Balsam Woolly Adelgid Pest R

Total Page:16

File Type:pdf, Size:1020Kb

Balsam Woolly Adelgid Pest R ISBN 0-662-20745-9 Cat. No. Fo 29-6/1-1993E 1 FOREST Balsam Woolly Adelgid Pest R. Turnquist and J.W.E. Harris LEAFLET Pacific Forestry Centre Introduction Tikwalis Creek on the west side of the quarantine zone established by Fraser Canyon near Hells Gate. On provincial Order in Council. Some The balsam woolly adelgid, Adelges Vancouver Island, infested trees are highlights of the regulations piceae (Homoptera: Adelgidae), was found in east coast drainages from accompanying the revised zone are: accidentally introduced to North Victoria to Qualicum Beach and just annual permits are required to grow America from Europe and has become south of Port Alberni. Infested and and sell Abies spp. in British an important pest of true firs in the damaged trees have also been found Columbia; the movement of Abies Maritime Provinces, the Northeastern on Lasqueti and Hornby islands. spp. from within the zone to outside and Northwestern States, and southern Several of these locations were the zone is prohibited, only logs British Columbia. The adelgid can beyond known infestations and the transported and stored in water and damage and sometimes even kill a 1976 regulation zone. As a result, on processed promptly are exempted; significant proportion of the true fir in a October 22, 1992, new boundaries the selling or movement of cut trees stand after a few years of infestation. were drawn up and a revised or foliage of Abies spp. anywhere in In B.C., its impact on local B.C. between January 31 forest economies has and November 1 of a depended upon the Balsam woolly adelgid calendar year is prohibited. significance of Abies sp. in quarantine zone The revised quarantine forest stands. zone, related to present distribution, lies mostly Distribution within the southern part of In British Columbia, the PORT HARDY the Vancouver Forest adelgid occurs up to Region (Fig. 1). PEMBERTON about 1000 m elevation in The insect does not lower Fraser Valley CAMPBELL RIVER FRASER R. appear to have spread drainages east to Agassiz rapidly to adjacent stands, COURTENAY and, in patches, up the which is, in part, attributable mainland coast to West PORT ALBERNI VANCOUVER HOPE to the quarantine restricting Thurlow Island, north of NANAIMO the movement of host Powell River. Positive 0 40 80 km material within the samples in young Province. Presumably it is amabilis fir have also VICTORIA capable of spreading over been collected from Lizzie Figure1. Quarantine zone (1992 Order in Council) for balsam woolly much of the range of its Creek on the east side of adelgid in British Columbia. hosts, as demonstrated in Lillooet Lake, and at Idaho where the adelgid, mouthparts and remains at the interaction with the tree. This results chosen location for the in a breakdown of normal remainder of its life. It translocation processes and becomes a black, flattened, eventually in abnormalities at the resting form with a feeding sites. Twigs swell or "gout" at b characteristic pattern of white the nodes (Fig. 3) and the cambium wax exudations along the midline, produces wide, irregular annual between the body segments, and in a growth rings consisting of reddish, fringe around its body (Fig. 2b). This highly lignified, brittle wood, similar to is the overwintering form. Feeding "compression wood," which reduces a begins after several weeks, or after the quality of lumber and pulp. Heavy overwintering, and the body becomes attacks on the bole or stem (Figs. 4,5), Figure 2. Balsam woolly adelgid: (a) Adult more rounded, resembling the adult. often results in tree death after 2 or 3 with waxy "wool" covering omitted from After three months, it becomes an years, but it is not unusual for trees to drawing, (b) first-stage resting or adult and begins laying eggs. Eggs, recover. Gouted trees may survive for overwintering form. young crawlers and adults are present many years, but growth is curtailed. from as early as February in coastal Crowns become distorted and thin as areas until October. There are two to old needles are gradually shed and no first found in 1983, has spread four generations each year. At low new growth is added, while chronic throughout much of the state. It was population levels, detection is very attack can result in top-kill. Previous recently detected in lower elevation difficult and requires microscopic infestations in B.C. in the 1950s and grand fir and also in alpine fir stands examination of branch nodes. '60s have caused extensive damage up to 1800+m elevation. Although it is and mortality in amabilis and, to a generally believed that the adelgid Damage lesser degree, grand fir. In Idaho, does not survive temperatures below - The insect inserts its mouthparts into approximately 16 000+ ha of recent 34°C, unless protected by snow at the the living cells of the bark, introducing grand fir mortality were recorded lower parts of tree boles, the Idaho substances that produce an during aerial surveys in 1989. experience with high elevation grand fir mortality suggests the adelgid may be able to survive lower temperatures than previously suspected. Description and life history Adult balsam woolly adelgids are aphid-like, wingless, oval, purplish- black insects (Fig. 2a), less than 2 mm long, covered with white, a woolly, wax threads. The female (there are no males) may lay as many b as 100 red-brown eggs in a cluster about her body. These hatch into tiny, red-brown first-stage nymphs or "crawlers," the only motile stage. After selecting a feeding location on thin bark, branch nodes, leaf or cone buds, the adelgid Figure 3. Abies amabilis foliage showing swellings Figure 4. Medium stem attack on Abies amabilis. inserts its tube-like or gout at nodes: (a) Branch with light gout, (b) close-up of twig showing heavy gout. 2 Host susceptibility areas of infested branches may be British Columbia, and microscopic more or less pronounced, and is examination is necessary to positively All species of true fir (Abies sp.) are usually greatest in the upper crown distinguish it from Adelges piceae. susceptible, but some are less where growth is most rapid. This species does not cause resistant to injury than others. Alpine In summer, tufts of adelgid wool significant damage to Abies. fir (A. lasiocarpa) is the most readily can be found by experienced Lepidopteran borers also cause nodal damaged of the British Columbia searchers on the nodes and buds swellings, but this damage can be species, but attacks on this host are even when branches show no signs of identified by cutting through the node not yet widespread in the province, injury. In winter, much less wool is to expose the larval mine. although widespread damage and present so the most practical method mortality has been found in high is to collect branch tips and have elevation stands in Idaho. Amabilis fir Dispersal experienced examiners search for (A. amabilis) is the second most Spread of the balsam woolly adelgid aphids under the bud scales with a affected host and heavy mortality has occurs during the egg and newly microscope. Gouted seedlings and occurred at certain sites on the B.C. hatched nymph or crawler stages. mainland. Grand fir (A. grandis) is Experiments have shown crawlers the least susceptible to damage of to live over 8 days and to be the major B.C. species, but can capable of crawling more than 30 suffer appreciable deformation m. Eggs and crawlers fall or are and mortality. blown from infested crowns during Trees of all ages and vigor, the spring, summer and fall and on all growing sites, may be may be carried on clothing, attacked. Some trees are more vehicles, tents and other resistant than others, but trees equipment. They have been apparently free of attack for many found in traps 90 m from infested years may suddenly develop a stands and are probably capable heavy population of adelgids and of being carried many kilometres die. by wind currents. They are also carried by birds and animals. Detection Movement of infested logs, nursery stock and seedlings are Balsam woolly adelgids may other means of spread. attack any part of the crown and bole but they are difficult to detect Prevention of spread until symptoms of injury are well and control advanced. Stems with as many as 100 Figure 5. Close-up view of medium stem attack on bark. Direct control of the balsam adelgids per square cm of bark, Each spot of white wool covers an aphid. woolly adelgid in forest stands is although the most easily detected impractical by methods known at are infrequently found. The presence understory trees are an indication of present. Because the adelgids are of live individuals may be confirmed infestation in the main stand above. protected by their woolly covering and by brushing the wool-covered bark Persistent crown infestation feed in protected sites, direct control and finding purplish streaks on the results in visible thinning of the foliage, (with pesticides, for example) is not fingers. Stem attack occurs most top-killing, broken tops and the practical. frequently on smooth thin-barked eventual death of the tree (Fig. 6). Losses in forest stands can be trees, but is sometimes found in bark Secondary enemies, such as bark- minimized by selective and intensive crevices of thicker-barked trees. It is beetles, may hasten tree mortality. cutting of Abies before serious tree most frequent on moderately exposed Trees experiencing damage may show mortality occurs and before dying boles along roadsides, trails, edges of thin crowns with strong growth on the trees become unsuitable for salvage. logged areas, natural stand openings extreme top, so infested crowns may Preliminary results from studies in and in parks.
Recommended publications
  • Tree Species Distribution Maps for Central Oregon
    APPENDIX 7: TREE SPECIES DISTRIBUTION MAPS FOR CENTRAL OREGON A7-150 Appendix 7: Tree Species Distribution Maps Table A7-5. List of distribution maps for tree species of central Oregon. The species distribution maps are prefaced by four maps (pages A7-151 through A7-154) showing all locations surveyed in each of the four major data sources Map Page Forest Inventory and Analysis plot locations A7-151 Ecology core Dataset plot locations A7-152 Current Vegetation Survey plot locations A7-153 Burke Museum Herbarium and Oregon Flora Project sample locations A7-154 Scientific name Common name Symbol Abies amabilis Pacific silver fir ABAM A7-155 Abies grandis - Abies concolor Grand fir - white fir complex ABGR-ABCO A7-156 Abies lasiocarpa Subalpine fir ABLA A7-157 Abies procera - A. x shastensis Noble fir - Shasta red fir complex ABPR-ABSH A7-158 [magnifica x procera] Acer glabrum var. douglasii Douglas maple ACGLD4 A7-159 Alnus rubra Red alder ALRU2 A7-160 Calocedrus decurrens Incense-cedar CADE27 A7-161 Chrysolepis chrysophylla Golden chinquapin CHCH7 A7-162 Frangula purshiana Cascara FRPU7 A7-163 Juniperus occidentalis Western juniper JUOC A7-164 Larix occidentalis Western larch LAOC A7-165 Picea engelmannii Engelmann spruce PIEN A7-166 Pinus albicaulis Whitebark pine PIAL A7-167 Pinus contorta var. murrayana Sierra lodgepole pine PICOM A7-168 Pinus lambertiana Sugar pine PILA A7-169 Pinus monticola Western white pine PIMO3 A7-170 Pinus ponderosa Ponderosa pine PIPO A7-171 Populus balsamifera ssp. trichocarpa Black cottonwood POBAT A7-172
    [Show full text]
  • Balsam Woolly Adelgid
    A New Utah Forest Insect This fact sheet Pest: Balsam Woolly Adelgid introduces an invasive forest pest, the balsam By: Darren McAvoy, Extension Forestry Assistant Professor, woolly adelgid, and Diane Alston, Professor & Extension Entomologist, discusses its impacts on Ryan Davis, Arthropod Diagnostician, Utah forests, life cycle Megan Dettenmaier, Extension Forestry Educator traits, identifying characteristics, control Introduction methods, and steps that In 2017, the USDA Forest Service’s Forest Health Protection (FHP) group in Utah partners are taking Ogden, Utah detected and confirmed the presence of a new invasive forest to combat this pest. pest in Utah called the balsam woolly adelgid (BWA). First noticed in the mountains above Farmington Canyon and near Powder Mountain Resort, it has Dieback and decline of subalpine fir due to attack by balsam woolly adelgid. Photo credit: Darren McAvoy. 2017, forest health professionals visited Farmington Canyon on the ground and found branch node swelling (a node is where branch structures come together) and old deposits of woolly material on mature subalpine fir trees. Suspected to have originated in the Caucasus Mountains between Europe and Asia, BWA was first detected in North America in Maine, in 1908, and in California about 20 years later. It was detected in Idaho near Coeur d’Alene in 1983 and has since spread across northern Idaho. It is believed that separate invasions of subspecies or races of BWA may differentially impact tree host species. Dieback of subalpine fir, pacific silver (Abies amabilis) and grand fir (A. grandis) in Idaho is widespread. In the western Payette National Forest, north of Boise, an estimated 70% of subalpine fir trees are dead and falling down.
    [Show full text]
  • Bridgeoporus Nobilissimus Is Much More Abundant Than Indicated by the Presence of Basidiocarps in Forest Stands
    North American Fungi Volume 10, Number 3, Pages 1-28 Published May 29, 2015 Bridgeoporus nobilissimus is much more abundant than indicated by the presence of basidiocarps in forest stands Matthew Gordon1 and Kelli Van Norman2 1Molecular Solutions LLC, 715 NW Hoyt St., #2546, Portland, OR 97208, USA 2Interagency Special Status/Sensitive Species Program, USDI Bureau of Land Management Oregon State Office & USDA Forest Service Region 6, 1220 SW 3rd Ave., Portland, OR 97204, USA Gordon, M., and K. Van Norman. 2015. Bridgeoporus nobilissimus is much more abundant than indicated by the presence of basidiocarps in forest stands. North American Fungi 10(3): 1-28. http://dx.doi:10.2509/naf2015.010.003 Corresponding author: Matt Gordon [email protected]. Accepted for publication May 4, 2015. http://pnwfungi.org Copyright © 2015 Pacific Northwest Fungi Project. All rights reserved. Abstract: The polypore Bridgeoporus nobilissimus produces large perennial basidiocarps on large diameter Abies stumps, snags and trees in coniferous forests of the Pacific Northwest. Despite the size and persistence of the basidiocarps, they are rarely observed, making the conservation of this species a concern. We determined that a genetic marker for this fungus could be detected in DNA extracted from wood cores taken from trees hosting basidiocarps. We then tested 105 trees and stumps that did not host B. nobilissimus basidiocarps in plots surrounding B. nobilissimus conks, and 291 trees and stumps in randomly located plots in four stands that contained at least one B. nobilissimus basidiocarp. We found that trees of all sizes throughout all of the stands hosted B.
    [Show full text]
  • 2004A IE Reports
    Contents Introduction…………………………………….…………………………………1 Using GIS to predict plant distributions: a new approach (Amy Lorang)……………………………………………………………………...3 Impacts of Hemlock Woolly Adelgid on Canadian and Carolina Hemlock Forests (Josh Brown)………………………………………………..……………………19 Effects of Adelgid-Induced Decline in Hemlock Forests on Terrestrial Salamander Populations of the Southern Appalachians: A Preliminary Study (Shelley Rogers)………………………………………………………………….37 Riparian zone structure and function in Southern Appalachian forested headwater catchments (Katie Brown)…………………………………………………………………….60 Successional Dynamics of Dulany Bog (Michael Nichols)………………………………………………………………...77 Mowing and its Effect on the Wildflowers of Horse Cove Road on the Highlands Plateau ((Megan Mailloux)……………………………………………………………….97 Acknowledgements……………………………………………………………..114 1 Introduction In the Fall of 2004, twelve undergraduate students from the University of North Carolina at Chapel Hill had the opportunity to complete ecological coursework through the Carolina Environmental Program’s Highlands field site. This program allows students to learn about the rich diversity of plants and animals in the southern Appalachians. The field site is located on the Highlands Plateau, North Carolina, near the junction of North Carolina, South Carolina and Georgia. The plateau is surrounded by diverse natural areas which create an ideal setting to study different aspects of land use change and threats to biodiversity. The Highlands Plateau is a temperate rainforest of great biodiversity, a patchwork of rich forests, granite outcrops, and wet bogs. Many rare or interesting species can be found in the area, with some being endemic to a specific stream or mountaintop. Some of these are remnants of northern species that migrated south during the last ice age; others evolved to suit a particular habitat, with a slightly different species in each stream.
    [Show full text]
  • Hybridization of the California Firs
    Forest Science, Vol. 34, No. I, pp. 139-151. Copyright 1988 by the Society of American Foresters Hybridization of the California Firs William B. Critchfield Abstract. Four groups of firs (sections, in the most recent classification of Abies) are represented in California. Crossing within these sections is possible and even easy, and in two of the sections intergrading populations between highly crossable taxa are wide spread in California. An exception is A. amabilis, a Northwestern fir that has not been crossed with other species in the same section {Grandes: A. concolor, A. grandis) or in other sections (e.g., Nobiles: A magnified). Crossing species in different sections is usually difficult or impossible. The genetic isolation of A. bracteata, an endemic species classified as a monotypic subgenus or section, may be nearly complete: two probable hybrids with A. concolor died at a few years of age. A few putative hybrids from inter- sectional crosses between species in Grandes and Nobiles died within months of germi nation. Intersectional crosses with firs outside California (two Mexican and four Eur asian species) all failed except A. concolor x A. religiosa, which produced numerous healthy hybrids. The common occurrence of genetic barriers in Abies is at odds with the long-held view that it is easy to hybridize fir species. For. Sci. 34(1): 139-151. Additional key words. Abies, interspecific hybrids, crossability, classification. The ability of species to hybridize has not been explored as systemati cally in the genus Abies (true firs) as it has in other genera of Pinaceae such as Pinus and Pice a.
    [Show full text]
  • Survival of Live Christmas Trees Profile: Nordmann Fir This Pot-In-Pot Nursery in Denmark Produces 90,000 to 100,000 Showing the Flag
    volume 2 | number 4 fall 2007 survival of live christmas trees profile: nordmann fir This Pot-in-Pot nursery in Denmark produces 90,000 to 100,000 Showing the flag. Nordmann fir are marketed in Europe under container-grown Nordmann fir each year. the “Original Nordmann” label. Christmas Tree Species Profile: Nordmann fir Abies nordmanniana By: Bert Cregg, Ph.D. Michigan State University, Department of Horticulture and Department of Forestry Photos by Rick Bates, Ph.D. Pennsylvania State University, Department of Horticulture One of the great things about working with Christmas trees is that we get to work with some beautiful and fascinating plants. Over the years, many species of pines, spruces, firs, and even cedars have been used as Christmas trees. Each species has its unique appeal and every species has a story. Beginning with this issue of the Great Lake Christmas Tree Journal, I will present profiles of interesting Christmas tree species used in the Great Lakes region and elsewhere. I’ll discuss the basic biology and ecology of the species, highlight some of the advantages or concerns of the species for Christmas tree production, and throw in a little trivia or other titillating tidbits. Nordmann fir Abies nordmanniana not given to feint praise, calls Nordmann popularity of this species is due to sever- Beauty, as they say, is in the eye of the fir,“stately, elegant, perhaps the hand- al factors. First and foremost are the beholder, but few can argue that somest of the firs.” Nordmann fir is by far glossy, dark green needles, which are Nordmann fir is among the most beauti- the most popular Christmas tree species darker than almost any fir except for ful conifers found anywhere.
    [Show full text]
  • Curtis/True Fir-Hemlock Trials
    United States Department of Agriculture True Fir-Hemlock Forest Service Pacific Northwest Spacing Trials: Research Station General Design and First Results Technical Report PNW-GTR-492 May 2000 Robert O. Curtis, Gary W. Clendenen and Jan A. Henderson Authors Robert O. Curtis is an emeritus scientist and Gary W. Clendenen is a forester, Pacific Northwest Research Station, 3625-93d Ave. SW, Olympia, WA 98512-9193; and Jan A. Henderson is an area ecologist, Mount Baker-Snoqualmie National Forest, 21905-64th Ave. West, Mountlake Terrace, WA 98043. Abstract Curtis, Robert O.; Clendenen, Gary W.; Henderson, Jan A. 2000. True fir-hemlock spacing trials: design and first results. Gen. Tech. Rep. PNW-GTR-492. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 35 p. A series of 18 precommercial thinning trials was established in true fir-hemlock stands in the Olympic Mountains and along the west side of the Cascade Range in Washington and Oregon from 1987 through 1994. This paper documents estab- lishment of these installations and presents some preliminary observations and results. Substantial differences in growth rates in height and diameter were ob- served among Pacific silver fir, western hemlock, and noble fir. Diameter growth of all species increased as spacing increased, but height growth of silver fir and noble fir decreased at wider spacings in some areas. These installations will pro- vide a unique source of information on early development of managed stands of these species, for which little information now is available. Keywords: Abies, spacing, precommercial thinning, true firs. This page left blank intentionally.
    [Show full text]
  • Fire History of Pseudotsuga Menziesii and Abies Grandis Stands in The
    Fire History of Pseudotsuga men:iesii and Abies grandis Stands in the Blue Mountains of Oregon and Washington by Kathleen Ryoko Maruoka This report is submitted in partial satisfaction of Supplemental Cooperative Agreement # PNW 92-0179 between the USDA Forest Service and the University of Washington. It was submitted as a M.S. thesis at the University of Washington. March 11, 1994 Fire History of Pseudotsuga menziesii and Abies grandis Stands in the Blue Mountains of Oregon and Washington by Kathleen Ryoko Maruoka A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science University of Washington 1994 Approved by (C an of Supervib6ry Committee) A&VZ,Ce Ck/ ge1-64411) Program Authorized to Offer Degree 1-77`e s r Date Master's Thesis In presenting this thesis in partial fulfillment of the requirements for a Master's degree at the University of Washington, I agree that the Library shall make its copies freely available for inspection. I further agree that extensive copying of this thesis is allowable only for scholarly purposes. consistent with "fair use" as prescribed in the U.S. Copyright Law. Any other reproduction for any purposes or by any means shall not be allowed without my written . permission. Signature Date I , University of Washington Abstract A Fire History Survey in Selected Pseudotsuga men:testi and Abies grandis Stands in the Blue Mountains of Oregon and Washington by Kathleen Ryoko Maruoka Chairman of Supervisory Committee: Professor James K. Agee College of Forest Resources Fifteen sites in the Blue Mountains of Oregon and Washington were sampled to survey fire frequency in stands ranging from Pseudotsuga menziesii associations to dry Abies grandis associations.
    [Show full text]
  • Local Variation in Intergrading Abies Grandis—Abies Concolor Populations in the Central Oregon Cascades: Needle Morphology and Periderm Color
    BOT. GAZ. 134(3):209-220. 1973. LOCAL VARIATION IN INTERGRADING ABIES GRANDIS—ABIES CONCOLOR POPULATIONS IN THE CENTRAL OREGON CASCADES: NEEDLE MORPHOLOGY AND PERIDERM COLOR DONALD B. ZOBEL Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331 ABSTRACT In the central Oregon Cascades, grand fir morphology varies from that of typical Abies grandis to that of populations with a variety of morphological types, some closely resembling A. concolor. Low- elevation populations west of the Cascade crest, mostly on river terraces, resemble A. grandis. High- elevation west-side populations, disjunct from those at low elevations and occupying ridge tops and steep, dry slopes, include trees with some traits of A. concolor. Populations on the east flank of the Cascades show a greater but widely variable influence of A. concolor. East-side populations vary locally with aspect, being most like A. grandis on north slopes, but they do not clearly vary with elevation. Incidence of characteristics resembling A. concolor increases from north to south within the study area, although this pattern shows deviations not associated with obvious changes in topography. Periderm color and needle morphology show the same general relationships between the populations sampled. Either "maxi- mum number of adaxial stomatal rows" or "percentage of length of needle with adaxial stomata" can be used to describe the extent of adaxial stomata. Needle notch depth is not consistently correlated with stomata( characteristics on a tree-to-tree basis, but shows a similar, less distinct, geographic and habitat pattern. The variation within populations is greater in the intermediate populations than in those of "typical" A.
    [Show full text]
  • Arceuthobium Tsugense Subsp. Amabilae, a New Subspecies of Hemlock Dwarf Mistletoe (Viscaceae) from Oregon
    Arceuthobium tsugense subsp. amabilae, a New Subspecies of Hemlock Dwarf Mistletoe (Viscaceae) from Oregon Robert L. Mathiasen School of Forestry, Northern Arizona University, Flagstaff, Arizona 86011, U.S.A. [email protected] Carolyn M. Daugherty Department of Geography, Planning, and Recreation, Northern Arizona University, Flagstaff, Arizona 86011, U.S.A. ABSTRACT . The dwarf mistletoe severely parasitizing Hawksworth and Wiens (1972) only included white fir Pacific silver fir in Oregon is described as a new (Abies concolor Lindley & Gordon), grand fir (Abies subspecies of hemlock dwarf mistletoe. This classifi grandis (Douglas ex D. Don) Lindley), California red cation is based on morphological and host range fir (Abies magnifica A. Murray), and noble fir (Abies differences between hemlock dwarf mistletoe, Ar procera Rehder) as hosts of Arceuthobium abietinum in ceuthobium tsugense (Rosendahl) G. N. Jones subsp. Oregon; they included only grand fir in Washington. tsugense, and the new subspecies, Pacific silver fir Hawksworth (1987) summarized the taxonomy of dwarf mistletoe, Arceuthobium tsugense subsp. am Arceuthobium tsugense and separated this species into abilae Mathiasen & C. Daugherty. three different races: a western hemlock race, a shore Key words: Arceuthobium, Hemlock dwarf mis pine race, and a mountain hemlock race. Hawksworth tletoe, IUCN Red List, mountain hemlock, noble fir, indicated that only the western hemlock race Oregon, Pacific silver fir, Viscaceae, western hem parasitized species of Abies. Hawksworth et al. lock. (1992) presented another interpretation for the classification of A. tsugense. They described the The taxonomic classification of the dwarf mistletoes western hemlock and mountain hemlock races pro severely parasitizing Pacific silver fir (Abies amabilis posed by Hawksworth (1987) as subspecies of A.
    [Show full text]
  • Pseudotsuga Menziesii)
    120 - PART 1. CONSENSUS DOCUMENTS ON BIOLOGY OF TREES Section 4. Douglas-Fir (Pseudotsuga menziesii) 1. Taxonomy Pseudotsuga menziesii (Mirbel) Franco is generally called Douglas-fir (so spelled to maintain its distinction from true firs, the genus Abies). Pseudotsuga Carrière is in the kingdom Plantae, division Pinophyta (traditionally Coniferophyta), class Pinopsida, order Pinales (conifers), and family Pinaceae. The genus Pseudotsuga is most closely related to Larix (larches), as indicated in particular by cone morphology and nuclear, mitochondrial and chloroplast DNA phylogenies (Silen 1978; Wang et al. 2000); both genera also have non-saccate pollen (Owens et al. 1981, 1994). Based on a molecular clock analysis, Larix and Pseudotsuga are estimated to have diverged more than 65 million years ago in the Late Cretaceous to Paleocene (Wang et al. 2000). The earliest known fossil of Pseudotsuga dates from 32 Mya in the Early Oligocene (Schorn and Thompson 1998). Pseudostuga is generally considered to comprise two species native to North America, the widespread Pseudostuga menziesii and the southwestern California endemic P. macrocarpa (Vasey) Mayr (bigcone Douglas-fir), and in eastern Asia comprises three or fewer endemic species in China (Fu et al. 1999) and another in Japan. The taxonomy within the genus is not yet settled, and more species have been described (Farjon 1990). All reported taxa except P. menziesii have a karyotype of 2n = 24, the usual diploid number of chromosomes in Pinaceae, whereas the P. menziesii karyotype is unique with 2n = 26. The two North American species are vegetatively rather similar, but differ markedly in the size of their seeds and seed cones, the latter 4-10 cm long for P.
    [Show full text]
  • Franklin 1966
    VEGETATION AND SOILS IN THE SUBALPINE FORESTS OF THE SOUTHERN WASHINGTON CASCADE RANGE By JERRY FOREST FRANKLIN A thesis submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY IN BOTANY WASHINGTON STATE UNIVERSITY 1966 INTRODUCTION Dense coniferous forests characterized by species of Abies nd Tsuga are found along the upper slopes and crest of the Cascade Range in Oregon and Washington. These forests occupy the Tsuga mertensiana and Abies amabilis Zones which together are the least known of the major phytogeographic units in the Pacific Northwest. Forest composition and environments vary markedly within the Abies- Tsuga Zones. Fourteen tree species play the role of major components:Pacific silver fir (Abies amabilis) , western hemlock (Tsuga heterophylla) , mountain hemlock (Tsuga mertensiana) , noble fir (Abies procera) , subalpine fir (Abies lasiocarpa) , Douglas-fir (Pseudotsuga menziesii) , western redcedar (Thuja pli- cata) , Alaska-cedar (Chamaecyparis nootkatensis) , Shasta red fir (Abies magnif­ ies var. shastensis) , Engelmann spruce (Picea engelmannii) , grand fir (Abies grandis) , western white pine (Pinus monticola), lodgepole pine (Pinus contorta) , and western larch (Larix occidentalis) . The diversity in environmental cond­ itions of these zones can easily be imagined for they extend through 7 degrees of latitude, cross the width of the Cascade Range, and range through as much as 5,000 feet of elevation. The wealth of tree species, a history of past disturbances, and a complex and diverse environmental mosaic have produced an apparently chaotic assemblage of forest types within the Abies-Tsuga Zones. It was apparent that these forests needed to be stratified into areas of essentially equivalent environment, i.e., habitat types, before meaningful autecological and 1 silvicultural research could be carried out.
    [Show full text]