Molecular Mechanisms of Plant and Microbe Coexistence

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Mechanisms of Plant and Microbe Coexistence Chandra Shekhar Nautiyal Patrice Dion Editors SOIL BIOLOGY Molecular Mechanisms of Plant and Microbe Coexistence 1 23 Soil Biology Volume 15 Series Editor Ajit Varma, Amity Institute of Microbial Sciences, Amity University Uttar Pradesh, Noida, UP, India Volumes published in the series Applied Bioremediation and Phytoremediation (Vol. 1) A. Singh, O.P. Ward (Eds.) Biodegradation and Bioremediation (Vol. 2) A. Singh, O.P. Ward (Eds.) Microorganisms in Soils: Roles in Genesis and Functions (Vol. 3) F. Buscot, A. Varma (Eds.) In Vitro Culture of Mycorrhizas (Vol. 4) S. Declerck, D.-G. Strullu, J.A. Fortin (Eds.) Manual for Soil Analysis – Monitoring and Assessing Soil Bioremediation (Vol. 5) R. Margesin, F. Schinner (Eds.) Intestinal Microorganisms of Termites and Other Invertebrates (Vol. 6) H. König, A. Varma (Eds.) Microbial Activity in the Rhizosphere (Vol. 7) K.G. Mukerji, C. Manoharachary, J. Singh (Eds.) Nucleic Acids and Proteins in Soil (Vol. 8) P. Nannipieri, K. Smalla (Eds.) Microbial Root Endophytes (Vol. 9) B.J.E. Schulz, C.J.C. Boyle, T.N. Sieber (Eds.) Nutrient Cycling in Terrestrial Ecosystems (Vol. 10) P. Marschner, Z. Rengel (Eds.) Advanced Techniques in Soil Microbiology (Vol. 11) A. Varma, R. Oelmüller (Eds.) Microbial Siderophores (Vol. 12) A. Varma, S. Chincholkar (Eds.) Microbiology of Extreme Soils (Vol. 13) P. Dion, C.S. Nautiyal (Eds.) Secondary Metabolites in Soil Ecology (Vol. 14) P. Karlovsky (Ed.) Chandra Shekhar Nautiyal • Patrice Dion Editors Molecular Mechanisms of Plant and Microbe Coexistence Foreword by V.L. Chopra Editors Professor Dr. Chandra Shekhar Nautiyal Professor Dr. Patrice Dion National Botanical Research Institute Département de phytologie Rana Pratap Marg Pavillon Charles-Eugène Marchand Lucknow 226001 1030, avenue de la Médecine India Université Laval [email protected] Québec (Québec) G1V 0A6 Canada [email protected] ISBN 978-3-540-75574-6 e-ISBN 978-3-540-75575-3 DOI:10.1007/978-3-540-75575-3 Soil Biology ISSN: 1613–3382 Library of Congress Control Number: 2008923850 © 2008 Springer-Verlag Berlin Heidelberg This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: WMXDesign GmbH, Heidelberg, Germany Printed on acid-free paper 5 4 3 2 1 0 springer.com SCIENCE OF LIFE Pollens of fl owers, sperms of animals Coded with messages internal Busy in the acts of creation Millions perish in action The few successes are the great Creations! Also succeed microbes many Which disrupt the inner harmony Of organisms big and mighty! Bodies, anti bodies, biochemical wars Evolutionary wisdom of immune systems Nature’s beauty opens one petal For the researcher with knowledge tool One by one petals open Trillions more waiting to be seen Y.S. Rajan Foreword Coexistence between microorganisms and plants has moulded civilization from the time humans began to rely extensively on cultivated crops for food. It is becoming increasingly clear that microbes are the basic of the biosphere. The interactions of plant roots with soil microorganisms are spatially and temporally complex. These interactions are fundamental to soil carbon dynamics and availability of inorganic and organic N to plants. The primary source of mineral nutrients for plants is the decomposition of organic matter by soil microbes. Molecular Mechanisms of Plant and Microbe Coexistence reflects on the world of microbes in the soil that cause a soil to become biologically alive to enable plants to withstand better the rigors of life. For these reasons, our challenge is to understand the molecular processes that are crucial for establishing successful plant-microbe coexistence. This will not only lead to new scientific discoveries, but will provide the bases for new strategies for combating infectious diseases, producing novel and environment friendly, microbial inoculants for protecting plants from disease, for promoting healthy growth and ensuring precise regulation of nutrient supply to plants. The book has assembled contributions from leading authorities of varied back- grounds on topics relating to interactions between plant and microbe coexistence research and dealing with contemporary scientific findings and cutting-edge tech- nologies. Studying plant-microbe associations is important for all of these practical reasons and also for the goal of improved agricultural productivity. Exploitation of beneficial plant-microbe coexistence in the rhizosphere can pro- mote plant health and have significant implications for low input sustainable agriculture. A major difficulty faced by plant biologists and microbiologists is that many groups of microbes that inhabit rhizosphere are not cultivable in the laboratory. Recent developments in molecular biology are shedding light on microbial diversity of rhizosphere. Understanding the complexity of this environ- ment and how the microbial communities adapt and respond to alterations in the physical, chemical and biological properties of the rhizosphere remains a signifi- cant challenge for plant and microbial biologists. Contributors have focused on recent and exciting findings in the biology of plant and microbe coexistence and vii viii Foreword speculated on the technical and conceptual developments that will drive innova- tive research to open new vistas. The practical utility of understanding plant-microbe coexistence is obvious. Genomic technologies can elucidate the role of novel genes in plant-microbe coexistence in the rhizosphere. The understanding of the molecular signaling processes and the functions they regulate within the rhizosphere will play a pivotal role in promoting beneficial plant and microbe coexistence, in overcoming existing limitations, and in designing strategies for the generation of novel inoculant consortia with applications in sustainable environmental biotechnology. The avail- ability of new and powerful technologies for studying plant microbial coexistence in the soil guarantees a better understanding of these processes, which will not only facilitate their successful applications in biotechnology but will also provide new insights into sustaining plant and animal productivity, maintaining or enhance water and air quality, and supporting human health and habitation. I sincerely hope that this volume will be of great interest to a wide spectrum of biologists. Member of Planning Commission V.L. Chopra Government of India Yojna Bhavan, Sansad Marg New Delhi 110001 India Preface The coexistence of plant and microbes has had major effects on the development of civilization since humans began to rely extensively on cultivated crops for food, soon after the emergence of agriculture, dating back to about 10,000 years before the present (BP). The refinement of our knowledge on this system is brought about by the interaction between existing social values and the integrity of our measuring tools- with interplay of scientific and philosophical rationale. Thus, the wisdom gained and practices adopted have been passed down through generations. The ecological competence of traditional farmers is now reflected in the resur- gence of organic agriculture. The available ancient literature includes the four Vedas, Susruta Samhita, Charaka Samhita, Krishi-Parashara, and Surapala’s Vriskshayurveda. This literature is most likely to have been composed between 8000 and 1000 BP. Indeed, ancient civilizations often worshipped the soil as the foundry of life itself. We are becoming increasingly aware that microbes are the basis of the biosphere. The interactions of plant roots with soil microorganisms are spatially and temporally complex; however, it is becoming increasingly apparent that these interactions are fundamental to soil carbon dynamics and the availability of inorganic and organic N to plants. The primary source of mineral nutrients for plants is the decomposition of organic matter by humble soil microbes. The present book on molecular mechanisms of plant and microbe coexistence thus reflects upon the world of microbes in the soil that cause a soil to become biologi- cally alive and assist other organisms in withstanding the rigors of life. We know that microbes inhabitated the Earth long before multicellular life appeared and diversified. Following their appearance, multicellular plants and animals coexisted, interacted and coevolved with microbes. The evolution and activity of all plants and animals has thus been influenced by microorganisms, often as a result of intimate interactions. We are at a time when the confluence of technological advances and the explo- sion of knowledge on plant-microbe coexistence will enable significant advances over the next decade. Thus, mechanisms controlling the multiple interactions between plant roots, other organisms and the soil environment
Recommended publications
  • Flowering Plant Families of Northwestern California: a Tabular Comparison
    Humboldt State University Digital Commons @ Humboldt State University Botanical Studies Open Educational Resources and Data 12-2019 Flowering Plant Families of Northwestern California: A Tabular Comparison James P. Smith Jr Humboldt State University, [email protected] Follow this and additional works at: https://digitalcommons.humboldt.edu/botany_jps Part of the Botany Commons Recommended Citation Smith, James P. Jr, "Flowering Plant Families of Northwestern California: A Tabular Comparison" (2019). Botanical Studies. 95. https://digitalcommons.humboldt.edu/botany_jps/95 This Flora of Northwest California-Regional is brought to you for free and open access by the Open Educational Resources and Data at Digital Commons @ Humboldt State University. It has been accepted for inclusion in Botanical Studies by an authorized administrator of Digital Commons @ Humboldt State University. For more information, please contact [email protected]. FLOWERING PLANT FAMILIES OF NORTHWESTERN CALIFORNIA: A TABULAR COMPARISON James P. Smith, Jr. Professor Emeritus of Botany Department of Biological Sciences Humboldt State University December 2019 Scientific Name Habit Leaves Sexuality • Floral Formula Common Name Fruit Type • Comments Aceraceae TSV SC:O U-m [P] • K 4-5 C 4-5 A 4-10 G (2) Maple Paired samaras • leaves often palmately lobed Acoraceae H S:A U-m • P 3+3 A 6 or G (3) Sweet Flag Berry • aquatic; aromatic rhizomes Aizoaceae HS S:AO B • P [3] 5 [8] A 0-4 Gsi (2-5-4) Ice Plant Capsule (berry-like) • fleshy; stamens divided, petaloid Alismataceae
    [Show full text]
  • Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- ERICACEAE
    Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- ERICACEAE ERICACEAE (Heath Family) A family of about 107 genera and 3400 species, primarily shrubs, small trees, and subshrubs, nearly cosmopolitan. The Ericaceae is very important in our area, with a great diversity of genera and species, many of them rather narrowly endemic. Our area is one of the north temperate centers of diversity for the Ericaceae. Along with Quercus and Pinus, various members of this family are dominant in much of our landscape. References: Kron et al. (2002); Wood (1961); Judd & Kron (1993); Kron & Chase (1993); Luteyn et al. (1996)=L; Dorr & Barrie (1993); Cullings & Hileman (1997). Main Key, for use with flowering or fruiting material 1 Plant an herb, subshrub, or sprawling shrub, not clonal by underground rhizomes (except Gaultheria procumbens and Epigaea repens), rarely more than 3 dm tall; plants mycotrophic or hemi-mycotrophic (except Epigaea, Gaultheria, and Arctostaphylos). 2 Plants without chlorophyll (fully mycotrophic); stems fleshy; leaves represented by bract-like scales, white or variously colored, but not green; pollen grains single; [subfamily Monotropoideae; section Monotropeae]. 3 Petals united; fruit nodding, a berry; flower and fruit several per stem . Monotropsis 3 Petals separate; fruit erect, a capsule; flower and fruit 1-several per stem. 4 Flowers few to many, racemose; stem pubescent, at least in the inflorescence; plant yellow, orange, or red when fresh, aging or drying dark brown ...............................................Hypopitys 4 Flower solitary; stem glabrous; plant white (rarely pink) when fresh, aging or drying black . Monotropa 2 Plants with chlorophyll (hemi-mycotrophic or autotrophic); stems woody; leaves present and well-developed, green; pollen grains in tetrads (single in Orthilia).
    [Show full text]
  • Botanist Interior 43.1
    2011 THE MICHIGAN BOTANIST 129 THE MYCORRHIZAL SYSTEM OF PTEROSPORA ANDROMEDEA (PINE-DROPS) IN WEST MICHIGAN INFERRED FROM DNA SEQUENCE DATA Jianhua Li*, Jeffrey Corajod, Holly Vander Stel, and Austin Homkes Department of Biology Hope College 35 E 12th St., Schaap Science Center, Holland, MI 49423 ABSTRACT Pterospora andromedea is a mycoheterotrophic plant with a disjunct distribution between west - ern and eastern North America and obtains carbon and nutrients indirectly from photosynthetic plants via an ectomycorrhizal fungal bridge. In this study, we used DNA sequence data to determine the or - ganisms involved in the system in West Michigan. Our results suggest that at least two photosyn - thetic plants ( Tsuga and Acer ) are the potential carbon source of the system and that Pterospora is specifically associated with an unidentified species of subgenus Amylopogon of Rhizopogon . Previ - ous studies have shown that seed germination of Pterospora relies on chemical cues from the fungus, implying a dominant role of the fungus in the system. Our field observations suggest that repeated branching of Pterospora roots increases the mass production of the fungal mycelia and lead us to speculate that Pterospora may be a mutualistic partner, not a parasite or exploiter, in the mycorrhizal system. KEYWORDS: Pterospora , nrDNA ITS, rbc L, mutualism, mycorrhizal, subgenus Amylopogon , Rhizopogon . Pterospora andromedea Torr. (pine-drops) is a mycoheterotrophic plant rely - ing on fungal host for germination, growth, and development (Bakshi 1959 ). Molecular studies have shown its close relationship with other myco - heterotrophic plants in Ericaceae such as Monotropa , Allotropa , and Sarcodes (Cullings 1994 ; Kron et al. 2002 ). Pine-drops show a disjunct distribution between the eastern and western North America with an extension in the west to northern Mexico (Bakshi 1959 ).
    [Show full text]
  • Root-Associated Fungal Communities in Three Pyroleae Species and Their Mycobiont Sharing with Surrounding Trees in Subalpine Coniferous Forests on Mount Fuji, Japan
    Mycorrhiza DOI 10.1007/s00572-017-0788-6 ORIGINAL ARTICLE Root-associated fungal communities in three Pyroleae species and their mycobiont sharing with surrounding trees in subalpine coniferous forests on Mount Fuji, Japan Shuzheng Jia 1 & Takashi Nakano 2 & Masahira Hattori3 & Kazuhide Nara1 Received: 23 February 2017 /Accepted: 20 June 2017 # The Author(s) 2017. This article is an open access publication Abstract Pyroleae species are perennial understory shrubs, were dominated by Wilcoxina species, which were absent many of which are partial mycoheterotrophs. Most fungi col- from the surrounding ECM roots in the same soil blocks. onizing Pyroleae roots are ectomycorrhizal (ECM) and share These results indicate that mycobiont sharing with surround- common mycobionts with their Pyroleae hosts. However, ing trees does not equally occur among Pyroleae plants, some such mycobiont sharing has neither been examined in depth of which may develop independent mycorrhizal associations before nor has the interspecific variation in sharing among with ECM fungi, as suggested in O. secunda at our research Pyroleae species. Here, we examined root-associated fungal sites. communities in three co-existing Pyroleae species, including Pyrola alpina, Pyrola incarnata,andOrthilia secunda,with Keywords Pyroleae . Mixotrophy . Mycorrhizal network . reference to co-existing ECM fungi on the surrounding trees Niche overlap . ITS barcoding in the same soil blocks in subalpine coniferous forests. We identified 42, 75, and 18 fungal molecular operational taxo- nomic units in P. alpina, P. incarnata,andO. secunda roots, Introduction respectively. Mycobiont sharing with surrounding trees, which was defined as the occurrence of the same mycobiont Most land plants perform photosynthesis and can live autotro- between Pyroleae and surrounding trees in each soil block, phically.
    [Show full text]
  • Conservation Assessment for Pterospora Andromedea Nutt
    Conservation Assessment For Pterospora andromedea Nutt. (Pine-drops) USDA Forest Service, Eastern Region Hiawatha National Forest November 2004 This Conservation Assessment was prepared to compile the published and unpublished information on Pterospora andromedea Nutt. This report provides information to serve as a Conservation Assessment for the Eastern Region of the Forest Service. It is an administrative study only and does not represent a management decision by the U.S. Forest Service. Although the best scientific information available was used and subject experts were consulted in preparation of this document and its review, it is expected that new information will arise. In the spirit of continuous learning and adaptive management, if the reader has any information that will assist in conserving this species, please contact the Eastern Region of the Forest Service – Threatened and Endangered Species Program at 310 Wisconsin Avenue, Suite 580 Milwaukee, Wisconsin 53203. Conservation Assessment for Pterospora andromedea ii Acknowledgements Outside Reviewers: We would like to thank our academic reviewers and agency reviewers outside of the United States Forest Service for their helpful comments on this manuscript. • Phyllis Higman, Botanist, Michigan Natural Features Inventory National Forest Reviewers: We also thank our internal National Forest reviewers for their suggestions and corrections and for providing element occurrences for their National Forests. Complete contact information is available under Contacts section. • Jan Schultz, Forest Plant Ecologist, on the Hiawatha National Forest • Sue Trull, Forest Botanist, on the Ottawa National Forest • Ian Shackleford, Botanist, on the Ottawa National Forest Herbarium and Heritage Data: We appreciate the sharing of occurrence information for this species from Heritage personnel both in the United States and Canada, along with the helpful assistance of Herbarium personnel.
    [Show full text]
  • 243-246 42(3) 06.엄안흠.Fm
    한국균학회지 The Korean Journal of Mycology Research Note Monotropoid Mycorrhizal Characteristics of Monotropa uniflora (Ericaceae) Collected from a Forest in Korea Eun-Hwa Lee and Ahn-Heum Eom* Department of Biology Education, Korea National University of Education, Cheongju 363-791, Korea ABSTRACT : The roots of Monotropa uniflora were collected from a forest in Korea. Morphological characteristics of monotropid mycorrhizas of the plants were determined. Thick mantles covered the roots and fungal pegs inside the epidermal cells of the roots were observed. Fungal symbionts were identified by sequence analysis of internal transcribed spacer region. Phylogenetic analysis based on the sequences demonstrated that the fungus was the most closely related to Russula heterophylla. The result support the strong specificity between M. uniflora and Russula species. KEYWORDS : Monotropoid mycorrhizas, Monotropa uniflora, Russula sp. Monotropoideae is a subfamily of the Ericaceae, and The mycorrhizal structure has typical ectomycorrhizal most of the species in this subfamily are achlorophyllous, characteristics, including a hyphal mantle covering the and thus, heterotrophic plants [1]. These plants are not roots and Hartig nets between cortex cells of the roots. able to fix carbon by themselves because they have very In addition, fungal hyphae penetrate and produce fungal low amounts of chlorophyll-related pigments [2]. They pegs inside the epidermal cells of plant roots, which is obtain fixed carbon from photosynthetic plants through the characteristic structure of monotropoid mycorrhizas. mycorrhizal hyphae; plants exhibiting this relationship Fungal pegs have been known as structures that trans- are referred to as mycoheterotrophic plants [3, 4]. The locate photosynthetic carbon compounds from the fungi mycorrhizal relationship between Monotropoideae plants to photosynthetic plants.
    [Show full text]
  • Draft Plant Propagation Protocol
    Plant Propagation Protocol for Hemitomes congestum A. Gray ESRM 412 – Native Plant Production Protocol URL: https://courses.washington.edu/esrm412/protocols/HECO6 [3] [3] [3] TAXONOMY Plant Family Scientific Name Ericaceae [1, 2, 3, 4, 5, 6, 7] Common Name Heath family or Heather family [1, 2] Species Scientific Name Scientific Name Hemitomes congestum A. Gray [3, 4, 5, 6, 7, 8] Varieties None Sub-species None Cultivar None Common Newberrya congestum Torr. [3, 4, 6, 7, 8] Synonym(s) Common Name(s) Gnome-plant, Coneplant [3, 4, 5, 6, 7, 8] Species Code (as HECO6 [8] per USDA Plants database) GENERAL INFORMATION Geographical Occurs sporadically from southern B.C. to Kern County, CA; range mostly growing west of the Cascades and the Sierra Nevada [3, 4, 6, 8, 9] [8] Ecological Damp coniferous forests with rich humus in lowland and montane zones distribution [3, 4, 6, 8, 9] Climate and Low to mid elevation areas (20 to 1070 meters, or 65 to 3510 feet) with elevation range moist to mesic precipitation regimes. Occurs more in mid- elevation/montane zones than in lowland areas [3, 4, 5, 6, 8, 9] Local habitat and Occurs sporadically throughout damp coniferous forests. Less common in abundance the northern and southern parts of its range, as well as the lower end of its elevation range [3, 4, 6, 7, 8, 9] Most commonly found in mixed coniferous forests consisting of Tsuga heterophylla, Pseudotsuga menziesii, and Thuja plicata. Also associated with Polystichum munitum, Gaultheria shallon, and Linnaea borealis [10] Plant strategy type Mycoparasitic [2-12] / successional stage Plant A fleshy perennial herb of 3 to 20 centimeters that lacks chlorophyll and characteristics forms small clusters of densely packed pinkish flowers.
    [Show full text]
  • Mycobiont Overlap Between Two Mycoheterotrophic Genera of Monotropoideae (Pterospora Andromedea and Sarcodes Sanguinea) Found in the Greater Yellowstone Ecosystem
    Symbiosis (2011) 54:29–36 DOI 10.1007/s13199-011-0127-1 Mycobiont overlap between two mycoheterotrophic genera of Monotropoideae (Pterospora andromedea and Sarcodes sanguinea) found in the Greater Yellowstone Ecosystem Nicholas J. Dowie & Joshua J. Hemenway & Steven M. Trowbridge & Steven L. Miller Received: 11 April 2011 /Accepted: 9 August 2011 /Published online: 27 August 2011 # Springer Science+Business Media B.V. 2011 Abstract Pterospora andromedea, a mycoheterotroph, has Keywords Rhizopogon ellenae . Rhizopogon salebrosus . been shown to form obligate symbioses with only three Pterospora andromedea . Sarcodes sanguinea . species of Rhizopogon in section Amylopogon: R. sale- Mycorrhizae . Mycoheterotroph . Mycobiont brosus, R. arctostaphyli and an undescribed molecular taxon. Sarcodes sanguinea, another my coheterotroph in Ericaceae, and sister taxon to Pterospora andromedea, has 1 Introduction been found to form symbioses with two species of Rhizopogon in section Amylopogon: R. ellenae and R. Monotropoideae (Ericaceae) is mainly comprised of myco- subpurpurascens. To date no overlap has been recorded heterotrophic plants (Bidartondo and Bruns 2002; Hynson between these two achlorophyllous plants and their associ- and Bruns 2009). These achlorophyllous plants form a ated mycobionts. Tissue from Pterospora andromedea tripartite relationship with an autotrophic host via an rootballs and Rhizopogon spp. basidiocarps were collected obligate mycorrhizal fungus to procure their carbon require- from the Greater Yellowstone Ecosystem. The mycobionts ments. Although some generalist relationships do exist, were identified using sequence analysis of the ITS locus (Martos et al. 2009; Roy et al. 2009; Hynson and Bruns and compared with sequences of Rhizopogon spp. section 2009), many mycoheterotrophs are specific to certain Amylopogon from GenBank. Sequences of two additional genera, species groups or individual species of fungi (Leake loci, ATP6 and RPB2 were also generated and analyzed.
    [Show full text]
  • Comparative Anatomy of the Seeds of Monotropastrum Humile and Monotropa Uniflora (Monotropoideae, Ericaceae)
    J. Jpn. Bot. 93(3): 147–154 (2018) Comparative Anatomy of the Seeds of Monotropastrum humile and Monotropa uniflora (Monotropoideae, Ericaceae) Chiharu UGAJIN and Yasuhiko ENDO* Graduate School of Science and Engineering, Ibaraki University, 2-1-1, Bunkyo, Mito, 310-8512 JAPAN *Corresponding author: [email protected] (Accepted on November 27, 2017) A comparative anatomical study on the endozoochorous seeds of Monotropastrum humile (D. Don) H. Hara in comparison to the wind-dispersed seeds of Monotropa uniflora L. was conducted. The endozoochorous seeds were ovoid and had lignin-rich cell walls. These cell walls were six times thicker than those of wind-dispersed seeds. The ovoid seed was hypothesized to be an ancestral characteristic of the subfamily Monotropoideae (family Ericaceae). The evolution from the ancestral character state to the derived state (seeds having wing-like seed coats) was presumed to have happened four times independently in the subfamily. Key words: Endozoochory, lignin, Monotropastrum humile, Monotropa uniflora, seed coat, wind dispersal. The subfamily Monotropoideae (Ericaceae) crickets eat the berry and excrete the undigested is composed of 13 species, which are seeds as part of their feces, which then germinate achlorophyllous epiparasitic plants, and are (Suetsugu 2014, 2017). This type of seed classified into 10 genera (Wallace 1987, Qin and dispersal is called endozoochory (Cochrane et al. Wallace 2005). These plants have fine seeds, and 2005). their fruits are berries in five genera and capsules In recent moleculer phylogenetic studies in five genera (Wallace 1975). (Bidartondo and Bruns 2001, Tsukaya et al. Three species of Monotropoideae are 2008), Monotropa unifloraand Monotropastrum distributed in Japan, namely, Monotropa humile were united into a monophyletic clade h y p o p i t y s L .
    [Show full text]
  • A Nomenclatural Summary of the Plant and Animal Names Based on Images in Mark Catesby’S Natural History (1729–1747)
    Reveal, J.L. 2012. A nomenclatural summary of the plant and animal names based on images in Mark Catesby’s Natural History (1729–1747). Phytoneuron 2012-11: 1–32. Published 1 February 2012. ISSN 2153 733X A NOMENCLATURAL SUMMARY OF THE PLANT AND ANIMAL NAMES BASED ON IMAGES IN MARK CATESBY’S NATURAL HISTORY (1729–1747) JAMES L. REVEAL L.H. Bailey Hortorium Department of Plant Biology Cornell University, Ithaca, NY 14853-4301 e-mail: [email protected] ABSTRACT The English naturalist Mark Catesby is best known for his two volume work entitled Natural History of Carolina, Florida and the Bahama Islands wherein he described and illustrated numerous plants and animals found mainly in the eastern North American English colonies of Virginia, South Carolina, Georgia, and the Bahamas. This monumental work, published in parts from 1729 until 1747, became an important source of new species described by the Swedish natural Carl Linnaeus in the 1750s and 1760s. The summary presented here attempts to account for all instances where a new taxon was proposed wherein a reference was made by the author of the name to a published plate in Catesby. The nomenclatural status of each image is evaluated with a footnote providing a reference to both where the name was proposed and who, in the case of plants, designated a lectotype. Images are not considered to be types under the rules governing zoological nomenclature. No attempt is made here to account for the subsequent neotypification of names established under that code. KEY WORDS: Mark Catesby, nomenclature, typification, North America The English naturalist and artist, Mark Catesby, was born on 24 March 1683 (Julian) in the village of the Castle Hedingham, Essex, as the fifth son of John Catesby, a lawyer, and Elizabeth Jekyll, the daughter of a prosperous family of lawyers.
    [Show full text]
  • The Systematics of Lithospermum L
    The Systematics of Lithospermum L. (Boraginaceae) and the Evolution of Heterostyly by James Isaac Cohen This thesis/dissertation document has been electronically approved by the following individuals: Davis,Jerrold I (Chairperson) Geber,Monica Ann (Minor Member) Luckow,Melissa A (Minor Member) Miller,James Spencer (Additional Member) Gandolfo Nixon,Maria Alejandra (Additional Member) Turgeon,E G Robert (Field Appointed Member Exam) THE SYSTEMATICS OF LITHOSPERMUM L. (BORAGINACEAE) AND THE EVOLUTION OF HETEROSTYLY A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by James Isaac Cohen August 2010 © 2010 James Isaac Cohen 1 THE SYSTEMATICS OF LITHOSPERMUM L. (BORAGINACEAE) AND THE EVOLUTION OF HETEROSTYLY James Isaac Cohen, Ph.D. Cornell University 2010 Lithospermum L. (Boraginaceae) includes ca. 60 species. The genus has a nearly cosmopolitan distribution, being native to all continents except Australia and Antarctica. The center of diversity for the genus is Mexico and the southwestern United States, and approximately three-quarters of the species of Lithospermum are endemic to this region. Lithospermum and the tribe to which it is assigned, Lithospermeae, have been the subject of recent phylogenetic analyses, but these analyses have been limited in their scope. In order to examine critically the phylogenetics of Lithospermum and its relatives, three matrices, each consisting of 67 taxa, were constructed. The molecular matrix includes 10 chloroplast DNA regions, and the morphological matrix is composed of scores for 22 morphological characters. The combined matrix comprises the data from both of these matrices. Analyses of these matrices resolve Lithospermum as non-monophyletic, because members of other New World genera of Lithospermeae are found to be nested among species of Lithospermum.
    [Show full text]
  • Monotropoid Mycorrhizal Characteristics of Monotropa Uniflora (Ericaceae) Collected from a Forest in Korea
    한국균학회지 The Korean Journal of Mycology Research Note Monotropoid Mycorrhizal Characteristics of Monotropa uniflora (Ericaceae) Collected from a Forest in Korea Eun-Hwa Lee and Ahn-Heum Eom* Department of Biology Education, Korea National University of Education, Cheongju 363-791, Korea ABSTRACT : The roots of Monotropa uniflora were collected from a forest in Korea. Morphological characteristics of monotropid mycorrhizas of the plants were determined. Thick mantles covered the roots and fungal pegs inside the epidermal cells of the roots were observed. Fungal symbionts were identified by sequence analysis of internal transcribed spacer region. Phylogenetic analysis based on the sequences demonstrated that the fungus was the most closely related to Russula heterophylla. The result support the strong specificity between M. uniflora and Russula species. KEYWORDS : Monotropoid mycorrhizas, Monotropa uniflora, Russula sp. Monotropoideae is a subfamily of the Ericaceae, and The mycorrhizal structure has typical ectomycorrhizal most of the species in this subfamily are achlorophyllous, characteristics, including a hyphal mantle covering the and thus, heterotrophic plants [1]. These plants are not roots and Hartig nets between cortex cells of the roots. able to fix carbon by themselves because they have very In addition, fungal hyphae penetrate and produce fungal low amounts of chlorophyll-related pigments [2]. They pegs inside the epidermal cells of plant roots, which is obtain fixed carbon from photosynthetic plants through the characteristic structure of monotropoid mycorrhizas. mycorrhizal hyphae; plants exhibiting this relationship Fungal pegs have been known as structures that trans- are referred to as mycoheterotrophic plants [3, 4]. The locate photosynthetic carbon compounds from the fungi mycorrhizal relationship between Monotropoideae plants to photosynthetic plants.
    [Show full text]