – Plants of Conservation Concern Natural Resource Report NPS/SEKI/ NRR—2013/665.14 In Memory of Rebecca Ciresa Wenk, Botaness ON THE COVER Giant Forest, Sequoia National Park Photography by: Brent Paull A Natural Resource Condition Assessment for Sequoia and Kings Canyon National Parks Appendix 14 – Plants of Conservation Concern Natural Resource Report NPS/SEKI/ NRR—2013/665.14 Ann Huber University of California Berkeley 41043 Grouse Drive Three Rivers, CA 93271 Adrian Das U.S. Geological Survey Western Ecological Research Center, Sequoia-Kings Canyon Field Station 47050 Generals Highway #4 Three Rivers, CA 93271 Rebecca Wenk University of California Berkeley 137 Mulford Hall Berkeley, CA 94720-3114 Sylvia Haultain Sequoia and Kings Canyon National Parks 47050 Generals Highway Three Rivers, CA 93271 June 2013 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate high-priority, current natural resource management information with managerial application. The series targets a general, diverse audience, and may contain NPS policy considerations or address sensitive issues of management applicability.
    [Show full text]
  • RNA-Seq Highlights Parallel and Contrasting Patterns in the Evolution of the Nuclear Genome of Fully Mycoheterotrophic Plants Mikhail I
    Schelkunov et al. BMC Genomics (2018) 19:602 https://doi.org/10.1186/s12864-018-4968-3 RESEARCH ARTICLE Open Access RNA-seq highlights parallel and contrasting patterns in the evolution of the nuclear genome of fully mycoheterotrophic plants Mikhail I. Schelkunov1* , Aleksey A. Penin1,2,3 and Maria D. Logacheva1,4,5* Abstract Background: While photosynthesis is the most notable trait of plants, several lineages of plants (so-called full heterotrophs) have adapted to obtain organic compounds from other sources. The switch to heterotrophy leads to profound changes at the morphological, physiological and genomic levels. Results: Here, we characterize the transcriptomes of three species representing two lineages of mycoheterotrophic plants: orchids (Epipogium aphyllum and Epipogium roseum) and Ericaceae (Hypopitys monotropa). Comparative analysis is used to highlight the parallelism between distantly related fully heterotrophic plants. In both lineages, we observed genome-wide elimination of nuclear genes that encode proteins related to photosynthesis, while systems associated with protein import to plastids as well as plastid transcription and translation remain active. Genes encoding components of plastid ribosomes that have been lost from the plastid genomes have not been transferred to the nuclear genomes; instead, some of the encoded proteins have been substituted by homologs. The nuclear genes of both Epipogium species accumulated nucleotide substitutions twice as rapidly as their photosynthetic relatives; in contrast, no increase in the substitution rate was observed in H. monotropa. Conclusions: Full heterotrophy leads to profound changes in nuclear gene content. The observed increase in the rate of nucleotide substitutions is lineage specific, rather than a universal phenomenon among non-photosynthetic plants.
    [Show full text]
  • Northwest Plant Names and Symbols for Ecosystem Inventory and Analysis Fourth Edition
    USDA Forest Service General Technical Report PNW-46 1976 NORTHWEST PLANT NAMES AND SYMBOLS FOR ECOSYSTEM INVENTORY AND ANALYSIS FOURTH EDITION PACIFIC NORTHWEST FOREST AND RANGE EXPERIMENT STATION U.S. DEPARTMENT OF AGRICULTURE FOREST SERVICE PORTLAND, OREGON This file was created by scanning the printed publication. Text errors identified by the software have been corrected; however, some errors may remain. CONTENTS Page . INTRODUCTION TO FOURTH EDITION ....... 1 Features and Additions. ......... 1 Inquiries ................ 2 History of Plant Code Development .... 3 MASTER LIST OF SPECIES AND SYMBOLS ..... 5 Grasses.. ............... 7 Grasslike Plants. ............ 29 Forbs.. ................ 43 Shrubs. .................203 Trees. .................225 ABSTRACT LIST OF SYNONYMS ..............233 This paper is basicafly'an alpha code and name 1 isting of forest and rangeland grasses, sedges, LIST OF SOIL SURFACE ITEMS .........261 rushes, forbs, shrubs, and trees of Oregon, Wash- ington, and Idaho. The code expedites recording of vegetation inventory data and is especially useful to those processing their data by contem- porary computer systems. Editorial and secretarial personnel will find the name and authorship lists i ' to be handy desk references. KEYWORDS: Plant nomenclature, vegetation survey, I Oregon, Washington, Idaho. G. A. GARRISON and J. M. SKOVLIN are Assistant Director and Project Leader, respectively, of Paci fic Northwest Forest and Range Experiment Station; C. E. POULTON is Director, Range and Resource Ecology Applications of Earth Sate1 1 ite Corporation; and A. H. WINWARD is Professor of Range Management at Oregon State University . and a fifth letter also appears in those instances where a varietal name is appended to the genus and INTRODUCTION species. (3) Some genera symbols consist of four letters or less, e.g., ACER, AIM, GEUM, IRIS, POA, TO FOURTH EDITION RHUS, ROSA.
    [Show full text]