Catching the Plasma Wakefield

Total Page:16

File Type:pdf, Size:1020Kb

Catching the Plasma Wakefield I NTERNATIONAL J OURNAL OF H IGH -E NERGY P HYSICS CERNCOURIER WELCOME V OLUME 5 3 N UMBER 9 N OVEMBER 2 0 1 3 CERN Courier – digital edition Welcome to the digital edition of the November 2013 issue of CERN Courier. For more than 30 years, plasma-based particle accelerators driven by Catching the either lasers or particle beams have promised a fast route to high energies – primarily because of the extremely large accelerating electric fields they plasma wakefi eld can support, which are about a thousand times greater than in conventional accelerators. This issue looks at progress in the field, including the start of AWAKE – a new project at CERN to study proton-driven plasma wakefield acceleration – and the latest from the ICAN consortium, which is investigating a possible new fibre-based laser driver operating at high pulse-rate. At CERN, the current long shutdown allowed a great opportunity to visit the LHC and its experiments – and much more – during Open Days at the end of September, while the CLOUD experiment has made the first ever measurements of formation rates of atmospheric aerosol particles. To sign up to the new-issue alert, please visit: http://cerncourier.com/cws/sign-up. To subscribe to the magazine, the e-mail new-issue alert, please visit: http://cerncourier.com/cws/how-to-subscribe. CERN FERMILAB AEROSOL More than 70,000 Neutrinos head visitors come to off again to FORMATION EDITOR: CHRISTINE SUTTON, CERN 2013 Open Days Minnesota Important results DIGITAL EDITION CREATED BY JESSE KARJALAINEN/IOP PUBLISHING, UK p27 p5 from CLOUD p6 CERNCOURIER www. V OLUME 5 3 N UMBER 9 N OMBERV E 2 0 1 3 CERN Courier Month 2013 Progress of Theoretical and Experimental Physics (PTEP) is an online-only Contents fully open access journal. Formerly entitled Progress of Theoretical Physics, it has published many signifi cant articles in theoretical physics, including several papers Covering current developments in high-energy that have led to the Nobel Prize. In 2012, the journal expanded its physics and related fi elds worldwide scope to incorporate experimental physics on an equal footing with CERN Courier is distributed to member-state governments, institutes and laboratories theoretical physics. affi liated with CERN, and to their personnel. It is published monthly, except for CERNCOURIER January and August. The views expressed are not necessarily those of the CERN management. Visit www.ipap.jp/highlights/ptp.html to view some Editor Christine Sutton V OLUME 5 3 N UMBER 9 N OVEMBER 2 0 1 3 highly cited articles. News editor Kate Kahle CERN, 1211 Geneva 23, Switzerland E-mail [email protected] Fax +41 (0) 22 785 0247 5 N EWS Why PTEP should be the fi rst choice Web cerncourier.com • Neutrinos head off again to Minnesota • Breaking news: The for your next paper: Advisory board Luis Álvarez-Gaumé, James Gillies, Horst Wenninger 2013 Nobel Prize in Physics • CLOUD shines new light on aerosol Choose Laboratory correspondents: formation in atmosphere LHCb plans for cool pixel detector Argonne National Laboratory (US) Cosmas Zachos • • Brookhaven National Laboratory (US) P Yamin Genetic multiplexing: how to read more with less electronics • Open Access ensures that work published in PTEP is accessible Cornell University (US) D G Cassel • DESY Laboratory (Germany) Till Mundzeck LBNE gains new partners from Brazil, Italy and UK to the widest possible audience immediately on publication and EMFCSC (Italy) Anna Cavallini PTEP for can start receiving citations without delay Enrico Fermi Centre (Italy) Guido Piragino Fermi National Accelerator Laboratory (US) Katie Yurkewicz 9 S CIENCEWATCH Forschungszentrum Jülich (Germany) Markus Buescher GSI Darmstadt (Germany) I Peter • The increased Impact Factor of 2.479* is a refl ection of the IHEP, Beijing (China) Tongzhou Xu 11 A STROWATCH quality and high visibility of the work published in PTEP IHEP, Serpukhov (Russia) Yu Ryabov your next INFN (Italy) Romeo Bassoli Jefferson Laboratory (US) Steven Corneliussen 12 A RCHIVE JINR Dubna (Russia) B Starchenko • Simple, fast and effi cient online submission and peer KEK National Laboratory (Japan) Nobukazu Toge Lawrence Berkeley Laboratory (US) Spencer Klein EATURES review systems Los Alamos National Laboratory (US) Rajan Gupta F paper NCSL (US) Ken Kingery 13 To the terascale: catching the plasma wakefi eld Nikhef (Netherlands) Robert Fleischer Novosibirsk Institute (Russia) S Eidelman A look at a design study of 1983 and subsequent progress. • Extensive fi nancial support for authors** Orsay Laboratory (France) Anne-Marie Lutz PSI Laboratory (Switzerland) P-R Kettle Saclay Laboratory (France) Elisabeth Locci 17 AWAKE: to high energies in a single leap • The world-class Editorial Team ensure PTEPs high standards Science and Technology Facilities Council (UK) Julia Maddock SLAC National Accelerator Laboratory (US) Farnaz Khadem A project to test proton-driven plasma wakefi eld acceleration. are maintained. TRIUMF Laboratory (Canada) Marcello Pavan Produced for CERN by IOP Publishing Ltd 21 Can fi bre be the future of high-energy physics? **We are a SCOPE3 partner journal and have reached an agreement IOP Publishing Ltd, Temple Circus, Temple Way, Bristol BS1 6HG, UK A new laser system that could drive plasma acceleration. with institutions including KEK, Riken Nishina Center, RCNP, YITP, Tel +44 (0)117 929 7481 ICRR, and IPMU to provide fi nancial support for authors. Publisher Susan Curtis 25 ICRC 2013: from Earth to the galaxy and beyond Production editor Lisa Gibson *2012 Journal Citation Reports® (Thomson Reuters, 2013) Technical illustrator Alison Tovey Reporting on this year’s major astroparticle physics conference. Group advertising manager Chris Thomas Advertisement production Katie Graham Marketing & Circulation Angela Gage 27 Our universe was yours Head of B2B & Marketing Jo Allen CERN opened its doors at the end of September Art director Andrew Giaquinto to more than 70,000 visitors. How to submit Advertising Tel +44 (0)117 930 1026 (for UK/Europe display advertising) 31 Testing times for relativity or +44 (0)117 930 1164 (for recruitment advertising); E-mail: [email protected]; fax +44 (0)117 930 1178 A meeting in Indiana reviewed tests of Lorentz and CPT symmetries. Visit www.ptep.oxfordjournals.org for Instructions to authors or email the editorial offi ce ([email protected]) with any General distribution Courrier Adressage, CERN, 1211 Geneva 23, Switzerland E-mail: [email protected] 33 Micropattern-detector experts meet in Zaragoza pre-submission inquiries. In certain countries, to request copies or to make address changes, contact: China Keqing Ma, Library, Institute of High Energy Physics, Latest research developments in the technology of MPGDs. PO Box 918, Beijing 100049, People’s Republic of China E-mail: [email protected] Germany Antje Brandes, DESY, Notkestr. 85, 22607 Hamburg, Germany 37 F ACES &P LACES E-mail: [email protected] Italy Loredana Rum or Anna Pennacchietti, INFN, Casella Postale 56, 00044 Frascati, The publication of this journal is supported in part by a Grant-in-Aid for the Rome, Italy 46 R ECRUITMENT Publication of Scientifi c Research Results from the Japan Society for the Promotion E-mail: [email protected] UK Mark Wells, Science and Technology Facilities Council, Polaris House, North Star of Science, Japan. Avenue, Swindon, Wiltshire SN2 1SZ 52 B OOKSHELF E-mail: [email protected] US/Canada Published by Cern Courier, 6N246 Willow Drive, St Charles, IL 60175, US. Periodical postage paid in St Charles, IL, US Fax 630 377 1569. E-mail: [email protected] 54 I NSIDE S TORY POSTMASTER: send address changes to: Creative Mailing Services, PO Box 1147, St Charles, IL 60174, US I NTERNATIONAL J OURNAL OF H IGH -E NERGY P HYSICS CERNCOURIER Published by European Organization for Nuclear Research, CERN, V OLUME 5 3 N UMBER 9 N OVEMBER 2 0 1 3 1211 Geneva 23, Switzerland Tel +41 (0) 22 767 61 11. Telefax +41 (0) 22 767 65 55 Catching the plasma wakefi eld Printed by Warners (Midlands) plc, Bourne, Lincolnshire, UK © 2013 CERN ISSN 0304-288X On the cover: Simulation of SLAC’s plasma-wakefi eld accelerator experiment, which demonstrated energy doubling of 42 GeV electrons in less than 1 m. Three articles in this issue look at progress in this fi eld (p13), a project for proton-driven CERN FERMILAB AEROSOL More than 70,000 Neutrinos head plasma wakefi eld acceleration (p17) and a possible new laser driver (p21). (Image visitors come to off again to FORMATION 2013 Open Days Minnesota Important results p27 p5 from CLOUD p6 credit: F Tsung, UCLA. ) 3 PTEP CernCourier ad repro.indd 1 02/10/2013 11:54 CERNCOURIER www. V OLUME 5 3 N UMBER 9 N OMBERV E 2 0 1 3 CERN Courier Month 2013 Progress of Theoretical and Experimental Physics (PTEP) is an online-only Contents fully open access journal. Formerly entitled Progress of Theoretical Physics, it has published many signifi cant articles in theoretical physics, including several papers Covering current developments in high-energy that have led to the Nobel Prize. In 2012, the journal expanded its physics and related fi elds worldwide scope to incorporate experimental physics on an equal footing with CERN Courier is distributed to member-state governments, institutes and laboratories theoretical physics. affi liated with CERN, and to their personnel. It is published monthly, except for CERNCOURIER January and August. The views expressed are not necessarily those of the CERN management. Visit www.ipap.jp/highlights/ptp.html to view some Editor Christine
Recommended publications
  • CERN Courier–Digital Edition
    CERNMarch/April 2021 cerncourier.com COURIERReporting on international high-energy physics WELCOME CERN Courier – digital edition Welcome to the digital edition of the March/April 2021 issue of CERN Courier. Hadron colliders have contributed to a golden era of discovery in high-energy physics, hosting experiments that have enabled physicists to unearth the cornerstones of the Standard Model. This success story began 50 years ago with CERN’s Intersecting Storage Rings (featured on the cover of this issue) and culminated in the Large Hadron Collider (p38) – which has spawned thousands of papers in its first 10 years of operations alone (p47). It also bodes well for a potential future circular collider at CERN operating at a centre-of-mass energy of at least 100 TeV, a feasibility study for which is now in full swing. Even hadron colliders have their limits, however. To explore possible new physics at the highest energy scales, physicists are mounting a series of experiments to search for very weakly interacting “slim” particles that arise from extensions in the Standard Model (p25). Also celebrating a golden anniversary this year is the Institute for Nuclear Research in Moscow (p33), while, elsewhere in this issue: quantum sensors HADRON COLLIDERS target gravitational waves (p10); X-rays go behind the scenes of supernova 50 years of discovery 1987A (p12); a high-performance computing collaboration forms to handle the big-physics data onslaught (p22); Steven Weinberg talks about his latest work (p51); and much more. To sign up to the new-issue alert, please visit: http://comms.iop.org/k/iop/cerncourier To subscribe to the magazine, please visit: https://cerncourier.com/p/about-cern-courier EDITOR: MATTHEW CHALMERS, CERN DIGITAL EDITION CREATED BY IOP PUBLISHING ATLAS spots rare Higgs decay Weinberg on effective field theory Hunting for WISPs CCMarApr21_Cover_v1.indd 1 12/02/2021 09:24 CERNCOURIER www.
    [Show full text]
  • Particle Physics
    If you would like to register to receive Fascination automatically ISSUE 11 please visit www.stfc.ac.uk/fascination News from the Cover image: A proton collision at the ATLAS experiment which produced a microscopic-black-hole. Credit: CERN Science and Technology particle Facilities Council Exploring & Understanding Science physics special CONTENTS Benefits of particle physics LHC leads the way on new technology Higgs - The story so far Higgs Boson dominated the news media for two days LHC on tour in the UK Using the very large to look for the extremely small How did the Universe begin? What are we made of? Why are all world class. It represents amazing value for the amount does matter behave the way it does? These are questions of added benefit we get from what is at heart a fundamental that particle physics can answer. Particle physics is an ideal science project. With the recent breakthrough discovery of a showcase for STFC’s work – a subject where the research, the Higgs-like particle, this edition is focussing on particle physics resultant innovation and the inspirational value of the science and why it matters to the UK. The benefits of particle physics to you and everyone you know nature of matter, the so called known unknowns, and in the process uncover new questions we have yet to answer. It’s a compellingly difficult search that pushes our understanding of matter beyond the limits of what was previously possible. But the search is expensive, times are tough and costs need to be justified, so the secondary benefits from the research are often just as important.
    [Show full text]
  • Muon Bundles As a Sign of Strangelets from the Universe
    Draft version October 19, 2018 Typeset using LATEX default style in AASTeX61 MUON BUNDLES AS A SIGN OF STRANGELETS FROM THE UNIVERSE P. Kankiewicz,1 M. Rybczynski,´ 1 Z. W lodarczyk,1 and G. Wilk2 1Institute of Physics, Jan Kochanowski University, 25-406 Kielce, Poland 2National Centre for Nuclear Research, Department of Fundamental Research, 00-681 Warsaw, Poland Submitted to ApJ ABSTRACT Recently the CERN ALICE experiment, in its dedicated cosmic ray run, observed muon bundles of very high multiplicities, thereby confirming similar findings from the LEP era at CERN (in the CosmoLEP project). Originally it was argued that they apparently stem from the primary cosmic rays with a heavy masses. We propose an alternative possibility arguing that muonic bundles of highest multiplicity are produced by strangelets, hypothetical stable lumps of strange quark matter infiltrating our Universe. We also address the possibility of additionally deducing their directionality which could be of astrophysical interest. Significant evidence for anisotropy of arrival directions of the observed high multiplicity muonic bundles is found. Estimated directionality suggests their possible extragalactic provenance. Keywords: astroparticle physics: cosmic rays: reference systems arXiv:1612.04749v2 [hep-ph] 17 Mar 2017 Corresponding author: M. Rybczy´nski [email protected], [email protected], [email protected], [email protected] 2 Kankiewicz et al. 1. INTRODUCTION Cosmic ray physics is our unique source of information on events in the energy range which will never be accessible in Earth-bound experiments Dar & De Rujula(2008); Letessier-Selvon & Stanev(2011). This is why one of the most important aspects of their investigation is the understanding of the primary cosmic ray (CR) flux and its composition.
    [Show full text]
  • Trigger and Data Acquisition
    Trigger and data acquisition N. Ellis CERN, Geneva, Switzerland Abstract The lectures address some of the issues of triggering and data acquisition in large high-energy physics experiments. Emphasis is placed on hadron-collider experiments that present a particularly challenging environment for event se- lection and data collection. However, the lectures also explain how T/DAQ systems have evolved over the years to meet new challenges. Some examples are given from early experience with LHC T/DAQ systems during the 2008 single-beam operations. 1 Introduction These lectures concentrate on experiments at high-energy particle colliders, especially the general- purpose experiments at the Large Hadron Collider (LHC) [1]. These experiments represent a very chal- lenging case that illustrates well the problems that have to be addressed in state-of-the-art high-energy physics (HEP) trigger and data-acquisition (T/DAQ) systems. This is also the area in which the author is working (on the trigger for the ATLAS experiment at LHC) and so is the example that he knows best. However, the lectures start with a more general discussion, building up to some examples from LEP [2] that had complementary challenges to those of the LHC. The LEP examples are a good reference point to see how HEP T/DAQ systems have evolved in the last few years. Students at this school come from various backgrounds — phenomenology, experimental data analysis in running experiments, and preparing for future experiments (including working on T/DAQ systems in some cases). These lectures try to strike a balance between making the presentation accessi- ble to all, and going into some details for those already familiar with T/DAQ systems.
    [Show full text]
  • Atmospheric Nucleation and Growth in the CLOUD Experiment at CERN Jasper Kirkby and CLOUD Collaboration
    Atmospheric nucleation and growth in the CLOUD experiment at CERN Jasper Kirkby and CLOUD Collaboration Citation: AIP Conference Proceedings 1527, 278 (2013); doi: 10.1063/1.4803258 View online: http://dx.doi.org/10.1063/1.4803258 View Table of Contents: http://scitation.aip.org/content/aip/proceeding/aipcp/1527?ver=pdfcov Published by the AIP Publishing Articles you may be interested in Multi-species nucleation rates in CLOUD AIP Conf. Proc. 1527, 326 (2013); 10.1063/1.4803269 Ternary H 2 SO 4 - H 2 O - NH 3 neutral and charged nucleation rates for a wide range of atmospheric conditions AIP Conf. Proc. 1527, 310 (2013); 10.1063/1.4803265 Observations and models of particle nucleation near cloud outflows AIP Conf. Proc. 534, 831 (2000); 10.1063/1.1361988 Application of nucleation theories to atmospheric aerosol formation AIP Conf. Proc. 534, 711 (2000); 10.1063/1.1361961 Laboratory studies of ice nucleation in sulfate particles: Implications for cirrus clouds AIP Conf. Proc. 534, 471 (2000); 10.1063/1.1361909 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions IP: 131.215.225.131 On: Tue, 19 Apr 2016 20:27:43 Atmospheric Nucleation and Growth in the CLOUD Experiment at CERN Jasper Kirkbya and the CLOUD collaborationb aCERN, CH-1211 Geneva, Switzerland b Aerodyne Research Inc., Billerica, Massachusetts 01821, USA California Institute of Technology, Division of Chemistry and Chemical Engineering, Pasadena, California 91125, USA Carnegie Mellon University, Dep. of Chemical
    [Show full text]
  • A BOINC-Based Volunteer Computing Infrastructure for Physics Studies At
    Open Eng. 2017; 7:379–393 Research article Javier Barranco, Yunhai Cai, David Cameron, Matthew Crouch, Riccardo De Maria, Laurence Field, Massimo Giovannozzi*, Pascal Hermes, Nils Høimyr, Dobrin Kaltchev, Nikos Karastathis, Cinzia Luzzi, Ewen Maclean, Eric McIntosh, Alessio Mereghetti, James Molson, Yuri Nosochkov, Tatiana Pieloni, Ivan D. Reid, Lenny Rivkin, Ben Segal, Kyrre Sjobak, Peter Skands, Claudia Tambasco, Frederik Van der Veken, and Igor Zacharov LHC@Home: a BOINC-based volunteer computing infrastructure for physics studies at CERN https://doi.org/10.1515/eng-2017-0042 Received October 6, 2017; accepted November 28, 2017 1 Introduction Abstract: The LHC@Home BOINC project has provided This paper addresses the use of volunteer computing at computing capacity for numerical simulations to re- CERN, and its integration with Grid infrastructure and ap- searchers at CERN since 2004, and has since 2011 been plications in High Energy Physics (HEP). The motivation expanded with a wider range of applications. The tradi- for bringing LHC computing under the Berkeley Open In- tional CERN accelerator physics simulation code SixTrack frastructure for Network Computing (BOINC) [1] is that enjoys continuing volunteers support, and thanks to vir- available computing resources at CERN and in the HEP tualisation a number of applications from the LHC ex- community are not sucient to cover the needs for nu- periment collaborations and particle theory groups have merical simulation capacity. Today, active BOINC projects joined the consolidated LHC@Home BOINC project. This together harness about 7.5 Petaops of computing power, paper addresses the challenges related to traditional and covering a wide range of physical application, and also virtualized applications in the BOINC environment, and particle physics communities can benet from these re- how volunteer computing has been integrated into the sources of donated simulation capacity.
    [Show full text]
  • Cosmic-Ray Studies with Experimental Apparatus at LHC
    S S symmetry Article Cosmic-Ray Studies with Experimental Apparatus at LHC Emma González Hernández 1, Juan Carlos Arteaga 2, Arturo Fernández Tellez 1 and Mario Rodríguez-Cahuantzi 1,* 1 Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, Edif. EMA3-231, Ciudad Universitaria, 72570 Puebla, Mexico; [email protected] (E.G.H.); [email protected] (A.F.T.) 2 Instituto de Física y Matemáticas, Universidad Michoacana, 58040 Morelia, Mexico; [email protected] * Correspondence: [email protected] Received: 11 September 2020; Accepted: 2 October 2020; Published: 15 October 2020 Abstract: The study of cosmic rays with underground accelerator experiments started with the LEP detectors at CERN. ALEPH, DELPHI and L3 studied some properties of atmospheric muons such as their multiplicity and momentum. In recent years, an extension and improvement of such studies has been carried out by ALICE and CMS experiments. Along with the LHC high luminosity program some experimental setups have been proposed to increase the potential discovery of LHC. An example is the MAssive Timing Hodoscope for Ultra-Stable neutraL pArticles detector (MATHUSLA) designed for searching of Ultra Stable Neutral Particles, predicted by extensions of the Standard Model such as supersymmetric models, which is planned to be a surface detector placed 100 meters above ATLAS or CMS experiments. Hence, MATHUSLA can be suitable as a cosmic ray detector. In this manuscript the main results regarding cosmic ray studies with LHC experimental underground apparatus are summarized. The potential of future MATHUSLA proposal is also discussed. Keywords: cosmic ray physics at CERN; atmospheric muons; trigger detectors; muon bundles 1.
    [Show full text]
  • Sub Atomic Particles and Phy 009 Sub Atomic Particles and Developments in Cern Developments in Cern
    1) Mahantesh L Chikkadesai 2) Ramakrishna R Pujari [email protected] [email protected] Mobile no: +919480780580 Mobile no: +917411812551 Phy 009 Sub atomic particles and Phy 009 Sub atomic particles and developments in cern developments in cern Electrical and Electronics Electrical and Electronics KLS’s Vishwanathrao deshpande rural KLS’s Vishwanathrao deshpande rural institute of technology institute of technology Haliyal, Uttar Kannada Haliyal, Uttar Kannada SUB ATOMIC PARTICLES AND DEVELOPMENTS IN CERN Abstract-This paper reviews past and present cosmic rays. Anderson discovered their existence; developments of sub atomic particles in CERN. It High-energy subato mic particles in the form gives the information of sub atomic particles and of cosmic rays continually rain down on the Earth’s deals with basic concepts of particle physics, atmosphere from outer space. classification and characteristics of them. Sub atomic More-unusual subatomic particles —such as particles also called elementary particle, any of various self-contained units of matter or energy that the positron, the antimatter counterpart of the are the fundamental constituents of all matter. All of electron—have been detected and characterized the known matter in the universe today is made up of in cosmic-ray interactions in the Earth’s elementary particles (quarks and leptons), held atmosphere. together by fundamental forces which are Quarks and electrons are some of the elementary represente d by the exchange of particles known as particles we study at CERN and in other gauge bosons. Standard model is the theory that laboratories. But physicists have found more of describes the role of these fundamental particles and these elementary particles in various experiments.
    [Show full text]
  • The Cell Geometry Is Adapted to the Manufacturing Process. One Side Of
    R&D for the Future 443 The cell geometry is adapted to the manufacturing process. One side of the cell carries all the features required for the RF, whereas the other side is flat for bonding (Fig. 12.11). The cells are diamond machined, joined by diffusion bonding under hydrogen at about 1000°C and vacuum baked at 650°C. With exacting machining tolerances, typically in the 1 µm range, the tuning of the final structure is avoided. A number of test facilities is in operation worldwide including those at CERN which houses the only facility modelling the two-beam scheme in addition to a number of test stands powered by klystrons for high turn-around of testing structure variants. Nominal accelerating gradients of 100 MV/m have been achieved in the accelerating structures under development in a worldwide collaboration with the required low break-down rate while the PETSs have been tested at the nominal output power of 150 MW. However, more variants of these two structures have to be built and examined to address HOM damping, lifetime, breakdown statistics, industrial-scale fabrication, and better understanding of the break-down mechanisms. The Next Energy Frontier e+e− Collider: Innovation in Detectors Lucie Linssen Throughout the history of particle physics, both protons and electrons, with their respective antiparticles, have been used extensively for high energy colliders [Box 4.1]. The merits and difficulties of physics research with high luminosity proton–proton colliders are briefly described in the Box 8.3. Electrons, in contrast to protons, are genuine elementary particles. Apart from initial-state radiation and beamstrahlung effects (see below), they provide very good knowledge of the initial state of the collision.
    [Show full text]
  • Role of Sulphuric Acid, Ammonia and Galactic Cosmic Rays in Atmospheric Aerosol Nucleation
    LETTER doi:10.1038/nature10343 Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation Jasper Kirkby1, Joachim Curtius2, Joa˜o Almeida2,3, Eimear Dunne4, Jonathan Duplissy1,5,6, Sebastian Ehrhart2, Alessandro Franchin5, Ste´phanie Gagne´5,6, Luisa Ickes2, Andreas Ku¨rten2, Agnieszka Kupc7, Axel Metzger8, Francesco Riccobono9, Linda Rondo2, Siegfried Schobesberger5, Georgios Tsagkogeorgas10, Daniela Wimmer2, Antonio Amorim3, Federico Bianchi9,11, Martin Breitenlechner8, Andre´ David1, Josef Dommen9, Andrew Downard12, Mikael Ehn5, Richard C. Flagan12, Stefan Haider1, Armin Hansel8, Daniel Hauser8, Werner Jud8, Heikki Junninen5, Fabian Kreissl2, Alexander Kvashin13, Ari Laaksonen14, Katrianne Lehtipalo5, Jorge Lima3, Edward R. Lovejoy15, Vladimir Makhmutov13, Serge Mathot1, Jyri Mikkila¨5, Pierre Minginette1, Sandra Mogo3, Tuomo Nieminen5, Antti Onnela1, Paulo Pereira3, Tuukka Peta¨ja¨5, Ralf Schnitzhofer8, John H. Seinfeld12, Mikko Sipila¨5,6, Yuri Stozhkov13, Frank Stratmann10, Antonio Tome´3, Joonas Vanhanen5, Yrjo Viisanen16, Aron Vrtala7, Paul E. Wagner7, Hansueli Walther9, Ernest Weingartner9, Heike Wex10, Paul M. Winkler7, Kenneth S. Carslaw4, Douglas R. Worsnop5,17, Urs Baltensperger9 & Markku Kulmala5 Atmospheric aerosols exert an important influence on climate1 in the atmosphere25,26. Because the primary source of ions in the global through their effects on stratiform cloud albedo and lifetime2 and troposphere is galactic cosmic rays (GCRs), their role in atmospheric the invigoration of convective storms3. Model calculations suggest nucleation is of considerable interest as a possible physical mechanism that almost half of the global cloud condensation nuclei in the for climate variability caused by the Sun27,28. atmospheric boundary layer may originate from the nucleation of Here we address three issues that currently limit our understanding of aerosols from trace condensable vapours4, although the sensitivity of atmospheric nucleation and its influence on climate7.
    [Show full text]
  • Learning Physics from ALEPH Events
    Learning Physics from ALEPH Events This document is an adaptation of the Web pages created by Joe Rothberg and Henri Videau at CERN. These pages can be found at http://aleph.web.cern.ch/aleph/educ/Welcome.html. Last updated: PTD, 5/Oct/2007 1 Introduction The aim of the following project is to provide some means for you to improve your knowledge of particle physics by studying some real data recently collected in the ALEPH experiment. To make it possible we provide some description of the experiment, of its detector and of some physics topics. It will help greatly if you have a copy of a recent particle physics text book to help you with any new concepts. A suggested text is “Introduction to High Energy Physics” by D.H.Perkins. You will need to access the world wide web throughout this project. Various URL’s (internet addresses) will be provided where you can find additional information on specific points. It is highly recommended that you take advantage of this extra information. You will also need access to your Windows account on the lab PC’s, so make sure you have your username validated in advance for this. 2 The Project The project is intended to require three days (21 hours) of study and work, with an additional 6 hours to write up. 1. On day one you should read the sections on “The LEP Collider”, “The ALEPH Exper- iment” and on “Starting with PAW”. After these sections are understood, there are a set of questions to be answered and the answers are to be included in your final report.
    [Show full text]
  • Studies of Jet Energy Corrections at the CMS Experiment and Their Automation
    Master’s thesis Theoretical and Computational Methods Studies of jet energy corrections at the CMS experiment and their automation Adelina Lintuluoto February 2021 Supervisor: Asst. prof. Mikko Voutilainen Advisor: Dr. Clemens Lange Examiners: Asst. prof. Mikko Voutilainen Dr. Kati Lassila-Perini UNIVERSITY OF HELSINKI DEPARTMENT OF PHYSICS PB 64 (Gustaf Hällströms gata 2a) 00014 Helsingfors universitet Tiedekunta – Fakultet – Faculty Koulutusohjelma – Utbildningsprogram – Degree programme Faculty of Science Master’s programme Opintosuunta – Studieinrikting – Study track Theoretical and computational methods Tekijä – Författare – Author Adelina Lintuluoto Työn nimi – Arbetets titel – Title Studies of jet energy corrections at the CMS experiment and their automation Työn laji – Arbetets art – Level Aika – Datum – Month and year Sivumäärä – Sidoantal – Number of pages Master’s thesis February 2021 69 Tiivistelmä – Referat – Abstract At the Compact Muon Solenoid (CMS) experiment at CERN (European Organization for Nuclear Research), the building blocks of the Universe are investigated by analysing the observed final-state particles resulting from high-energy proton-proton collisions. However, direct detection of final-state quarks and gluons is not possible due to a phenomenon known as colour confinement. Instead, event properties with a close correspondence with their distributions are studied. These event properties are known as jets. Jets are central to particle physics analysis and our understanding of them, and hence of our Universe, is dependent upon our ability to accurately measure their energy. Unfortunately, current detector technology is imprecise, necessitating downstream correction of measurement discrepancies. To achieve this, the CMS experiment employs a sequential multi-step jet calibration process. The process is performed several times per year, and more often during periods of data collection.
    [Show full text]