Avian Evolution : the Fossil Record of Birds and Its Paleobiological Significance Pdf, Epub, Ebook

Total Page:16

File Type:pdf, Size:1020Kb

Avian Evolution : the Fossil Record of Birds and Its Paleobiological Significance Pdf, Epub, Ebook AVIAN EVOLUTION : THE FOSSIL RECORD OF BIRDS AND ITS PALEOBIOLOGICAL SIGNIFICANCE PDF, EPUB, EBOOK Gerald Mayr | 306 pages | 04 Nov 2016 | John Wiley and Sons Ltd | 9781119020769 | English | Hoboken, United States Avian Evolution : The Fossil Record of Birds and its Paleobiological Significance PDF Book A gigantic phororhacoid? Krol and colleagues conducted a particularly interesting study comparing the transcriptomes of mouse, chicken and zebrafish during one somite extension. PLoS One, 8: e Surveys of bird evolution, and especially their Mesozoic Era origins and paleobiology, must be undertaken with particular objectivity. The recent expansion reflects both renewed interest in existing collections Borneo as well as new excavation efforts on Sumatra, Flores and Palawan. Wetmore described bird bones from bone-bearing terraces near Watualang, situated near the Solo River in central Java Fig. This book gives an overview of the avian fossil record and its paleobiological significance, and it is the only up-to- date textbook that covers both Mesozoic and more modern-type Cenozoic birds in some detail. However, as Mayr mentions, the WAIR scenario would have necessitated the presence of a substantial forelimb skeleto-muscular apparatus i. Table 1 Caudal vertebral body fusion mouse mutants Full size table. Concurrent disruptions in all three mouse Hox10 genes, for example, cause the lumbar vertebrae to transform into thoracic-like vertebrae with ribs [ 82 ]. Cowen's History of Life. J Morphol. London and Basingstoke: Macmillan Press Ltd. Google Scholar. Sereno PC: The origin and evolution of dinosaurs. Its fully formed flight feathers, elongated wings, and evidence of capable powered flight, all ally Archaeopteryx with birds [ 9 , 10 ]. Yet, the presence of teeth, clawed and unfused fingers, and an elongated, bony tail are characteristics shared with non-avian theropod dinosaurs. A comprehensive phylogeny of birds Aves using targeted next-generation DNA sequencing. Email alerts Article activity alert. Primitive bird tails underwent significant alteration, most notably reduction of the number of caudal vertebrae and fusion of the distal caudal vertebrae into an ossified pygostyle. The tail of extant birds, for example, functions to provide lift, braking, and turning surfaces for controlled flight [ 32 — 36 ], but is decoupled from the hind limb and has lost its ancestral contributions to terrestrial as opposed to aerial locomotion. While there is no equivalent gain-of-function mouse mutant, loss-of-function mutations in either Irx1 or Irx2 in the mouse do not cause posterior truncation or fused vertebrae, emphasizing an important caveat with this study that mutation of the same genes can be manifested differently depending on the nature of the mutation. Osteological evidence for sister group relationship between pseudo-toothed birds Aves: Odontopterygiformes and waterfowls Anseriformes. Images Additional images. Tom J. Brodkorb P. Aspects of diversity in early Antarctic penguins. Redescription of Crossvallia unienwillia: the only Paleocene Antarctic penguin. It should be noted that not all dinosaurs with a pygostyle had short tails for example, Beipiaosaurus [ ]. Evol Theor, 3: The first evidence of an infectious disease in early penguins. Fossil bird remains span the last 50 million years, from the Eocene to the Holocene, but most remains have been found in Quaternary sediments. Strontium isotope correlation of the basal Maastrichtian Stage in Antarctica to the European and US biostratigraphic schemes. Curiously, in later sections of the book, Mayr presents a general discussion of avian flightlessness and of the cosmopolitan occurrence of myriad secondarily flightless forms unrelated to paleognathous taxa. A phylogeny of birds based on over loci collected by target enrichment and high- through put sequencing. Avian Evolution : The Fossil Record of Birds and its Paleobiological Significance Writer This project is entirely funded through private donations, and the authors wish to thank George Lucas, without whose contribution, this project would not have been possible. Ah, science. Elliott, and J. Birds of the British Lower Eocene. Conversely, loss-of-function of the more posteriorly expressed three Hox11 genes in mice results in a failure to form sacral vertebrae, being replaced by vertebrae with lumbar morphology. Search for: Search. Zelenkov, U. A phylogenomic study of birds reveals their evolutionary history. In this review, we summarize the current understanding of the signaling pathways and morphological events that contribute to tail extension and termination and examine how mutations affecting the genes that control these pathways might influence the evolution of the avian tail. Other titles from Blackwell. In theropods and in modern reptiles, the CML originates on the proximal caudal vertebrae, with attachment points on the ventral transverse processes and hemal arches chevrons. B Lateral schematic of tail structures. Images Additional images. Kimball, S. Berv, A. Sargatal, — Aulehla A, Pourquie O: Signaling gradients during paraxial mesoderm development. Genes Dev. Comparison of tail skeletons between Archaeopteryx, Sapeornis, Confuciusornis, and chicken Gallus gallus. An account of the Cenozoic fossil record sheds light on the biogeographic history of the extant avian groups and discusses fossils in the context of current phylogenetic hypotheses. Finally, increased apoptosis at the termination of somitogenesis removes all remaining progenitor cells. About this book Knowledge of the evolutionary history of birds has much improved in recent decades. Extant bird tails consist proximally of a small series of unfused caudal vertebrae with a high range of motion. Third, since long tails hinder flight, and flight mechanics evolved primarily with short tails [ 36 ], reintroduction of long tails would have likely impeded survival. Figure 5. While these mutations generally preserve the overall number of vertebral elements, some Hox gene disruptions can increase or more commonly decrease total vertebrae numbers reviewed in [ 78 ]. The three-inch skull, being delicate, was not even extricated from the rock. Stronger biting forces as well as the characteristic prey manipulation behavior of extant rollers may account for some of the observed differences in the cranial and vertebral morphology of the fossil and extant taxa, but the exact functional correlations remain elusive. Bird origins anew. Modern birds originated in the Late Cretaceous, and it has become increasingly apparent that the final 20 million years of the age of the dinosaurs 86 million to 66 million years ago was a pivotal time in avian evolutionary history. Additional file 3: Table of posterior vertebral body fusion mouse mutants. Adaptations of mandibular apparatus of Euristomus [sic] orientalis to seizure of flying insects. Indirect mutations that would re-activate a particular pathway are possible but also unlikely, considering the mutation s would have to reintroduce the fine balance of factors required for axial extension without being detrimental. Fossils from critical time periods are being described at unprecedented rates and modern phylogenetic analyses have provided a framework for the interrelationships of the extant groups. Reddy, R. This site uses Akismet to reduce spam. ISBN Journal of Zoological Systematics and Evolutionary Research — Miglia, W. Avian Evolution gives an overview of the avian fossil record and its paleobiological significance, and it is the only up-to-date textbook that covers both Mesozoic and more modern-type Cenozoic birds in some detail. English Deutsch. Raptors, owls, and swiftlets are present and abundant in all cave sites excavated, and remain ubiquitous elements in the modern Southeast Asian avifauna today. Journal of Zoological Systematics and Evolutionary Research 46 1 , , Peyrouse, and M. Avian Evolution : The Fossil Record of Birds and its Paleobiological Significance Reviews In this same study, Hoxb13 was also shown to inhibit neuronal proliferation, which, combined with the normal loss of caudal neural crest-derived neurogenic cells, doubly ensures the lack of spinal ganglia at the end of the tail [ 90 ]. The question then becomes, are there any morphological traits that co-segregate with reduced numbers of caudal vertebrae for single mutations, and do any of these traits co-segregate in the fossil record? Citing articles via Google Scholar. Almost two decades have passed since the last publication of a single-volume, detailed review of avian origins and their Mesozoic—Cenozoic adaptive radiation cf. Encyclopedia of Dinosaurs. James , F. Their combined citations are counted only for the first article. They are critical for powered flight, ensure reproductive success by attracting mates, and safeguard relatives by communicating warning signals. This book gives an overview of the avian fossil record and its paleobiological significance, and it is the only up-to-date textbook that covers both Mesozoic and more modern-type Cenozoic birds in some detail. The presence of hemal arches in Sapeornis indicate its CML was more substantial than in Confuciusornis , suggesting that formation of the pygostyle alone is not sufficient to cause the degree of CML reduction seen in Confuciusornis and in modern birds. Weller, — George Kelday Peck, — Rashid, D. Ah, science. We're still open for business - read our Brexit and Covid statements. Birds with fully formed teeth, for example, have never been observed in modern times because the genes
Recommended publications
  • Uropygial Gland in Birds
    UROPYGIAL GLAND IN BIRDS Prepared by Dr. Subhadeep Sarker Associate Professor, Department of Zoology, Serampore College Occurrence and Location: • The uropygial gland, often referred to as the oil or preen gland, is a bilobed gland and is found at the dorsal base of the tail of most psittacine birds. • The uropygial gland is a median dorsal gland, one per bird, in the synsacro-caudal region. A half moon-shaped row of feather follicles of the upper median and major tail coverts externally outline its position. • The uropygial area is located dorsally over the pygostyle on the midline at the base of the tail. • This gland is most developed in waterfowl but very reduced or even absent in many parrots (e.g. Amazon parrots), ostriches and many pigeons and doves. Anatomy: • The uropygial gland is an epidermal bilobed holocrine gland localized on the uropygium of most birds. • It is composed of two lobes separated by an interlobular septum and covered by an external capsule. • Uropygial secretory tissue is housed within the lobes of the gland (Lobus glandulae uropygialis), which are nearly always two in number. Exceptions occur in Hoopoe (Upupa epops) with three lobes, and owls with one. Duct and cavity systems are also contained within the lobes. • The architectural patterns formed by the secretory tubules, the cavities and ducts, differ markedly among species. The primary cavity can comprise over 90% of lobe volume in the Oilbird (Steatornis caripensis) and some woodpeckers and pigeons. • The gland is covered by a circlet or tuft of down feathers called the uropygial wick in many birds.
    [Show full text]
  • Avian Tail Ontogeny, Pygostyle Formation, and Interpretation of Juvenile Mesozoic Specimens Dana J
    Clemson University TigerPrints Publications Biological Sciences 6-13-2018 Avian tail ontogeny, pygostyle formation, and interpretation of juvenile Mesozoic specimens Dana J. Rashid Montana State University-Bozeman Kevin Surya Montana State University-Bozeman Luis M. Chiappe Dinosaur Institute, Los Angeles County Museum of Natural History Nathan Carroll Dinosaur Institute, Los Angeles County Museum of Natural History Kimball L. Garrett Section of Ornithology, Los Angeles County Museum of Natural History See next page for additional authors Follow this and additional works at: https://tigerprints.clemson.edu/bio_pubs Part of the Biology Commons Recommended Citation Please use the publisher's recommended citation. https://www.nature.com/articles/s41598-018-27336-x#rightslink This Article is brought to you for free and open access by the Biological Sciences at TigerPrints. It has been accepted for inclusion in Publications by an authorized administrator of TigerPrints. For more information, please contact [email protected]. Authors Dana J. Rashid, Kevin Surya, Luis M. Chiappe, Nathan Carroll, Kimball L. Garrett, Bino Varghese, Alida Bailleul, Jingmai K. O'Connor, Susan C. Chapman, and John R. Horner This article is available at TigerPrints: https://tigerprints.clemson.edu/bio_pubs/112 www.nature.com/scientificreports OPEN Avian tail ontogeny, pygostyle formation, and interpretation of juvenile Mesozoic specimens Received: 27 March 2018 Dana J. Rashid1, Kevin Surya2, Luis M. Chiappe3, Nathan Carroll3, Kimball L. Garrett4, Bino Accepted: 23 May 2018 Varghese5, Alida Bailleul6,7, Jingmai K. O’Connor 7, Susan C. Chapman 8 & John R. Horner1,9 Published: xx xx xxxx The avian tail played a critical role in the evolutionary transition from long- to short-tailed birds, yet its ontogeny in extant birds has largely been ignored.
    [Show full text]
  • 9 Paleontological Conference Th
    Polish Academy of Sciences Institute of Paleobiology 9th Paleontological Conference Warszawa, 10–11 October 2008 Abstracts Warszawa Praha Bratislava Edited by Andrzej Pisera, Maria Aleksandra Bitner and Adam T. Halamski Honorary Committee Prof. Oldrich Fatka, Charles University of Prague, Prague Prof. Josef Michalík, Slovak Academy of Sciences, Bratislava Assoc. Prof. Jerzy Nawrocki, Polish Geological Institute, Warszawa Prof. Tadeusz Peryt, Polish Geological Institute, Warszawa Prof. Grzegorz Racki, Institute of Paleobiology, Warszawa Prof. Jerzy Trammer, University of Warsaw, Warszawa Prof. Alfred Uchman, Jagiellonian University, Kraków Martyna Wojciechowska, National Geographic Polska, Warszawa Organizing Committee Dr Maria Aleksandra Bitner (Secretary), Błażej Błażejewski, MSc, Prof. Andrzej Gaździcki, Dr Adam T. Halamski, Assoc. Prof. Anna Kozłowska, Assoc. Prof. Andrzej Pisera Sponsors Institute of Paleobiology, Warszawa Polish Geological Institute, Warszawa National Geographic Polska, Warszawa Precoptic Co., Warszawa Cover picture: Quenstedtoceras henrici Douvillé, 1912 Cover designed by Aleksandra Hołda−Michalska Copyright © Instytut Paleobiologii PAN Nakład 150 egz. Typesetting and Layout: Aleksandra Szmielew Warszawska Drukarnia Naukowa PAN ABSTRACTS Paleotemperature and paleodiet reconstruction on the base of oxygen and carbon isotopes from mammoth tusk dentine and horse teeth enamel during Late Paleolith and Mesolith MARTINA ÁBELOVÁ State Geological Institute of Dionýz Štúr, Mlynská dolina 1, SK−817 04 Bratislava 11, Slovak Republic; [email protected] The use of stable isotopes has proven to be one of the most effective methods in re− constructing paleoenvironments and paleodiet through the upper Pleistocene period (e.g. Fricke et al. 1998; Genoni et al. 1998; Bocherens 2003). This study demonstrates how isotopic data can be employed alongside other forms of evidence to inform on past at great time depths, making it especially relevant to the Palaeolithic where there is a wealth of material potentially available for study.
    [Show full text]
  • Avian Tail Ontogeny, Pygostyle Formation, and Interpretation of Juvenile Mesozoic Specimens Received: 27 March 2018 Dana J
    www.nature.com/scientificreports OPEN Avian tail ontogeny, pygostyle formation, and interpretation of juvenile Mesozoic specimens Received: 27 March 2018 Dana J. Rashid1, Kevin Surya2, Luis M. Chiappe3, Nathan Carroll3, Kimball L. Garrett4, Bino Accepted: 23 May 2018 Varghese5, Alida Bailleul6,7, Jingmai K. O’Connor 7, Susan C. Chapman 8 & John R. Horner1,9 Published: xx xx xxxx The avian tail played a critical role in the evolutionary transition from long- to short-tailed birds, yet its ontogeny in extant birds has largely been ignored. This defcit has hampered eforts to efectively identify intermediate species during the Mesozoic transition to short tails. Here we show that fusion of distal vertebrae into the pygostyle structure does not occur in extant birds until near skeletal maturity, and mineralization of vertebral processes also occurs long after hatching. Evidence for post-hatching pygostyle formation is also demonstrated in two Cretaceous specimens, a juvenile enantiornithine and a subadult basal ornithuromorph. These fndings call for reinterpretations of Zhongornis haoae, a Cretaceous bird hypothesized to be an intermediate in the long- to short-tailed bird transition, and of the recently discovered coelurosaur tail embedded in amber. Zhongornis, as a juvenile, may not yet have formed a pygostyle, and the amber-embedded tail specimen is reinterpreted as possibly avian. Analyses of relative pygostyle lengths in extant and Cretaceous birds suggests the number of vertebrae incorporated into the pygostyle has varied considerably, further complicating the interpretation of potential transitional species. In addition, this analysis of avian tail development reveals the generation and loss of intervertebral discs in the pygostyle, vertebral bodies derived from diferent kinds of cartilage, and alternative modes of caudal vertebral process morphogenesis in birds.
    [Show full text]
  • Paleontologia Em Destaque
    Paleontologia em Destaque Boletim Informativo da SBP Ano 34, n° 72, 2019 · ISSN 1807-2550 PALEO, SBPV e SBPI 2018 RELATOS E RESUMOS SOCIEDADE BRASILEIRA DE PALEONTOLOGIA Presidente: Dr. Renato Pirani Ghilardi (UNESP/Bauru) Vice-Presidente: Dr. Annie Schmaltz Hsiou (USP/Ribeirão Preto) 1ª Secretária: Dra. Taissa Rodrigues Marques da Silva (UFES) 2º Secretário: Dr. Rodrigo Miloni Santucci (UnB) 1º Tesoureiro: Me. Marcos César Bissaro Júnior (USP/Ribeirão Preto) 2º Tesoureiro: Dr. Átila Augusto Stock da Rosa (UFSM) Diretor de Publicações: Dr. Sandro Marcelo Scheffler (UFRJ) P a l e o n t o l o g i a e m D e s t a q u e Boletim Informativo da Sociedade Brasileira de Paleontologia Ano 34, n° 72, setembro/2019 · ISSN 1807-2550 Web: http://www.sbpbrasil.org/, Editores: Sandro Marcelo Scheffler, Maria Izabel Lima de Manes Agradecimentos: Aos organizadores dos eventos científicos Capa: Palácio do Museu Nacional após a instalação do telhado provisório. Foto: Sandro Scheffler. 1. Paleontologia 2. Paleobiologia 3. Geociências Distribuído sob a Licença de Atribuição Creative Commons. EDITORIAL As reuniões PALEO são encontros regionais chancelados pela Sociedade Brasileira de Paleontologia (SBP) que têm por objetivo a comunhão entre estudantes de graduação e pós- graduação, pesquisadores e interessados na área de Paleontologia. Estes eventos possuem periodicidade anual e ocorrem em várias regiões do Brasil. Iniciadas em 1999, como uma reunião informal da comunidade de paleontólogos, possuem desde então as seguintes distribuições, de acordo com a região de abrangência: Paleo RJ/ES, Paleo MG, Paleo SP, Paleo RS, Paleo PR/SC, Paleo Nordeste e Paleo Norte.
    [Show full text]
  • At the Root of the Early Penguin Neck: a Study of the Only Two Cervicodorsal Spines Recovered from the Eocene of Antarctica Piotr Jadwiszczak
    RESEARCH/REVIEW ARTICLE At the root of the early penguin neck: a study of the only two cervicodorsal spines recovered from the Eocene of Antarctica Piotr Jadwiszczak Institute of Biology, University of Bialystok, Swierkowa 20B, PL-15-950, Bialystok, Poland Keywords Abstract Antarctic Peninsula; La Meseta Formation; Palaeogene; early Sphenisciformes; The spinal column of early Antarctic penguins is poorly known, mainly due to cervicodorsal vertebrae. the scarcity of articulated vertebrae in the fossil record. One of the most interesting segments of this part of the skeleton is the transitional series located Correspondence at the root of the neck. Here, two such cervicodorsal series, comprising rein- Piotr Jadwiszczak, Institute of Biology, terpreted known material and a new specimen from the Eocene of Seymour University of Bialystok, Swierkowa 20B, Island (Antarctic Peninsula), were investigated and contrasted with those PL-15-950 Bialystok, Poland. of modern penguins and some fossil bones. The new specimen is smaller E-mail: [email protected] than the counterpart elements in recent king penguins, whereas the second series belonged to a large-bodied penguin from the genus Palaeeudyptes. It had been assigned by earlier researchers to P. gunnari (a species of ‘‘giant’’ penguins) and a Bayesian analysis*a Bayes factor approach based on size of an associated tarsometatarsus*strongly supported such an assignment. Morphological and functional studies revealed that mobility within the aforementioned segment probably did not differ substantially between extant and studied fossil penguins. There were, however, intriguing morphological differences between the smaller fossil specimen and the comparative material related to the condition of the lateral excavation in the first cervicodorsal vertebra and the extremely small size of the intervertebral foramen located just prior to the first ‘‘true’’ thoracic vertebra.
    [Show full text]
  • Fossil Birds of New Zealand This Appendix Lists Birds Recorded As Fossils in New Zealand from Sediments Older Than the Middle Pleistocene (≥1 Ma)
    Text extracted from Gill B.J.; Bell, B.D.; Chambers, G.K.; Medway, D.G.; Palma, R.L.; Scofield, R.P.; Tennyson, A.J.D.; Worthy, T.H. 2010. Checklist of the birds of New Zealand, Norfolk and Macquarie Islands, and the Ross Dependency, Antarctica. 4th edition. Wellington, Te Papa Press and Ornithological Society of New Zealand. Pages 323 & 326-327. Fossil Birds of New Zealand This Appendix lists birds recorded as fossils in New Zealand from sediments older than the Middle Pleistocene (≥1 Ma). It therefore includes material from the Kaimatira Pumice Sand of the Kai Iwi Group (Oxygen Isotope Stage 25–27, c. 1 Ma) found at Marton (Worthy 1997a). All younger fossil birds are members of the Recent fauna, are of species that persisted to human arrival and are covered in the main text. The pre-Pleistocene record of birds in New Zealand has until recently comprised mainly penguins, as reviewed by Fordyce (1991b). No marine taxa other than penguins and pelagornithids had been described, but rare procellariid bones were known (Worthy & Holdaway 2002). The record of Tertiary terrestrial avifauna was until recently restricted to two undescribed anatids from the Miocene of Otago (Fordyce 1991b). Renewed investigations of the Miocene deposits at St Bathans, Otago, have recovered a rich avifauna from lacustrine deposits comprising at least 24 taxa (Worthy et al. 2007). In addition to the taxa named below (a diving petrel and several waterfowl), the St Bathans Fauna includes the following unnamed taxa: ratite (eggshell), two rails (Rallidae), a possible aptornithid (?Aptornithidae), three parrots (Psittacidae), an eagle (Accipitridae), two pigeons (Columbidae), at least three waders (Charadriiformes), and several passerines (Passeriformes).
    [Show full text]
  • A Late Cretaceous Diversification of Asian Oviraptorid Dinosaurs
    www.nature.com/scientificreports OPEN A Late Cretaceous diversification of Asian oviraptorid dinosaurs: evidence from a new species Received: 10 March 2016 Accepted: 06 October 2016 preserved in an unusual posture Published: 10 November 2016 Junchang Lü1, Rongjun Chen2, Stephen L. Brusatte3, Yangxiao Zhu2 & Caizhi Shen1 Oviraptorosaurs are a bizarre group of bird-like theropod dinosaurs, the derived forms of which have shortened, toothless skulls, and which diverged from close relatives by developing peculiar feeding adaptations. Although once among the most mysterious of dinosaurs, oviraptorosaurs are becoming better understood with the discovery of many new fossils in Asia and North America. The Ganzhou area of southern China is emerging as a hotspot of oviraptorosaur discoveries, as over the past half decade five new monotypic genera have been found in the latest Cretaceous (Maastrichtian) deposits of this region. We here report a sixth diagnostic oviraptorosaur from Ganzhou, Tongtianlong limosus gen. et sp. nov., represented by a remarkably well-preserved specimen in an unusual splayed-limb and raised- head posture. Tongtianlong is a derived oviraptorid oviraptorosaur, differentiated from other species by its unique dome-like skull roof, highly convex premaxilla, and other features of the skull. The large number of oviraptorosaurs from Ganzhou, which often differ in cranial morphologies related to feeding, document an evolutionary radiation of these dinosaurs during the very latest Cretaceous of Asia, which helped establish one of the last diverse dinosaur faunas before the end-Cretaceous extinction. Oviraptorosaurs are some of the most unusual dinosaurs. These bird-like, feathered theropods diverged dra- matically from their close cousins, evolving shortened toothless skulls with a staggering diversity of pneumatic cranial crests in derived forms1.
    [Show full text]
  • Anatomy of the Early Cretaceous Enantiornithine Bird Rapaxavis Pani
    Anatomy of the Early Cretaceous enantiornithine bird Rapaxavis pani JINGMAI K. O’CONNOR, LUIS M. CHIAPPE, CHUNLING GAO, and BO ZHAO O’Connor, J.K., Chiappe, L.M., Gao, C., and Zhao, B. 2011. Anatomy of the Early Cretaceous enantiornithine bird Rapaxavis pani. Acta Palaeontologica Polonica 56 (3): 463–475. The exquisitely preserved longipterygid enantiornithine Rapaxavis pani is redescribed here after more extensive prepara− tion. A complete review of its morphology is presented based on information gathered before and after preparation. Among other features, Rapaxavis pani is characterized by having an elongate rostrum (close to 60% of the skull length), rostrally restricted dentition, and schizorhinal external nares. Yet, the most puzzling feature of this bird is the presence of a pair of pectoral bones (here termed paracoracoidal ossifications) that, with the exception of the enantiornithine Concornis lacustris, are unknown within Aves. Particularly notable is the presence of a distal tarsal cap, formed by the fu− sion of distal tarsal elements, a feature that is controversial in non−ornithuromorph birds. The holotype and only known specimen of Rapaxavis pani thus reveals important information for better understanding the anatomy and phylogenetic relationships of longipterygids, in particular, as well as basal birds as a whole. Key words: Aves, Enantiornithes, Longipterygidae, Rapaxavis, Jiufotang Formation, Early Cretaceous, China. Jingmai K. O’Connor [[email protected]], Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, 142 Xizhimenwaidajie, Beijing, China, 100044; The Dinosaur Institute, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007 USA; Luis M. Chiappe [[email protected]], The Dinosaur Institute, Natural History Museum of Los Angeles County, 900 Ex− position Boulevard, Los Angeles, CA 90007 USA; Chunling Gao [[email protected]] and Bo Zhao [[email protected]], Dalian Natural History Museum, No.
    [Show full text]
  • When Penguins Ruled After Dinosaurs Died 9 December 2019
    When penguins ruled after dinosaurs died 9 December 2019 2006 and 2011. He helped build a picture of an ancient penguin that bridges a gap between extinct giant penguins and their modern relatives. "Next to its colossal human-sized cousins, including the recently described monster penguin Crossvallia waiparensis, Kupoupou was comparatively small—no bigger than modern King Penguins which stand just under 1.1 metres tall," says Mr Blokland, who worked with Professor Paul Scofield and Associate Professor Catherine Reid, as well as Flinders palaeontologist Associate Professor Trevor Illustration of the newly described Kupoupou stilwelli by Worthy on the discovery. Jacob Blokland, Flinders University. Credit: Jacob Blokland, Flinders University "Kupoupou also had proportionally shorter legs than some other early fossil penguins. In this respect, it was more like the penguins of today, meaning it would have waddled on land. What waddled on land but swam supremely in subtropical seas more than 60 million years ago, "This penguin is the first that has modern after the dinosaurs were wiped out on sea and proportions both in terms of its size and in its hind land? limb and foot bones (the tarsometatarsus) or foot shape." Fossil records show giant human-sized penguins flew through Southern Hemisphere waters—along As published in the US journal Palaeontologica side smaller forms, similar in size to some species Electronica, the animal's scientific name that live in Antarctica today. acknowledges the Indigenous Moriori people of the Chatham Island (R?kohu), with Kupoupou meaning Now the newly described Kupoupou stilwelli has 'diving bird' in Te Re Moriori.
    [Show full text]
  • Bird Fossils from the Takatika Grit, Chatham Island
    BIRD FOSSILS FROM THE TAKATIKA GRIT, CHATHAM ISLAND, NEW ZEALAND A thesis submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geology At the University of Canterbury By Jacob Christopher Blokland University of Canterbury 2017 Figure I: An interpretation of Archaeodyptes stilwelli. Original artwork by Jacob Blokland. i ACKNOWLEDGEMENTS The last couple years have been exciting and challenging. It has been a pleasure to work with great people, and be involved with new research that will hopefully be of contribution to science. First of all, I would like to thank my two supervisors, Dr Catherine Reid and Dr Paul Scofield, for tirelessly reviewing my work and providing feedback. I literally could not have done it without you, and your time, patience and efforts are very much appreciated. Thank you for providing me with the opportunity to do a vertebrate palaeontology based thesis. I would like to extend my deepest gratitude to Catherine for encouragement regarding my interest in palaeontology since before I was an undergraduate, and providing great information regarding thesis and scientific format. I am also extremely grateful to Paul for welcoming me to use specimens from Canterbury Museum, and providing useful information and recommendations for this project through your expertise in this particular discipline. I would also like to thank Associate Professor Jeffrey Stilwell for collecting the fossil specimens used in this thesis, and for the information you passed on regarding the details of the fossils. Thank you to Geoffrey Guinard for allowing me to use your data from your published research in this study.
    [Show full text]
  • The Morphology of Chiappeavis Magnapremaxillo (Pengornithidae: Enantiornithes) and a Comparison of Aerodynamic Function in Early Cretaceous Avian Tail Fans Jingmai K
    第55卷 第1期 古 脊 椎 动 物 学 报 pp. 41-58 2017年1月 VERTEBRATA PALASIATICA figs. 1-8 The morphology of Chiappeavis magnapremaxillo (Pengornithidae: Enantiornithes) and a comparison of aerodynamic function in Early Cretaceous avian tail fans Jingmai K. O’CONNOR1 ZHENG Xiao-Ting2,3 HU Han1 WANG Xiao-Li2 ZHOU Zhong-He1 (1 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences Beijing 100044 [email protected]) (2 Institute of Geology and Paleontology, Linyi University Linyi, Shandong 276000) (3 Shandong Tianyu Museum of Nature Pingyi, Shandong 273300) Abstract We provide a complete description of the skeletal anatomy of the holotype of Chiappeavis magnapremaxillo, the first enantiornithine to preserve a rectricial fan, suggesting that possibly rectricial bulbs were present in basal members of this clade. Notably, Chiappeavis preserves a primitive palatal morphology in which the vomers reach the premaxillae similar to Archaeopteryx but unlike the condition in the Late Cretaceous enantiornithine Gobipteryx. If rectricial bulbs were present, pengornithid pygostyle morphology suggests they were minimally developed. We estimate the lift generated by the tail fan preserved in this specimen and compare it to the tail fans preserved in other Early Cretaceous birds. Aerodynamic models indicate the tail of Chiappeavis produced less lift than that of sympatric ornithuromorphs. This information provides a possible explanation for the absence of widespread aerodynamic tail morphologies in the Enantiornithes. Key words Mesozoic, Jehol Biota, Aves, rectrix Citation O’Connor J K, Zheng X T, Hu H et al., 2016. The morphology of Chiappeavis magnapremaxillo (Pengornithidae: Enantiornithes) and a comparison of aerodynamic function in Early Cretaceous avian tail fans.
    [Show full text]