Control of Cleavage Furrow Formation During Cytokinesis in Human Cells

Total Page:16

File Type:pdf, Size:1020Kb

Control of Cleavage Furrow Formation During Cytokinesis in Human Cells Control of Cleavage Furrow Formation During Cytokinesis in Human Cells Kuan-Chung Su University College London and Cancer Research UK London Research Institute PhD Supervisor: Mark Petronczki PhD A thesis submitted for the degree of Doctor of Philosophy University College London September 2012 Declaration I Kuan-Chung Su confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. 2 Abstract Cytokinesis is the final stage of the cell cycle. It partitions sister genomes and separates the cytoplasm of nascent daughter cells. Cytokinesis is initiated by the formation of a cleavage furrow whose ingression is powered by an actomyosin network known as the contractile ring. Following furrow ingression, the process of cell separation is completed by a membrane scission reaction. For the accurate inheritance of genetic information, it is crucial that furrow formation is initiated at the cell equator between segregating chromosomes and that this occurs after chromatin has cleared the cleavage plane. In animal cells, the mitotic spindle plays a pivotal role in the formation and placement of the cleavage furrow. The coupling of cytokinesis and chromosome segregation to the mitotic spindle ensures that nuclear and cytoplasmic division are tightly coordinated. The spindle midzone, a structure that is formed at anaphase onset between segregating sister genomes, is thought to play an important instructive role during cleavage furrow formation. How the mitotic spindle controls cytokinetic events at the cell envelope is a key challenge in cell division research. Formation of the cytokinetic furrow in animal cells requires activation of the GTPase RhoA by the conserved guanine nucleotide exchange factor Ect2. How Ect2, which is associated with the spindle midzone, controls RhoA activity at the equatorial cell periphery during anaphase is not understood. Using a genetic complementation system, I have been able to replace the endogenous Ect2 protein with a fluorescently-tagged transgene to study its dynamic localization during cytokinesis. Using live-cell time-lapse microscopy, I found that Ect2 concentrates not only at the spindle midzone but also accumulates at equatorial plasma membrane during cytokinesis. The association of Ect2 with the plasma membrane in vivo involves a pleckstrin homology domain and a polybasic cluster that bind to phosphoinositide lipids in vitro. I further demonstrated that both guanine nucleotide exchange activity and the membrane targeting domains of Ect2 are essential for RhoA activation, contractile ring formation and cleavage furrow ingression in human cells. Membrane localization of Ect2 is spatially confined to the equator by centralspindlin, Ect2’s spindle midzone anchor complex, and is also temporally coordinated with chromosome segregation through the activation state of Cdk1. My results suggest that targeting of Ect2 to the equatorial membrane may represent a key step in the delivery of the cytokinetic signal to the cortex. 3 Acknowledgements I would like to thank my supervisor Mark Petronczki, for the continuous encouragement and for always having time for discussions about ideas especially, when troubleshooting is required. I am also thankful to my thesis committee, Frank Uhlmann and Julian Downward for their valuable advice and guidance through my time at the London Research Institute. I am very grateful to Tohru Takaki, with whom I was working closely for my project. I also thank him for having taught me almost every single technique I learnt during my time as a PhD student. Thank you also to all Lab members of the Cell Division and Aneuploidy lab, Sergey Lekomtsev, Lola Vazquez-Novelle, Sriramkumar Sundaramoorthy, Laurent L’Epicier-Sansregret, Kristyna Kotynkova and Murielle Serres for providing such a cheerful and inspiring environment and also for being a great sounding board for all my thoughts about the Clare Hall catering. Thanks are due to Nicola Brown and Katharina Willmann for sharing the invaluable experience and ups and downs of being students at Clare Hall. I would like to thank all friends and family who supported me through the years of my studies. I was a recipient of the DOC-fellowship of the Austrian academy of science for which I am very grateful. 4 Table of Contents Abstract ................................................................................................................ 3 Acknowledgements ............................................................................................. 4 Table of Contents ................................................................................................ 5 Table of figures .................................................................................................... 7 Abbreviations ....................................................................................................... 9 Chapter 1. Introduction ................................................................................... 11 1.1 The Cell cycle ..................................................................................................... 11 1.2 Regulation of cell cycle progression ................................................................. 14 1.2.1 Cyclin-Cdks .................................................................................................. 14 1.2.2 Checkpoints .................................................................................................. 17 1.3 Cell division ........................................................................................................ 18 1.3.1 Mitosis .......................................................................................................... 20 1.3.2 Regulation of mitosis .................................................................................... 21 1.3.3 Cytokinesis and cytokinesis failure in animal cells ...................................... 28 1.4 Epithelial cell transforming sequence 2 (Ect2) ................................................ 45 1.4.1 Ect2 is required for cytokinesis .................................................................... 45 1.4.2 Ect2 domain structure ................................................................................... 46 1.4.3 Regulation of Ect2 activity ........................................................................... 49 1.4.4 Ect2 functions beyond cytokinesis ............................................................... 50 1.5 Goal of this research .......................................................................................... 52 Chapter 2. Materials & Methods .................................................................... 53 2.1 Plasmids, DNA Transfection and Generation of Stable Cell Lines ............... 53 2.2 siRNA transfection and Drug Treatment ........................................................ 54 2.3 Preparation of cell lysates ................................................................................. 54 2.4 Immunofluorescence microscopy (IF) ............................................................. 55 2.5 Antibodies and Dyes .......................................................................................... 55 2.6 Live Cell Imaging, FRAP and Image Quantification ..................................... 56 2.7 Recombinant Protein Purification and Protein Assays .................................. 59 Chapter 3. Result 1 - A genetic complementation system to study Ect2 localization in live cells ..................................................................................... 60 3.1 Ect2 is required for cytokinesis ........................................................................ 60 3.2 Construction and testing of the genetic complementation system for Ect2 in human cells .................................................................................................................. 61 3.3 Ect2 localization during cytokinesis ................................................................. 63 3.4 Conclusions: Result 1 - A genetic complementation system to study Ect2 localization in live cells ............................................................................................... 64 Chapter 4. Results 2 - Mechanistic basis of Ect2 association with the cell periphery 72 4.1 Domain requirements for peripheral Ect2 localization .................................. 72 4.2 Ect2CT associates to cell membrane independently of the actin cortex ....... 74 4.3 Recombinant Ect2 protein interacts with polyanionic phosphoinositides in vitro 74 4.4 The PH domain and tail region are not required for GEF activity of Ect2 on RhoA in vitro .......................................................................................................... 75 5 4.5 Conclusions: Results 2 - Mechanistic basis of Ect2 association with the cell periphery ...................................................................................................................... 76 Chapter 5. Results 3 – Role of Ect2 GEF activity and plasma membrane binding domains during cytokinesis ............................................................... 87 5.1 The GEF activity and membrane targeting domains of Ect2 are required for cytokinesis .............................................................................................................. 87 5.2 Importance of Ect2’s GEF activity and membrane targeting domains for cleavage furrow formation and Ect2 protein
Recommended publications
  • Conserved Microtubule–Actin Interactions in Cell Movement and Morphogenesis
    REVIEW Conserved microtubule–actin interactions in cell movement and morphogenesis Olga C. Rodriguez, Andrew W. Schaefer, Craig A. Mandato, Paul Forscher, William M. Bement and Clare M. Waterman-Storer Interactions between microtubules and actin are a basic phenomenon that underlies many fundamental processes in which dynamic cellular asymmetries need to be established and maintained. These are processes as diverse as cell motility, neuronal pathfinding, cellular wound healing, cell division and cortical flow. Microtubules and actin exhibit two mechanistic classes of interactions — regulatory and structural. These interactions comprise at least three conserved ‘mechanochemical activity modules’ that perform similar roles in these diverse cell functions. Over the past 35 years, great progress has been made towards under- crosstalk occurs in processes that require dynamic cellular asymme- standing the roles of the microtubule and actin cytoskeletal filament tries to be established or maintained to allow rapid intracellular reor- systems in mechanical cellular processes such as dynamic shape ganization or changes in shape or direction in response to stimuli. change, shape maintenance and intracellular organelle movement. Furthermore, the widespread occurrence of these interactions under- These functions are attributed to the ability of polarized cytoskeletal scores their importance for life, as they occur in diverse cell types polymers to assemble and disassemble rapidly, and to interact with including epithelia, neurons, fibroblasts, oocytes and early embryos, binding proteins and molecular motors that mediate their regulated and across species from yeast to humans. Thus, defining the mecha- movement and/or assembly into higher order structures, such as radial nisms by which actin and microtubules interact is key to understand- arrays or bundles.
    [Show full text]
  • Redefining the Roles of the Ftsz-Ring in Bacterial Cytokinesis
    Available online at www.sciencedirect.com ScienceDirect Redefining the roles of the FtsZ-ring in bacterial cytokinesis 1 2 Jie Xiao and Erin D Goley In most bacteria, cell division relies on the functions of an in bacterial division, with emphasis on the relative roles essential protein, FtsZ. FtsZ polymerizes at the future division and contributions of the polymerizing GTPase, FtsZ, and site to form a ring-like structure, termed the Z-ring, that serves the peptidoglycan (PG) cell wall synthesis machinery. as a scaffold to recruit all other division proteins, and possibly generates force to constrict the cell. The scaffolding function of the Z-ring is well established, but the force generating function Bacterial cell division: the challenge and the has recently been called into question. Additionally, new machinery findings have demonstrated that the Z-ring is more directly Bacterial cell division requires invagination and separa- linked to cell wall metabolism than simply recruiting enzymes to tion of a multi-layered cell envelope, including constric- the division site. Here we review these advances and suggest tion and fission of the membrane(s), and synthesis, that rather than generating a rate-limiting constrictive force, the remodeling, and splitting of the PG cell wall at the Z-ring’s function may be redefined as an orchestrator of division site. Bacterial cells possess high turgor pressures, septum synthesis. ranging from 0.3 MPa for Gram-negative Escherichia coli Addresses [1] to 2 MPa in Gram-positive Bacillus subtilis [2]. This 1 Department of Biophysics and Biophysical Chemistry, Johns Hopkins pressure, acting on a constriction zone of 60 nm in axial University School of Medicine, Baltimore, MD 21205, USA width and 3 mm in circumference (approximately the 2 Department of Biological Chemistry, Johns Hopkins University School size of the septum), would require a total force of 50 to of Medicine, Baltimore, MD 21205, USA 300 nN to counterbalance (Figure 1).
    [Show full text]
  • Building the Cytokinetic Contractile Ring in an Early Embryo
    bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445582; this version posted May 25, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. 1 2 3 4 5 Building the cytokinetic contractile ring in an early embryo: initiation as clusters of 6 myosin II, anillin and septin, and visualization of a septin filament network 7 8 Chelsea Garno1,2, Zoe H. Irons2,3, Courtney M. Gamache2,3, Xufeng Wu4, Charles B. Shuster1,2, 9 and John H. Henson2,3* 10 11 1Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States 12 of America 13 14 2Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington, United 15 States of America 16 17 3Department of Biology, Dickinson College, Carlisle, Pennsylvania, United States of America 18 19 4National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20 United States of America 21 22 23 24 25 26 27 *Corresponding author 28 E-mail: [email protected] (J.H.H.) 29 30 31 32 33 34 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445582; this version posted May 25, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license.
    [Show full text]
  • Reconstitution of Contractile Actomyosin Rings in Vesicles
    ARTICLE https://doi.org/10.1038/s41467-021-22422-7 OPEN Reconstitution of contractile actomyosin rings in vesicles Thomas Litschel 1, Charlotte F. Kelley 1,2, Danielle Holz3, Maral Adeli Koudehi3, Sven K. Vogel1, ✉ Laura Burbaum1, Naoko Mizuno 2, Dimitrios Vavylonis3 & Petra Schwille 1 One of the grand challenges of bottom-up synthetic biology is the development of minimal machineries for cell division. The mechanical transformation of large-scale compartments, 1234567890():,; such as Giant Unilamellar Vesicles (GUVs), requires the geometry-specific coordination of active elements, several orders of magnitude larger than the molecular scale. Of all cytos- keletal structures, large-scale actomyosin rings appear to be the most promising cellular elements to accomplish this task. Here, we have adopted advanced encapsulation methods to study bundled actin filaments in GUVs and compare our results with theoretical modeling. By changing few key parameters, actin polymerization can be differentiated to resemble various types of networks in living cells. Importantly, we find membrane binding to be crucial for the robust condensation into a single actin ring in spherical vesicles, as predicted by theoretical considerations. Upon force generation by ATP-driven myosin motors, these ring-like actin structures contract and locally constrict the vesicle, forming furrow-like deformations. On the other hand, cortex-like actin networks are shown to induce and stabilize deformations from spherical shapes. 1 Department of Cellular and Molecular Biophysics,
    [Show full text]
  • Defining the Rate-Limiting Processes of Bacterial Cytokinesis
    Defining the rate-limiting processes of PNAS PLUS bacterial cytokinesis Carla Coltharpa, Jackson Bussa,1, Trevor M. Plumera, and Jie Xiaoa,2 aDepartment of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205 Edited by Joe Lutkenhaus, University of Kansas Medical Center, Kansas City, KS, and approved January 6, 2016 (received for review July 22, 2015) Bacterial cytokinesis is accomplished by the essential ‘divisome’ septum closure and is distinct from a model in which new septal machinery. The most widely conserved divisome component, FtsZ, PG growth actively pushes from the outside of the cytoplasmic is a tubulin homolog that polymerizes into the ‘FtsZ-ring’ (‘Z-ring’). membrane (27). In this latter model, PG synthesis limits the rate Previous in vitro studies suggest that Z-ring contraction serves as a of septum closure, and the Z-ring acts as a scaffold that passively major constrictive force generator to limit the progression of cy- follows the closing septum (29). Alternatively, Z-ring contraction tokinesis. Here, we applied quantitative superresolution imaging and septal cell wall synthesis may work together to drive con- to examine whether and how Z-ring contraction limits the rate of striction; in which case, progression of septum closure would be septum closure during cytokinesis in Escherichia coli cells. Surpris- regulated by both processes (27). ingly, septum closure rate was robust to substantial changes in all A large number of studies support the Z-ring–centric force Z-ring properties proposed to be coupled to force generation: FtsZ’s GTPase activity, Z-ring density, and the timing of Z-ring as- generation model.
    [Show full text]
  • Mgcracgap Controls the Assembly of the Contractile Ring and the Initiation of Cytokinesis
    MgcRacGAP controls the assembly of the contractile ring and the initiation of cytokinesis Wei-meng Zhao and Guowei Fang* Department of Biological Sciences, Stanford University, Stanford, CA 94305-5020 Edited by Raymond L. Erikson, Harvard University, Cambridge, MA, and approved August 1, 2005 (received for review May 19, 2005) Initiation of cytokinesis requires the establishment of the cleavage GTPase-activating protein MgcRacGAP. Centralspindlin pro- plane, the assembly of the contractile ring, and the ingression of motes microtubule bundling in vitro and is required for cytoki- the cleavage furrow. MgcRacGAP, a GTPase-activating protein for nesis in vivo (17). However, the exact mechanism of centralspin- RhoA, is required for cytokinesis, but the mechanism of its action dlin function in cytokinesis remains to be characterized. In remains unknown. We report here that MgcRacGAP is required for Drosophila, the centralspindlin complex is reported to form a the assembly of anillin and myosin into the contractile ring. In ring-like structure that abuts or overlaps the contractile ring (13). addition, MgcRacGAP is required for the localized activation of Interestingly, RacGAP50C, the Drosophila ortholog of MgcRac- myosin through the RhoA-mediated phosphorylation of the myo- GAP, interacts with Pebble, linking the centralspindlin complex sin regulatory light chain. Cells with MgcRacGAP RNA interference to the ECT2 pathway (18). (RNAi) failed cytokinesis without any ingression of the cleavage In an in vitro small-pool-expression screen, we identified furrow. Paradoxically, MgcRacGAP, a GTPase-activating protein, MgcRacGAP as a substrate of the anaphase-promoting com- associates during cytokinesis with ECT2, a guanine nucleotide plex͞cyclosome, a ubiquitin ligase that controls mitotic progres- exchange factor for RhoA, and the localization of ECT2 to both the sion (data not shown).
    [Show full text]
  • The Regulation of Intestinal Mucosal Barrier by Myosin Light Chain Kinase/Rho Kinases
    International Journal of Molecular Sciences Review The Regulation of Intestinal Mucosal Barrier by Myosin Light Chain Kinase/Rho Kinases Younggeon Jin 1 and Anthony T. Blikslager 2,* 1 Department of Animal and Avian Sciences, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20742, USA; [email protected] 2 Department of Clinical Sciences, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA * Correspondence: [email protected] Received: 29 April 2020; Accepted: 16 May 2020; Published: 18 May 2020 Abstract: The intestinal epithelial apical junctional complex, which includes tight and adherens junctions, contributes to the intestinal barrier function via their role in regulating paracellular permeability. Myosin light chain II (MLC-2), has been shown to be a critical regulatory protein in altering paracellular permeability during gastrointestinal disorders. Previous studies have demonstrated that phosphorylation of MLC-2 is a biochemical marker for perijunctional actomyosin ring contraction, which increases paracellular permeability by regulating the apical junctional complex. The phosphorylation of MLC-2 is dominantly regulated by myosin light chain kinase- (MLCK-) and Rho-associated coiled-coil containing protein kinase- (ROCK-) mediated pathways. In this review, we aim to summarize the current state of knowledge regarding the role of MLCK- and ROCK-mediated pathways in the regulation of the intestinal barrier during normal homeostasis and digestive diseases. Additionally, we will also suggest potential therapeutic targeting of MLCK- and ROCK-associated pathways in gastrointestinal disorders that compromise the intestinal barrier. Keywords: myosin light chain kinase; rho-associated coiled-coil containing protein kinase; apical junction complex; tight junction; adherens junction 1.
    [Show full text]
  • Force to Divide: Structural and Mechanical Requirements for Actomyosin Ring Contraction
    Biophysical Journal Volume 105 August 2013 547–554 547 Force to Divide: Structural and Mechanical Requirements for Actomyosin Ring Contraction Ineˆs Mendes Pinto,†* Boris Rubinstein,†* and Rong Li†‡ †Stowers Institute for Medical Research, Kansas City, Missouri; and ‡Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas ABSTRACT One of the unresolved questions in the field of cell division is how the actomyosin cytoskeleton remains structur- ally organized while generating the contractile force to divide one cell into two. In analogy to the actomyosin-based force pro- duction mechanism in striated muscle, it was originally proposed that contractile stress in the actomyosin ring is generated via a sliding filament mechanism within an organized sarcomere-like array. However, over the last 30 years, ultrastructural and functional studies have noted important distinctions between cytokinetic structures in dividing cells and muscle sarcomeres. Myosin-II motor activity is not always required, and there is evidence that actin depolymerization contributes to contraction. In this Review, the architecture and contractile dynamics of the actomyosin ring at the cell division plane will be discussed. We will report the interdisciplinary advances in the field as well as their integration into a mechanistic understanding of contraction in cell division and in other biological processes that rely on an actomyosin-based force-generating system. INTRODUCTION The actomyosin ring is a transient structure essential for tures in muscle sarcomeres and contractile rings. In contrast contractile force generation in animal and yeast cell divi- to the conservation of mass observed in cycles of contrac- sion (1,2). Rappaport (3) and Schroeder (4) originally tion and relaxation of the striated muscle, one of the most described the mechanics and biochemical makeup of the striking differences is the loss of mass during actomyosin actomyosin ring.
    [Show full text]
  • Reconstitution of Contractile Actomyosin Rings in Vesicles
    bioRxiv preprint doi: https://doi.org/10.1101/2020.06.30.180901; this version posted July 1, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Reconstitution of contractile actomyosin rings in vesicles Thomas Litschel1, Charlotte F. Kelley1, Danielle Holz2, Maral Adeli Koudehi2, Sven Kenjiro Vogel1, Laura Burbaum1, Naoko Mizuno1, Dimitrios Vavylonis2, Petra Schwille1,* 1 Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany 2 Department of Physics, Lehigh University, Bethlehem PA 18015, USA * Corresponding Author Abstract One of the grand challenges of bottom-up synthetic biology is the development of minimal machineries for cell division. The mechanical transformation of large-scale compartments, such as Giant Unilamellar Vesicles (GUVs), requires the geometry-specific coordination of active elements, several orders of magnitude larger than the molecular scale. Of all cytoskeletal structures, large-scale actomyosin rings appear to be the most promising cellular elements to accomplish this task. Here, we have adopted advanced encapsulation methods to study bundled actin filaments in GUVs and compare our results with theoretical modeling. By changing few key parameters, actin polymerization can be differentiated to resemble various types of networks in living cells. Importantly, we find membrane binding to be crucial for the robust condensation into a single actin ring in spherical vesicles, as predicted by theoretical considerations. Upon force generation by ATP-driven myosin motors, these ring-like actin structures contract and locally constrict the vesicle, forming furrow-like deformations.
    [Show full text]
  • Efficient Cytokinesis
    Published January 23, 2006 JCB: ARTICLE <doi>10.1083/jcb.200511061</doi><aid>200511061</aid>KIF14 and citron kinase act together to promote effi cient cytokinesis Ulrike Gruneberg,1 Rüdiger Neef,2 Xiuling Li,1 Eunice H.Y. Chan,1 Ravindra B. Chalamalasetty,1 Erich A. Nigg,1 and Francis A. Barr2 1Department of Cell Biology and 2Intracellular Protein Transport Group, Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany ultiple mitotic kinesins and microtubule- EMBO J. 19:5711–5719; Matuliene, J., and R. Kuriyama. associated proteins (MAPs) act in concert to 2002. Mol. Biol. Cell. 13:1832–1845; Kurasawa, Y., W.C. M direct cytokinesis (Glotzer, M. 2005. Science. Earnshaw, Y. Mochizuki, N. Dohmae, and K. Todokoro. 307:1735–1739). In anaphase cells, many of these pro- 2004. EMBO J. 23:3237–3248). We fi nd that KIF14 tar- teins associate with an antiparallel array of microtubules gets to the central spindle via its interaction with PRC1 and Downloaded from termed the central spindle. The MAP and micro tubule- has an essential function in cytokinesis. In KIF14-depleted bundling protein PRC1 (protein-regulating cytokinesis 1) cells, citron kinase but not other components of the central is one of the key molecules required for the integrity of spindle and cleavage furrow fail to localize. Furthermore, this structure (Jiang, W., G. Jimenez, N.J. Wells, T.J. Hope, the localization of KIF14 and citron kinase to the central G.M. Wahl, T. Hunter, and R. Fukunaga. 1998. Mol. spindle and midbody is codependent, and they form a com- Cell. 2:877–885; Mollinari, C., J.P.
    [Show full text]
  • Determination of the Cleavage Plane in Early C. Elegans Embryos
    ANRV361-GE42-18 ARI 11 October 2008 11:24 ANNUAL Determination of the REVIEWS Further Click here for quick links to Annual Reviews content online, Cleavage Plane in Early including: • Other articles in this volume Embryos • Top cited articles C. elegans • Top downloaded articles • Our comprehensive search Matilde Galli and Sander van den Heuvel Developmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands; email: [email protected] Annu. Rev. Genet. 2008. 42:389–411 Key Words First published online as a Review in Advance on cytokinesis, cleavage plane, asymmetric division, spindle positioning, August 18, 2008 C. elegans The Annual Review of Genetics is online at genet.annualreviews.org Abstract This article’s doi: Cells split in two at the final step of each division cycle. This division 10.1146/annurev.genet.40.110405.090523 Access provided by Utrecht University on 12/02/17. For personal use only. normally bisects through the middle of the cell and generates two equal Annu. Rev. Genet. 2008.42:389-411. Downloaded from www.annualreviews.org Copyright c 2008 by Annual Reviews. daughters. However, developmental signals can change the plane of cell All rights reserved cleavage to facilitate asymmetric segregation of fate determinants and 0066-4197/08/1201-0389$20.00 control the position and relative sizes of daughter cells. The anaphase spindle instructs the site of cell cleavage in animal cells, hence its po- sition is critical in the regulation of symmetric vs asymmetric cell divi- sion. Studies in a variety of models identified evolutionarily conserved mechanisms that control spindle positioning.
    [Show full text]
  • Roles of Actin in the Morphogenesis of the Early Caenorhabditis Elegans Embryo
    International Journal of Molecular Sciences Review Roles of Actin in the Morphogenesis of the Early Caenorhabditis elegans Embryo Dureen Samandar Eweis 1,2 and Julie Plastino 1,2,* 1 Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, CNRS, 75005 Paris, France; [email protected] 2 Sorbonne Université, 75005 Paris, France * Correspondence: [email protected] Received: 6 April 2020; Accepted: 19 May 2020; Published: 21 May 2020 Abstract: The cell shape changes that ensure asymmetric cell divisions are crucial for correct development, as asymmetric divisions allow for the formation of different cell types and therefore different tissues. The first division of the Caenorhabditis elegans embryo has emerged as a powerful model for understanding asymmetric cell division. The dynamics of microtubules, polarity proteins, and the actin cytoskeleton are all key for this process. In this review, we highlight studies from the last five years revealing new insights about the role of actin dynamics in the first asymmetric cell division of the early C. elegans embryo. Recent results concerning the roles of actin and actin binding proteins in symmetry breaking, cortical flows, cortical integrity, and cleavage furrow formation are described. Keywords: actin cytoskeleton; myosin; C. elegans embryo; asymmetric cell division 1. Introduction Actin is one of the most abundant proteins in the cell, existing as globular monomers (G-actin) that polymerize into helical filaments (F-actin). F-actin is polar with a fast-growing, dynamic ‘barbed end’ and a slow-growing, less dynamic ‘pointed end’. The dynamic assembly and disassembly of F-actin, as well as the myosin molecular motors that associate with actin, produce forces within the cell and between cells that drive cellular and tissue reorganization.
    [Show full text]