Molecular Mechanisms of Plant and Microbe Coexistence
Total Page:16
File Type:pdf, Size:1020Kb
Chandra Shekhar Nautiyal Patrice Dion Editors SOIL BIOLOGY Molecular Mechanisms of Plant and Microbe Coexistence 1 23 Soil Biology Volume 15 Series Editor Ajit Varma, Amity Institute of Microbial Sciences, Amity University Uttar Pradesh, Noida, UP, India Volumes published in the series Applied Bioremediation and Phytoremediation (Vol. 1) A. Singh, O.P. Ward (Eds.) Biodegradation and Bioremediation (Vol. 2) A. Singh, O.P. Ward (Eds.) Microorganisms in Soils: Roles in Genesis and Functions (Vol. 3) F. Buscot, A. Varma (Eds.) In Vitro Culture of Mycorrhizas (Vol. 4) S. Declerck, D.-G. Strullu, J.A. Fortin (Eds.) Manual for Soil Analysis – Monitoring and Assessing Soil Bioremediation (Vol. 5) R. Margesin, F. Schinner (Eds.) Intestinal Microorganisms of Termites and Other Invertebrates (Vol. 6) H. König, A. Varma (Eds.) Microbial Activity in the Rhizosphere (Vol. 7) K.G. Mukerji, C. Manoharachary, J. Singh (Eds.) Nucleic Acids and Proteins in Soil (Vol. 8) P. Nannipieri, K. Smalla (Eds.) Microbial Root Endophytes (Vol. 9) B.J.E. Schulz, C.J.C. Boyle, T.N. Sieber (Eds.) Nutrient Cycling in Terrestrial Ecosystems (Vol. 10) P. Marschner, Z. Rengel (Eds.) Advanced Techniques in Soil Microbiology (Vol. 11) A. Varma, R. Oelmüller (Eds.) Microbial Siderophores (Vol. 12) A. Varma, S. Chincholkar (Eds.) Microbiology of Extreme Soils (Vol. 13) P. Dion, C.S. Nautiyal (Eds.) Secondary Metabolites in Soil Ecology (Vol. 14) P. Karlovsky (Ed.) Chandra Shekhar Nautiyal • Patrice Dion Editors Molecular Mechanisms of Plant and Microbe Coexistence Foreword by V.L. Chopra Editors Professor Dr. Chandra Shekhar Nautiyal Professor Dr. Patrice Dion National Botanical Research Institute Département de phytologie Rana Pratap Marg Pavillon Charles-Eugène Marchand Lucknow 226001 1030, avenue de la Médecine India Université Laval [email protected] Québec (Québec) G1V 0A6 Canada [email protected] ISBN 978-3-540-75574-6 e-ISBN 978-3-540-75575-3 DOI:10.1007/978-3-540-75575-3 Soil Biology ISSN: 1613–3382 Library of Congress Control Number: 2008923850 © 2008 Springer-Verlag Berlin Heidelberg This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: WMXDesign GmbH, Heidelberg, Germany Printed on acid-free paper 5 4 3 2 1 0 springer.com SCIENCE OF LIFE Pollens of fl owers, sperms of animals Coded with messages internal Busy in the acts of creation Millions perish in action The few successes are the great Creations! Also succeed microbes many Which disrupt the inner harmony Of organisms big and mighty! Bodies, anti bodies, biochemical wars Evolutionary wisdom of immune systems Nature’s beauty opens one petal For the researcher with knowledge tool One by one petals open Trillions more waiting to be seen Y.S. Rajan Foreword Coexistence between microorganisms and plants has moulded civilization from the time humans began to rely extensively on cultivated crops for food. It is becoming increasingly clear that microbes are the basic of the biosphere. The interactions of plant roots with soil microorganisms are spatially and temporally complex. These interactions are fundamental to soil carbon dynamics and availability of inorganic and organic N to plants. The primary source of mineral nutrients for plants is the decomposition of organic matter by soil microbes. Molecular Mechanisms of Plant and Microbe Coexistence reflects on the world of microbes in the soil that cause a soil to become biologically alive to enable plants to withstand better the rigors of life. For these reasons, our challenge is to understand the molecular processes that are crucial for establishing successful plant-microbe coexistence. This will not only lead to new scientific discoveries, but will provide the bases for new strategies for combating infectious diseases, producing novel and environment friendly, microbial inoculants for protecting plants from disease, for promoting healthy growth and ensuring precise regulation of nutrient supply to plants. The book has assembled contributions from leading authorities of varied back- grounds on topics relating to interactions between plant and microbe coexistence research and dealing with contemporary scientific findings and cutting-edge tech- nologies. Studying plant-microbe associations is important for all of these practical reasons and also for the goal of improved agricultural productivity. Exploitation of beneficial plant-microbe coexistence in the rhizosphere can pro- mote plant health and have significant implications for low input sustainable agriculture. A major difficulty faced by plant biologists and microbiologists is that many groups of microbes that inhabit rhizosphere are not cultivable in the laboratory. Recent developments in molecular biology are shedding light on microbial diversity of rhizosphere. Understanding the complexity of this environ- ment and how the microbial communities adapt and respond to alterations in the physical, chemical and biological properties of the rhizosphere remains a signifi- cant challenge for plant and microbial biologists. Contributors have focused on recent and exciting findings in the biology of plant and microbe coexistence and vii viii Foreword speculated on the technical and conceptual developments that will drive innova- tive research to open new vistas. The practical utility of understanding plant-microbe coexistence is obvious. Genomic technologies can elucidate the role of novel genes in plant-microbe coexistence in the rhizosphere. The understanding of the molecular signaling processes and the functions they regulate within the rhizosphere will play a pivotal role in promoting beneficial plant and microbe coexistence, in overcoming existing limitations, and in designing strategies for the generation of novel inoculant consortia with applications in sustainable environmental biotechnology. The avail- ability of new and powerful technologies for studying plant microbial coexistence in the soil guarantees a better understanding of these processes, which will not only facilitate their successful applications in biotechnology but will also provide new insights into sustaining plant and animal productivity, maintaining or enhance water and air quality, and supporting human health and habitation. I sincerely hope that this volume will be of great interest to a wide spectrum of biologists. Member of Planning Commission V.L. Chopra Government of India Yojna Bhavan, Sansad Marg New Delhi 110001 India Preface The coexistence of plant and microbes has had major effects on the development of civilization since humans began to rely extensively on cultivated crops for food, soon after the emergence of agriculture, dating back to about 10,000 years before the present (BP). The refinement of our knowledge on this system is brought about by the interaction between existing social values and the integrity of our measuring tools- with interplay of scientific and philosophical rationale. Thus, the wisdom gained and practices adopted have been passed down through generations. The ecological competence of traditional farmers is now reflected in the resur- gence of organic agriculture. The available ancient literature includes the four Vedas, Susruta Samhita, Charaka Samhita, Krishi-Parashara, and Surapala’s Vriskshayurveda. This literature is most likely to have been composed between 8000 and 1000 BP. Indeed, ancient civilizations often worshipped the soil as the foundry of life itself. We are becoming increasingly aware that microbes are the basis of the biosphere. The interactions of plant roots with soil microorganisms are spatially and temporally complex; however, it is becoming increasingly apparent that these interactions are fundamental to soil carbon dynamics and the availability of inorganic and organic N to plants. The primary source of mineral nutrients for plants is the decomposition of organic matter by humble soil microbes. The present book on molecular mechanisms of plant and microbe coexistence thus reflects upon the world of microbes in the soil that cause a soil to become biologi- cally alive and assist other organisms in withstanding the rigors of life. We know that microbes inhabitated the Earth long before multicellular life appeared and diversified. Following their appearance, multicellular plants and animals coexisted, interacted and coevolved with microbes. The evolution and activity of all plants and animals has thus been influenced by microorganisms, often as a result of intimate interactions. We are at a time when the confluence of technological advances and the explo- sion of knowledge on plant-microbe coexistence will enable significant advances over the next decade. Thus, mechanisms controlling the multiple interactions between plant roots, other organisms and the soil environment