Determination of the Cleavage Plane in Early C. Elegans Embryos

Total Page:16

File Type:pdf, Size:1020Kb

Determination of the Cleavage Plane in Early C. Elegans Embryos ANRV361-GE42-18 ARI 11 October 2008 11:24 ANNUAL Determination of the REVIEWS Further Click here for quick links to Annual Reviews content online, Cleavage Plane in Early including: • Other articles in this volume Embryos • Top cited articles C. elegans • Top downloaded articles • Our comprehensive search Matilde Galli and Sander van den Heuvel Developmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands; email: [email protected] Annu. Rev. Genet. 2008. 42:389–411 Key Words First published online as a Review in Advance on cytokinesis, cleavage plane, asymmetric division, spindle positioning, August 18, 2008 C. elegans The Annual Review of Genetics is online at genet.annualreviews.org Abstract This article’s doi: Cells split in two at the final step of each division cycle. This division 10.1146/annurev.genet.40.110405.090523 Access provided by Utrecht University on 12/02/17. For personal use only. normally bisects through the middle of the cell and generates two equal Annu. Rev. Genet. 2008.42:389-411. Downloaded from www.annualreviews.org Copyright c 2008 by Annual Reviews. daughters. However, developmental signals can change the plane of cell All rights reserved cleavage to facilitate asymmetric segregation of fate determinants and 0066-4197/08/1201-0389$20.00 control the position and relative sizes of daughter cells. The anaphase spindle instructs the site of cell cleavage in animal cells, hence its po- sition is critical in the regulation of symmetric vs asymmetric cell divi- sion. Studies in a variety of models identified evolutionarily conserved mechanisms that control spindle positioning. However, how the spin- dle determines the cleavage site is poorly understood. Recent results in Caenorhabditis elegans indicate dual functions for a Gα pathway in posi- tioning the spindle and cleavage furrow. We review asymmetric division of the C. elegans zygote, with a focus on microtubule-cortex interactions that position the spindle and cleavage plane. 389 ANRV361-GE42-18 ARI 11 October 2008 11:24 INTRODUCTION TO THE TOPIC ically to one of the daughter cells, which of- AND MODEL ten also differs in size from the other daughter. Such “intrinsically asymmetric divisions” pro- Asymmetric Cell division is one of the most fascinating and mote cell diversity and are one of the mecha- divisions: divisions fundamental processes in the life of an organ- nisms by which stem and progenitor cells com- that give rise to ism. The actual division process takes place in different daughters. bine self-renewal with production of differen- two coordinated steps during the final phase of Here, we only tiating daughters (10, 33). The position of the the cell cycle, named M phase (Figure 1a). Dur- consider intrinsically cleavage plane forms a critical aspect of such asymmetric divisions, ing nuclear division or mitosis, the duplicated asymmetric divisions (Figure 1b,c). in which different fates genetic material is separated into two identi- The protein apparatus that segregates the are determined by the cal sets. Next, the cytoplasm is cleaved dur- division process chromosomes, the mitotic spindle, also deter- ing cytokinesis, thereby forming two separate mines the plane of cell cleavage. Because the daughter cells. With only rare exceptions, cells cleavage plane bisects the spindle, chromo- cleave in coordination with nuclear division somes end up in different daughter cells. In and in between the segregated chromosomes. some cells, such as plant and fungal cells, the This coupling between mitosis and cytokinesis division plane is established prior to mitosis supports the maintenance of an intact genome and the mitotic spindle is oriented with re- through many rounds of cell division and helps spect to this predetermined site (reviewed in the equal distribution of cellular components Reference 7). In contrast, in animal cells the to the progeny cells. However, not all cell di- position of the spindle determines where the visions are meant to form identical daughters: cell will cleave. Hence, the position or symme- Certain asymmetric divisions segregate cellular try of the mitotic spindle is regulated in order components such as fate determinants specif- a Prophase Prometaphase Metaphase Anaphase A Anaphase B/ Telophase Cytokinesis b Default cleavage plane Spindle rotation Spindle displacement Access provided by Utrecht University on 12/02/17. For personal use only. Annu. Rev. Genet. 2008.42:389-411. Downloaded from www.annualreviews.org c Symmetric division Asymmetric division Figure 1 (a) Schematic representation of the sequential stages of mitosis. Chromosomal DNA (red ), microtubules ( gray lines), centrosomes ( gray circles), and the nuclear envelopes (blue). (b) Illustration of how changes in the position of the spindle alter the plane of cell cleavage and thereby the size and placement of daughter cells. (c) Polarized cells can switch from symmetric to asymmetric divisions by altering their cleavage plane. The apical domain ( green), basal domain (tan), and cell junctions (blue) are shown. 390 Galli · van den Heuvel ANRV361-GE42-18 ARI 11 October 2008 11:24 to control the cell cleavage plane (Figure 1b). acto-myosin network at the cortex and micro- Rotation of the spindle changes the position of tubules of the spindle in determining the cell daughter cells and distribution of determinants, cleavage plane. whereas displacing the spindle off-center leads to daughter cells of unequal sizes. As the posi- tion of the spindle dictates the plane of cleavage, Cell Cleavage in C. elegans it is of fundamental importance to understand In a relatively short time, C. elegans has ar- what molecular mechanisms control the spin- guably become the leading model in stud- dle position, and how the spindle controls the ies of cleavage plane determination. Reasons place of cell cleavage. for this status include the reproducible cell Since the classical experiments by Rappa- lineage, which incorporates asymmetric cell port with sand dollar eggs (85), much has been division and cytokinesis from the very first di- learned about the interconnection between vision onward. Thus, cleavage can be stud- spindle positioning and cell cleavage determi- ied when the cells are still large (length/width nation. Genetic studies in the fruit fly Drosophila of the zygote ∼50/30 μm) and spindles and melanogaster and nematode Caenorhabditis ele- chromosomes easily observable. Equally im- gans revealed several molecular pathways that portant is the genetic tractability. Embryonic control the cleavage plane during animal de- functions of genes with general roles in cy- velopment (reviewed in References 10, 33). As tokinesis have been discovered though rela- an example, during stem cell divisions in the tively rare mutations (including temperature- Drosophila male germline, the mother centro- sensitive and maternal-effect lethal mutants) some maintains a fixed position so that the (56, 72, 78) as well as large-scale and genome- spindle forms away from the stem cell niche wide RNA interference (RNAi) screens (35, (116, 117). Consequently, the subsequent divi- 81, 99; http://nematoda.bio.nyu.edu). Sev- sion produces another stem cell in contact with eral more specialized techniques can be added the niche and one daughter that initiates a dif- to such experiments, including the introduction ferentiation program. Stem cell-like divisions of of drugs (e.g., 46, 104), culturing of blastomeres the larval neuroblasts in Drosophila use a fixed that have been removed from eggs (e.g., 30, 50), centrosome as well, and this centrosome acts and severing of the spindle with a UV laser, also as the major microtubule-nucleation cen- as introduced by Hyman (40, 49). Green fluo- ter (86). Hence, this spindle is asymmetric itself, rescent protein (GFP)-tagged proteins can be and places the cleavage plane off center to pro- expressed in the germline and early embryos mote production of another large neuroblast as through the introduction of low-copy trans- well as a smaller neural precursor. genes (83), and followed by time-lapse fluores- Access provided by Utrecht University on 12/02/17. For personal use only. In C. elegans, the positions of the spindle cence microscopy. The combination of these Annu. Rev. Genet. 2008.42:389-411. Downloaded from www.annualreviews.org and cell cleavage plane are tightly regulated and approaches allows for detailed analysis of the guide a reproducible pattern of asymmetric and molecular basis of cleavage-plane regulation in symmetric divisions throughout development. C. elegans. Decades of extensive studies have revealed evo- The framework for all cell division studies lutionarily conserved mechanisms that control is the C. elegans cell lineage (105). This lin- the position of the spindle and cleavage plane. eage starts with fertilization, followed by two Several recent results start to shed light on the consecutive highly asymmetric meiotic divi- possible connection between the spindle appa- sions. These divisions produce two small polar ratus and placement of the acto-myosin con- bodies, as the compact meiotic spindle segre- tractile ring in cytokinesis. In this review, we gates the chromosomes in close proximity of summarize the current understanding of asym- the cortex (Figures 2, 3 top). Subsequently, metric division of the one-cell C. elegans em- the maternal and paternal pronuclei meet in bryo, focusing on the connections between the the posterior and migrate toward the center www.annualreviews.org • Cleavage Plane in C. elegans 391 ANRV361-GE42-18 ARI 11 October 2008 11:24 a b PAR-3 Centrosome PAR-2 Nucleus PAR-2/PAR-3 Polar body Figure 2 The establishment of polarity in the early C. elegans embryo. For details, see text. (centration), while they rotate and the mitotic In summary, the position of the cleavage plane spindle assembles along the anterior-posterior is highly regulated in C. elegans and critical in axis of the zygote (P0). Following degradation establishing the body axes in the early embryo of the nuclear envelopes, the spindle aligns the as well as in generating the proper cell lineages chromosomes at the metaphase plate in the throughout development.
Recommended publications
  • Emergence of Embryo Shape During Cleavage Divisions Alex Mcdougall, Janet Chenevert, Benoît Godard, Rémi Dumollard
    Emergence of embryo shape during cleavage divisions Alex Mcdougall, Janet Chenevert, Benoît Godard, Rémi Dumollard To cite this version: Alex Mcdougall, Janet Chenevert, Benoît Godard, Rémi Dumollard. Emergence of embryo shape during cleavage divisions. Evo-Devo: Non-model Species in Cell and Developmental Biology, 2019. hal-02362892 HAL Id: hal-02362892 https://hal.archives-ouvertes.fr/hal-02362892 Submitted on 14 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Emergence of embryo shape during cleavage divisions Alex McDougall1, Janet Chenevert1, Benoit G. Godard2 and Remi Dumollard1 1. Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche‐sur‐mer (LBDV), UMR7009, 181 chemin du Lazaret, 06230 Villefranche‐sur‐Mer, France 2. Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria Abstract Cells are arranged into species‐specific patterns during early embryogenesis. Such cell division patterns are important since they often reflect the distribution of localized cortical factors from eggs/fertilized eggs to specific cells as well as the emergence of organismal form. However, it has proven difficult to reveal the mechanisms that underlie the emergence of cell positioning patterns that underlie embryonic shape, likely because a system‐level approach is required that integrates cell biological, genetic, developmental and mechanical parameters.
    [Show full text]
  • Cleavage Pattern and Development of Isolated D Blastomeres in Bivalves
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Tsukuba Repository Cleavage pattern and development of isolated D blastomeres in bivalves 著者 Hashimoto Naoki, Kurita Yoshihisa, Murakami Kana, Wada Hiroshi journal or Journal of Experimental Zoology Part B: publication title Molecular and Developmental Evolution volume 234 number 1 page range 13-21 year 2015-01 権利 (C) 2014 WILEY PERIODICALS, INC. This is the peer reviewed version of the following article: Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 324,1,2015, which has been published in final form at DOI: 10.1002/jez.b.22585.This article may be used for non-commercial purposes in accordance With Wiley Terms and Conditions for self-archiving. URL http://hdl.handle.net/2241/00123041 doi: 10.1002/jez.b.22585 1. Complete title of paper Cleavage pattern and development of isolated D blastomeres in bivalves 2. Author’s names Naoki Hashimoto1*, Yoshihisa Kurita1, 2, Kana Murakami1, Hiroshi Wada1 3. Institutional affiliations 1 Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan 2 Fishery Research Laboratory, Kyushu University, Fukutsu 811-3304, Japan 4. Total number of text and figures One manuscript file, two tables, six figure files and two movie files. 5. Abbreviated title Cleavage and development of isolated blastomeres 6. Correspondence to: Name: Naoki Hashimoto. Address: Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8572, Japan E-mail: [email protected] Tel & Fax: +08-29-4671 7. Supporting grant information Grant-in-Aid for JSPS Fellows.
    [Show full text]
  • Delta-Notch Signaling: the Long and the Short of a Neuron’S Influence on Progenitor Fates
    Journal of Developmental Biology Review Delta-Notch Signaling: The Long and the Short of a Neuron’s Influence on Progenitor Fates Rachel Moore 1,* and Paula Alexandre 2,* 1 Centre for Developmental Neurobiology, King’s College London, London SE1 1UL, UK 2 Developmental Biology and Cancer, University College London Great Ormond Street Institute of Child Health, London WC1N 1EH, UK * Correspondence: [email protected] (R.M.); [email protected] (P.A.) Received: 18 February 2020; Accepted: 24 March 2020; Published: 26 March 2020 Abstract: Maintenance of the neural progenitor pool during embryonic development is essential to promote growth of the central nervous system (CNS). The CNS is initially formed by tightly compacted proliferative neuroepithelial cells that later acquire radial glial characteristics and continue to divide at the ventricular (apical) and pial (basal) surface of the neuroepithelium to generate neurons. While neural progenitors such as neuroepithelial cells and apical radial glia form strong connections with their neighbours at the apical and basal surfaces of the neuroepithelium, neurons usually form the mantle layer at the basal surface. This review will discuss the existing evidence that supports a role for neurons, from early stages of differentiation, in promoting progenitor cell fates in the vertebrates CNS, maintaining tissue homeostasis and regulating spatiotemporal patterning of neuronal differentiation through Delta-Notch signalling. Keywords: neuron; neurogenesis; neuronal apical detachment; asymmetric division; notch; delta; long and short range lateral inhibition 1. Introduction During the development of the central nervous system (CNS), neurons derive from neural progenitors and the Delta-Notch signaling pathway plays a major role in these cell fate decisions [1–4].
    [Show full text]
  • Asymmetric Inheritance of Cell Fate Determinants: Focus on RNA
    non-coding RNA Review Asymmetric Inheritance of Cell Fate Determinants: Focus on RNA Yelyzaveta Shlyakhtina y, Katherine L. Moran y and Maximiliano M. Portal * Cell Plasticity & Epigenetics Lab, Cancer Research UK–Manchester Institute, The University of Manchester, SK10 4TG Manchester, UK; [email protected] (Y.S.); [email protected] (K.L.M.) * Correspondence: [email protected] These authors contributed equally to this work. y Received: 26 March 2019; Accepted: 6 May 2019; Published: 9 May 2019 Abstract: During the last decade, and mainly primed by major developments in high-throughput sequencing technologies, the catalogue of RNA molecules harbouring regulatory functions has increased at a steady pace. Current evidence indicates that hundreds of mammalian RNAs have regulatory roles at several levels, including transcription, translation/post-translation, chromatin structure, and nuclear architecture, thus suggesting that RNA molecules are indeed mighty controllers in the flow of biological information. Therefore, it is logical to suggest that there must exist a series of molecular systems that safeguard the faithful inheritance of RNA content throughout cell division and that those mechanisms must be tightly controlled to ensure the successful segregation of key molecules to the progeny. Interestingly, whilst a handful of integral components of mammalian cells seem to follow a general pattern of asymmetric inheritance throughout division, the fate of RNA molecules largely remains a mystery. Herein, we will discuss current concepts of asymmetric inheritance in a wide range of systems, including prions, proteins, and finally RNA molecules, to assess overall the biological impact of RNA inheritance in cellular plasticity and evolutionary fitness.
    [Show full text]
  • Principles and Mechanisms of Asymmetric Cell Division Bharath Sunchu and Clemens Cabernard*
    © 2020. Published by The Company of Biologists Ltd | Development (2020) 147, dev167650. doi:10.1242/dev.167650 REVIEW Principles and mechanisms of asymmetric cell division Bharath Sunchu and Clemens Cabernard* ABSTRACT highlight studies that have revealed asymmetric segregation of Asymmetric cell division (ACD) is an evolutionarily conserved macromolecules or organelles and review the documented or mechanism used by prokaryotes and eukaryotes alike to control potential influence of these events on cell fate decisions in yeast and cell fate and generate cell diversity. A detailed mechanistic metazoans. We also discuss how asymmetries in the cytoskeleton, understanding of ACD is therefore necessary to understand cell spindle, centromeres and histones can contribute to ACD. fate decisions in health and disease. ACD can be manifested in the biased segregation of macromolecules, the differential partitioning of Polarized localization and biased inheritance of RNAs and cell organelles, or differences in sibling cell size or shape. These proteins events are usually preceded by and influenced by symmetry breaking Cell fate decisions can be induced through asymmetric partitioning events and cell polarization. In this Review, we focus predominantly of molecular determinants such as RNA species or proteins. For on cell intrinsic mechanisms and their contribution to cell polarization, example, mRNAs that are segregated into one sibling cell can ACD and binary cell fate decisions. We discuss examples of polarized quickly produce proteins to elicit a specific cell behavior. systems and detail how polarization is established and, whenever Alternatively, regulatory RNA species or proteins can affect gene possible, how it contributes to ACD. Established and emerging expression, protein localization and function.
    [Show full text]
  • Asymmetric Cell Division Regulates the Transcriptional Balance Controlling Memory Fate Decisions in T Cells
    Letter to the Editor Page 1 of 2 Asymmetric cell division regulates the transcriptional balance controlling memory fate decisions in T cells Alexandre Morrot1,2 1Department of Immunology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; 2Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil Correspondence to: Dr. Alexandre Morrot. Department of Immunology, Institute of Microbiology, Federal University of Rio de Janeiro (UFRJ), CCS - Sala D1-035, Av. Carlos C hagas F ilho, CEP 21.941-902, Ilha do Fundão, Rio de Janeiro, RJ, Brazil. Email: morrot@ micro.ufrj.br. Submitted Jan 14, 2017. Accepted for publication Jan 17, 2017. doi: 10.21037/atm.2017.02.29 View this article at: http://dx.doi.org/10.21037/atm.2017.02.29 The asymmetric cell division is an evolutionary acquisition Asymmetric cell division balances self-renewal proliferation strategy of multicellular organisms that enable the of progenitor cells with cell cycle exit and differentiation of pluripotent cells to produce two daughter cells with dividing daughter cells (3). distinct cellular fates. This characteristic is responsible for A number of different genes have been demonstrated to originating all the embryonic leaflets and tissues of the play a role in the pluripotency of stem cells, such as Bmi-1, Metazoan Phyla in which stem cells divide asymmetrically Wnt and Notch. These genes are critical to the self-renew to give rise to two different daughter cells, one preserving capacity of dividing progenitor stem cells. Their abnormal the original stem cell pluripotency (self-renewal) and the expression during stem cell differentiation leads to an other daughter, committed to a further differentiation impairment of asymmetric cell division in dividing cells that program, into specialized cell types with non-stem cell is thought to play a role in the tumorigenic transformation fate (1).
    [Show full text]
  • And Outs(Ide) of Asymmetric Stem Cell Division
    Available online at www.sciencedirect.com ScienceDirect The ins(ide) and outs(ide) of asymmetric stem cell division 1,2 1,3 Cuie Chen , Jaclyn M Fingerhut and 1,2,3,4 Yukiko M Yamashita Many adult stem cells divide asymmetrically, generating one self-renewal and differentiation can be achieved through stem cell (self-renewal) and one differentiating cell. Balancing asymmetric stem cell division. self-renewal and differentiation is critical for sustaining tissue homeostasis throughout the life of an organism. Failure to Asymmetric stem cell division is generally dictated by execute asymmetric stem cell division can have profound unequally distributed cell-extrinsic and/or cell-intrinsic impacts on tissue homeostasis, resulting in tissue degeneration fate determinants (Figure 1). In either case, spindle or hyperplasia/tumorigenic overgrowth. Recent studies have orientation plays a key role in achieving an asymmetric expanded our understanding of both the extracellular and outcome after stem cell division by aligning the cell intracellular mechanisms that regulate, reinforce and ensure an division plane with pre-established cell-extrinsic or asymmetric outcome following stem cell division. In this review, cell-intrinsic asymmetries (Figure 1). The core machinery we discuss newly discovered aspects of asymmetric stem cell for orienting the spindle is evolutionarily conserved, and division that, in concert with well-established mechanisms, decades of study have provided critical insights into the contribute to balancing self-renewal and differentiation. molecular mechanisms of spindle orientation [1]. Al- though the detailed mechanisms regulating asymmetric Addresses 1 cell division and spindle orientation have been elucidated Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA largely using model organisms such as yeast, worm and 2 Howard Hughes Medical Institute, University of Michigan, Ann Arbor, flies, it has become clear that mammalian stem cells also MI 48109, USA 3 utilize similar mechanisms [2,3 ].
    [Show full text]
  • Asymmetric Cell Division Promotes Therapeutic Resistance in Glioblastoma Stem Cells
    RESEARCH ARTICLE Asymmetric cell division promotes therapeutic resistance in glioblastoma stem cells Masahiro Hitomi,1,2,3 Anastasia P. Chumakova,1,2 Daniel J. Silver,1,2,3,4 Arnon M. Knudsen,5,6 W. Dean Pontius,3 Stephanie Murphy,1,2 Neha Anand,1,2 Bjarne W. Kristensen,5,6 and Justin D. Lathia1,2,3,4,7 1Cancer Impact Area, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA. 2Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA. 3Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA. 4Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA. 5Department of Pathology, Odense University Hospital, Odense, Denmark. 6Department of Clinical Research, University of Southern Denmark, Odense, Denmark. 7Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland, Ohio, USA. Asymmetric cell division (ACD) enables the maintenance of a stem cell population while simultaneously generating differentiated progeny. Cancer stem cells (CSCs) undergo multiple modes of cell division during tumor expansion and in response to therapy, yet the functional consequences of these division modes remain to be determined. Using a fluorescent reporter for cell surface receptor distribution during mitosis, we found that ACD generated a daughter cell with enhanced therapeutic resistance and increased coenrichment of EGFR and neurotrophin receptor (p75NTR) from a glioblastoma CSC. Stimulation of both receptors antagonized differentiation induction and promoted self-renewal capacity. p75NTR knockdown enhanced the therapeutic efficacy of EGFR inhibition, indicating that coinheritance of p75NTR and EGFR promotes resistance to EGFR inhibition through a redundant mechanism.
    [Show full text]
  • Biology of the Caenorhabditis Elegans Germline Stem Cell System
    | WORMBOOK CELL FATE, SIGNALING, AND DEVELOPMENT Biology of the Caenorhabditis elegans Germline Stem Cell System E. Jane Albert Hubbard*,1 and Tim Schedl†,1 *Skirball Institute of Biomolecular Medicine, Departments of Cell Biology and Pathology, New York University School of Medicine, † New York 10016 and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110 ORCID IDs: 0000-0001-5893-7232 (E.J.A.H.); 0000-0003-2148-2996 (T.S.) ABSTRACT Stem cell systems regulate tissue development and maintenance. The germline stem cell system is essential for animal reproduction, controlling both the timing and number of progeny through its influence on gamete production. In this review, we first draw general comparisons to stem cell systems in other organisms, and then present our current understanding of the germline stem cell system in Caenorhabditis elegans. In contrast to stereotypic somatic development and cell number stasis of adult somatic cells in C. elegans, the germline stem cell system has a variable division pattern, and the system differs between larval development, early adult peak reproduction and age-related decline. We discuss the cell and developmental biology of the stem cell system and the Notch regulated genetic network that controls the key decision between the stem cell fate and meiotic development, as it occurs under optimal laboratory conditions in adult and larval stages. We then discuss alterations of the stem cell system in response to environ- mental perturbations and aging. A recurring distinction is between processes that control stem cell fate and those that control cell cycle regulation. C. elegans is a powerful model for understanding germline stem cells and stem cell biology.
    [Show full text]
  • Inductive Asymmetric Cell Division the WRM Leads the Way
    Mini-ReVIEW Mini-ReVIEW Worm 2:4, e26276; October/November/December 2013; © 2013 Landes Bioscience Inductive asymmetric cell division The WRM leads the way Takao Ishidate1,†, Soyoung Kim1,†, Craig Mello1,*, and Masaki Shirayama1,* 1R NA Therapeutics Institute; Program in Molecular Medicine; University of Massachusetts Medical School; Howard Hughes Medical Institute; Worcester, MA USA; †These authors contributed equally to this work. In the four-cell embryo, a cell–cell interaction between EMS and C. elegans, with its invariant cell lineage, provides its posterior sister cell, P2, induces EMS to reorient its mitotic a powerful model system in which to study signaling- spindle 90° from an initially left-right (l-r) to a final anterior- dependent asymmetric cell division. The C. elegans β-catenin- posterior (a-p) orientation. After division, the anterior descendant related protein, WRM-1, specifies endoderm at the 4-cell stage during the first cell signaling-induced asymmetric cell division of EMS called MS produces primarily mesoderm, while the 3-6 of embryogenesis. During this interaction, Wnt signaling posterior descendant called E produces the entire endoderm. and the cell cycle regulator CDK-1 act together to induce In the absence of P2/EMS signaling, endoderm is not specified, the asymmetric cortical release of WRM-1 at prophase of the and EMS fails to rotate its mitotic spindle, dividing instead EMS cell cycle. Genetic studies suggest that release of WRM-1 with a default l-r orientation and producing two equivalent unmasks a cortical site that drives EMS spindle rotation onto cells with MS-like cell fates. Over the last decade, a large body the polarized axis of the cell, simultaneously making WRM-1 of work has begun to uncover a remarkably complex multi- available for nuclear translocation, and downstream signaling branched and interacting group of signal-transduction pathways, to specify endoderm.
    [Show full text]
  • The Asymmetric Cell Division Machinery in the Spiral-Cleaving Egg and Embryo of the Marine Annelid Platynereis Dumerilii Aron B
    Nakama et al. BMC Developmental Biology (2017) 17:16 DOI 10.1186/s12861-017-0158-9 RESEARCH ARTICLE Open Access The asymmetric cell division machinery in the spiral-cleaving egg and embryo of the marine annelid Platynereis dumerilii Aron B. Nakama1, Hsien-Chao Chou1,2 and Stephan Q. Schneider1* Abstract Background: Over one third of all animal phyla utilize a mode of early embryogenesis called ‘spiral cleavage’ to divide the fertilized egg into embryonic cells with different cell fates. This mode is characterized by a series of invariant, stereotypic, asymmetric cell divisions (ACDs) that generates cells of different size and defined position within the early embryo. Astonishingly, very little is known about the underlying molecular machinery to orchestrate these ACDs in spiral-cleaving embryos. Here we identify, for the first time, cohorts of factors that may contribute to early embryonic ACDs in a spiralian embryo. Results: To do so we analyzed stage-specific transcriptome data in eggs and early embryos of the spiralian annelid Platynereis dumerilii for the expression of over 50 candidate genes that are involved in (1) establishing cortical domains such as the partitioning defective (par) genes, (2) directing spindle orientation, (3) conveying polarity cues including crumbs and scribble, and (4) maintaining cell-cell adhesion between embryonic cells. In general, each of these cohorts of genes are co-expressed exhibiting high levels of transcripts in the oocyte and fertilized single-celled embryo, with progressively lower levels at later stages. Interestingly, a small number of key factors within each ACD module show different expression profiles with increased early zygotic expression suggesting distinct regulatory functions.
    [Show full text]
  • Mgcracgap Controls the Assembly of the Contractile Ring and the Initiation of Cytokinesis
    MgcRacGAP controls the assembly of the contractile ring and the initiation of cytokinesis Wei-meng Zhao and Guowei Fang* Department of Biological Sciences, Stanford University, Stanford, CA 94305-5020 Edited by Raymond L. Erikson, Harvard University, Cambridge, MA, and approved August 1, 2005 (received for review May 19, 2005) Initiation of cytokinesis requires the establishment of the cleavage GTPase-activating protein MgcRacGAP. Centralspindlin pro- plane, the assembly of the contractile ring, and the ingression of motes microtubule bundling in vitro and is required for cytoki- the cleavage furrow. MgcRacGAP, a GTPase-activating protein for nesis in vivo (17). However, the exact mechanism of centralspin- RhoA, is required for cytokinesis, but the mechanism of its action dlin function in cytokinesis remains to be characterized. In remains unknown. We report here that MgcRacGAP is required for Drosophila, the centralspindlin complex is reported to form a the assembly of anillin and myosin into the contractile ring. In ring-like structure that abuts or overlaps the contractile ring (13). addition, MgcRacGAP is required for the localized activation of Interestingly, RacGAP50C, the Drosophila ortholog of MgcRac- myosin through the RhoA-mediated phosphorylation of the myo- GAP, interacts with Pebble, linking the centralspindlin complex sin regulatory light chain. Cells with MgcRacGAP RNA interference to the ECT2 pathway (18). (RNAi) failed cytokinesis without any ingression of the cleavage In an in vitro small-pool-expression screen, we identified furrow. Paradoxically, MgcRacGAP, a GTPase-activating protein, MgcRacGAP as a substrate of the anaphase-promoting com- associates during cytokinesis with ECT2, a guanine nucleotide plex͞cyclosome, a ubiquitin ligase that controls mitotic progres- exchange factor for RhoA, and the localization of ECT2 to both the sion (data not shown).
    [Show full text]