Supplemental Materials and Methods Hydroxyl Radical Footprinting The
Total Page:16
File Type:pdf, Size:1020Kb
1 Supplemental Materials and Methods Hydroxyl Radical Footprinting The 28-nt zipcode flanked by 5′ and 3′ nucleotide extensions that were added for optimal resolution of RNA cleavage products by denaturing polyacrylamide gel electrophoresis was prepared by T7 transcription using synthetic DNA oligonucleotide templates (Invitrogen). The sequence of the sense template was 5′- GGGAATGGATCCACATCTACGAACCGGACTGTTACCAACACCCACACCCCTTCACTGCAGACTTG ACGAAGCTT-3′ and the sequence of the antisense template was 5′- AAGCTTCGTCAAGTCTGCAGTGAAGGGGTGTGGGTGTTGGTAACAGTCCGGTTCGTAGATGTGGA TCCATTCCC-3′. Italicized nucleotides indicate the zipcode[1-28] sequence. Templates were amplified by PCR using the T7 promoter sequence containing 41.30 primer (5′- GATAATACGACTCACTATAGGGAATGGATCCACATCTACGA-3′) and the 24.30 primer (5′- AAGCTTCGTCAAGTCTGCAGTGAA-3′). The transcribed RNA (5′- GGGAATGGATCCACATCTACGAACCGGACTGTTACCAACACCCACACCCCTTCACTGCAGACTTG ACGAAGCTT-3′) was gel-purified by denaturing polyacrylamide gel electrophoresis (8% [w/v] 29:1 acrylamide/Bis-acrylamide, 7M urea, 1X TBE), eluted, precipitated, and resuspended in CE buffer (10 mM sodium cacodylate pH 7.3, 0.1mM EDTA). RNA was dephosphorylated using Antarctic phosphatase (New England Biolabs) and then 5′-end labeled with 32P using T4 polynucleotide kinase (New England Biolabs). Labeled RNA was gel purified, eluted, precipitated, and resuspended in CE buffer as described above. Labeled 32P-RNA (0.01 uM) was equilibrated with recombinant MBP-ZBP1 KH34 (1µM, 0.1µM, 0.02µM, 0µM) in a buffer containing 10 mM sodium cacodylate (pH 7.3), 0.1 mM EDTA, 100 mM NaCl, and 0.01 mg mL-1 tRNA for approximately 3 h in order to ensure the binding reaction reached equilibrium. Cleavage reactions were initiated by mixing samples with freshly prepared Fe(II)-EDTA- Ascorbate solution (5mM, 10mM, and 25mM in reaction, respectively) for 30 minutes at room 2 temperature. After phenol/chloroform extraction, RNA cleavage products were gel-separated using denaturing polyacrylamide gel electrophoresis (10% [w/v] 29:1 acrylamide/Bis-acrylamide, 7M urea, 1X TBE) and imaged on storage phosphor screens using Storm 860 scanner (GE Healthcare). The hydroxyl radical reactivity of the nucleotides contacting ZBP1 KH34 were quantitated by SAFA individual peak fitting analysis(Das et al. 2005). The data for each protection were individually scaled to the integrated density of all bands in the respective lane(Shcherbakova et al. 2004). EMSA The sequences of the RNAs used in the ZBP1 KH34 EMSA experiments were: Zipcode[1–28], 5′-Fl-ACCGGACUGUUACCAACACCCACACCCC-3′; Zipcode[1–28]C3G, 5′-Fl-ACGGGACUGUUACCAACACCCACACCCC-3′; Zipcode[1–28]C3A, 5′-Fl-ACAGGACUGUUACCAACACCCACACCCC-3′; Zipcode[1–28]C3U, 5′-Fl-ACUGGACUGUUACCAACACCCACACCCC-3′; Zipcode[1–28]G4A, 5′-Fl-ACCAGACUGUUACCAACACCCACACCCC-3′; Zipcode[1–28]G4C, 5′-Fl-ACCCGACUGUUACCAACACCCACACCCC-3′; Zipcode[1–28]G4U, 5′-Fl-ACCUGACUGUUACCAACACCCACACCCC-3′; Zipcode[1–28]G5A, 5′-Fl-ACCGAACUGUUACCAACACCCACACCCC-3′; Zipcode[1–28]G5C, 5′-Fl-ACCGCACUGUUACCAACACCCACACCCC-3′; Zipcode[1–28]G5U, 5′-Fl-ACCGUACUGUUACCAACACCCACACCCC-3′; Zipcode[1–28]A6G, 5′-Fl-ACCGGGCUGUUACCAACACCCACACCCC-3′; Zipcode[1–28]A6C, 5′-Fl-ACCGGCCUGUUACCAACACCCACACCCC-3′; Zipcode[1–28]A6U, 5′-Fl-ACCGGUCUGUUACCAACACCCACACCCC-3′; Zipcode[1–28]C7G, 5′-Fl-ACCGGAGUGUUACCAACACCCACACCCC-3′; Zipcode[1–28]C7A, 5′-Fl-ACCGGAAUGUUACCAACACCCACACCCC-3′; Zipcode[1–28]C7U, 5′-Fl-ACCGGAUUGUUACCAACACCCACACCCC-3′; Zipcode[1–28]A22C;A24C, 5′-Fl-ACCGGACUGUUACCAACACCCCCCCCCC-3′; 3 Zipcode[1–28]5RE-3RE Swap, 5′-Fl-ACACACCCGUUACCAACACCCCGGACUC-3′; 25RE spacing, 5′-Fl-AGCGGACUGUUACUGAAUUAUUAAAGCGUUUUACACCCUU-3′; 30RE spacing, 5′-Fl-AGCGGACUGUUACUGAUUCGAAUUAUUAAAGCGUUUUACACCCUU-3′. Circular dichroism (CD) spectroscopy All CD spectra were recorded on a Jasco J-815 spectrometer (Japan Spectroscopic Co., Tokyo, Japan) equipped with a PTC-423 Peltier temperature-control system. Thermal unfolding was monitored in 1 cm path-length quartz cells (Hellma) by recording mean residue ellipticity at 222nm between 25°C and 85°C, at approximately 2°C intervals. Reversibility of unfolding was assessed by cooling to 25°C at the same rate. ZBP1 KH34 and ZBP1 KH34 F478A-F479A samples were prepared at 6uM concentration in 25 mM Tris pH 7.2, 500 mM NaCl. Data were fit to a modified version of the Gibbs- Helmholtz equation for a two-state (folded-unfolded) transition model using SigmaPlot v11.0 (SyStat, Chicago, IL, USA) as previously described(Greenfield 2006). Wavelength scans from 240nm-190nm were performed in 0.1 cm path-length quartz cells (Hellma) at 25°C. Protein samples were prepared at 35 uM concentration in 20 mM sodium phosphate buffer pH 7.2, 100 mM NaCl. To calculate approximate secondary structure, spectra were analyzed with the CDsstr algorithm(Johnson 1999; Sreerama and Woody 2000) using the DichroWeb server(Whitmore and Wallace 2004). ZBP1 Immunoprecipitation The gene symbols, accession numbers, and corresponding primer sequences used for PCR amplification of ZBP1 co-immunoprecipitated RNAs were: B2M, NM_009735, 5′- ACAGTTCCACCCGCCTCACATT-3′, 5′-TAGAAAGACCAGTCCTTGCTGAAG-3′; RPL13A, NM_009438, 5′-CTGCTCTCAAGGTTGTTCGGCT-3′, 5′-CCTTCCGTTTCTCCTCCAGAGT-3′; GAPDH, NM_008084, 5′- GGTGAAGGTCGGTGTGAACG-3′, 5′-CTCGCTCCTGGAAGATGGTG-3′; ACTB, NM_007393, 5′-GTCCCTCACCCTCCCAAAAG-3′, 5′- GCTGCCTCAACACCTCAACCC-3′; CSNK1D, 4 NM_027874, 5′-ATGCCATTTGGGTTTGTCAT-3′, 5′-CACCACACCTTTCTGGAGGT-3′; DTNA, NM_207650, 5′-CGTTTGCACAAAGTTCGAGA-3′, 5′-AGCTCCACCGTGAATGTACC-3′; EFNB2, NM_010111, 5′-CTAACCTCTCCTGCGCATTC-3′, 5′-GACGCACAGGACACTTCTCA-3′; EN1, NM_010133, 5′-ACACAACCCTGCGATCCTAC-3′, 5′-GATATAGCGGTTTGCCTGGA-3′; GNAO1, NM_010308, 5′-AGCAAGGCGATTGAGAAAAA-3′, 5′-ACGTCACACACCATCTTGGA-3′; PPP1R9B, BC029672, 5′-GCAACAGCCCTCAACTTCTC-3′, 5′-CTCTGCAGGCACACCATCTA-3′; IRX5, NM_018826, 5′-TCTATCCGGGCTACACGAAC-3′, 5′-GGGATACCGCACCAGAGTTA-3′; NTNG1, NM_030699, 5′-AGCATTCTTCGCTGTCAGGT-3′, 5′-ACAGGGGTATGACTGGCTTG-3′; BARHL2, NM_001005477, 5′-CAACCTCACTGACACCCAAGTC-3′, 5′-AAGGCGACGGAAACATCCTCTG-3′; HES1, NM_008235, 5′-GGAAATGACTGTGAAGCACCTCC-3′, 5′-GAAGCGGGTCACCTCGTTCATG- 3′; KCNAB2, AK143166, 5′-CGGCATCGTCTCAGGGAAGTAT-3′, 5′-CTCCTCACTCAGGATCTTGTCC- 3′; NLGN2, BC056478, 5′-CGATGTCATGCTCAGCGCAGTA-3′, 5′-CCACACTACCTCTTCAAAGCGG- 3′; OPRL1, AF043277, 5′-GCTCAGCACAAGTGGAGGATGA-3′, 5′- GGCTGTAGCAGACAGAGATGATC-3′; RAVER1, NM_027911, 5′-CTGGCTTCAGTGATGTGGATGC- 3′, 5′-CATCTCTGCTGTCTCGTACTCC-3′; SEMA6A, BC062979, 5′-AATGGCAGCCTTTTCCTGGAGG- 3′, 5′-GCAACATAGAGTGAGCCACTCG-3′; SYT3, NM_016663, 5′-TCCCAGCAAAGGACTCCAATGG- 3′, 5′-GGCACCGAGAACTGAAACGTCT-3′; SEPT8, BC049819, 5′-GTTTGCCTCTACTTCATCACGCC- 3′, 5′-GAGATGGTGTCAGCCTTGGCAA-3′. Fluorescence in situ hybridization The sequences for anti-sense probes (amino-modified T are underlined) used to detect the spinophilin mRNA were: 5′-ACATCCTCATTGCGTCGGTCATAGTCCTCGTTGGAGTAGGTGCTGAATAC-3′, 5′-AGCTCCACAGGAAACAGCTCCAACCTCTCCACTCGCTTCTCTAGCTCATA-3′, 5′-GTCTCCTCATCATCCTCTCCATACTGGGCGTATCTCTGCTCCATCATCTC-3′, 5′-CCTTTCTCCTGCTCCAGACTCTGCAACTTCCGTTTCAGCTGCTGGATTTC-3′, 5 5′-GGAACTCGATCTCCTTTTGCTGGTAGTCCTTGATGAGACGCTTGGCCTTG-3′, 5′-TTGGAGTTCCTCAGTGTCTGCAGGTTTCCTTCCAGTTCTGAGATCTTGTC-3′, 5′-TTAGGGCAAGGGTGGTAATGTGGAAGTGGCAAGAGATGGATTCTGAAAGG-3′, 5′-ACTGATCTCACAAGGAATCCACCTCCCAGCAAAAGGGCTTCCTAGTTCTA-3′, 5′-GTTTGTCCATTTCCTCCTTCCTGGCTAGCTCCGACTCTTCCAGTACCCGA-3′, 5′-AAGTGGGGAAACTGAGTCAATTTCACTTAGAAAGCAGGCTGACAGCAAGC-3′. The sequences for anti-sense probes (amino-modified T are underlined) used to detect the GFP mRNA were: 5′-GGGTCTTGTAGTTGCCGTCGTCCTTGAAGAAGATGGTGCG-3′, 5′-GGCTGTTGTAGTTGTACTCCAGCTTGTGCCCCAGGATGTT-3′, 5′-TCTTTGCTCAGGGCGGACTGGGTGCTCAGGTAGTGGTTGT-3′. 6 Supplemental References Das R, Laederach A, Pearlman SM, Herschlag D, Altman RB. 2005. SAFA: semi-automated footprinting analysis software for high-throughput quantification of nucleic acid footprinting experiments. RNA (New York, NY 11: 344-354. Greenfield NJ. 2006. Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions. Nat Protoc 1: 2527-2535. Johnson WC. 1999. Analyzing protein circular dichroism spectra for accurate secondary structures. Proteins 35: 307-312. Schmittgen TD, Livak KJ. 2008. Analyzing real-time PCR data by the comparative C(T) method. Nature protocols 3: 1101-1108. Shcherbakova I, Gupta S, Chance MR, Brenowitz M. 2004. Monovalent ion-mediated folding of the Tetrahymena thermophila ribozyme. J Mol Biol 342: 1431-1442. Sreerama N, Woody RW. 2000. Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem 287: 252-260. Whitmore L, Wallace BA. 2004. DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic acids research 32: W668-673. 7 Supplemental Figure Legends Figure S1. The ZBP1 KH34 didomain recognizes a bipartite RNA element within the zipcode RNA. (A) Hydroxyl radical footprint of ZBP1 KH34 bound to the 28 nucleotide zipcode RNA. Lane designations (from left): 28 nucleotide zipcode RNA in the absence of ZBP1 KH34, and in the presence of 1, 0.1, and 0.02 µM of ZBP1 KH34, respectively. (B) Quantification of cleavage intensity difference versus nucleotide position for the 0.1 µM ZBP1-KH34 bound RNA. Figure S2. ZBP1 KH34 recognizes alternate sequences at the 3′ zipcode binding site. (A) Representative EMSA result for ZBP1 KH34 binding to 3′ site mutant zipcode RNA; positions 22 and 24 of the zipcode are both mutated from A to C. The filled triangle