Root-Associated Fungal Communities in Three Pyroleae Species and Their Mycobiont Sharing with Surrounding Trees in Subalpine Coniferous Forests on Mount Fuji, Japan
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Flowering Plant Families of Northwestern California: a Tabular Comparison
Humboldt State University Digital Commons @ Humboldt State University Botanical Studies Open Educational Resources and Data 12-2019 Flowering Plant Families of Northwestern California: A Tabular Comparison James P. Smith Jr Humboldt State University, [email protected] Follow this and additional works at: https://digitalcommons.humboldt.edu/botany_jps Part of the Botany Commons Recommended Citation Smith, James P. Jr, "Flowering Plant Families of Northwestern California: A Tabular Comparison" (2019). Botanical Studies. 95. https://digitalcommons.humboldt.edu/botany_jps/95 This Flora of Northwest California-Regional is brought to you for free and open access by the Open Educational Resources and Data at Digital Commons @ Humboldt State University. It has been accepted for inclusion in Botanical Studies by an authorized administrator of Digital Commons @ Humboldt State University. For more information, please contact [email protected]. FLOWERING PLANT FAMILIES OF NORTHWESTERN CALIFORNIA: A TABULAR COMPARISON James P. Smith, Jr. Professor Emeritus of Botany Department of Biological Sciences Humboldt State University December 2019 Scientific Name Habit Leaves Sexuality • Floral Formula Common Name Fruit Type • Comments Aceraceae TSV SC:O U-m [P] • K 4-5 C 4-5 A 4-10 G (2) Maple Paired samaras • leaves often palmately lobed Acoraceae H S:A U-m • P 3+3 A 6 or G (3) Sweet Flag Berry • aquatic; aromatic rhizomes Aizoaceae HS S:AO B • P [3] 5 [8] A 0-4 Gsi (2-5-4) Ice Plant Capsule (berry-like) • fleshy; stamens divided, petaloid Alismataceae -
Pyrola Rotundifolia, P. Media and Orthilia Secunda) in Their Natural Habitats Ekaterina F
Botanica Pacifica. A journal of plant science and conservation. 2018. 7(2): 31–39 DOI: 10.17581/bp.2018.07202 Diversity of fungal communities associated with mixotrophic pyroloids (Pyrola rotundifolia, P. media and Orthilia secunda) in their natural habitats EkaterinaF.Malysheva1*,VeraF.Malysheva1, ElenaYu.Voronina2&AlexanderE.Kovalenko1 EkaterinaF.Malysheva1* ABSTRACT email:[email protected] As it was shown, mixotrophic plants (MxP) strongly depend on their mycorrhi VeraF.Malysheva1 zal fun gi for carbon, at least at the early stages of life cycle, and have rather high email:[email protected] specificityformycobionts.However,thediversityof fungiassociatedwithMxP ElenaYu.Voronina2 and their role in plant’s life are still poorly known, especially under natural condi email:[email protected] tions.Inthepresentstudy,thediversityof mycobiontsof thethreemixotrophic py ro loid species (Pyrola rotundifolia, P. media and Orthilia secunda) was investigated AlexanderE.Kovalenko1 by se quencing nrITS from roots and rhizomes. At the same time, we studied email:[email protected] ectomycorrhizalfungalcommunitiesof neighboringtrees.Themycobiontdi versity slightly differed berween the three species, but they also shared similar 1 fungaltaxa.Thespeciesof basidiomycetegeneraTomentella, Piloderma, Russula KomarovBotanicalInstitute and Mycena weredominantfungalpartnersof thestudiedpyroloids.Theplants of theRussianAcademyof Sciences, were also colonized by other ectomycorrhizal and saprotrophic basidiomycetes SaintPetersburg,Russia and ascomycetes.TheresearchresultsshowedMxP link to tree species by shared 2LomonosovMoscowStateUniversity, mycobiontsandpartialmycoheterotrophybyinvolvementintomycelialnetwork. Moscow, Russia Thirtyninefungaltaxa(atspeciesandgeneralevel)inhabitingpyroloidrootsys tem asmycobiontsandrootendophytesweredetected.Theirroleforplantper formancerequiresfurtherinvestigation. -
Managing Scotland's Pinewoods for Their Wild Flowers
Managing Scotland’s pinewoods for their wild fl owers Back from the Brink Management Series Back from the Brink Management Series Over the last two decades, there has been welcome enthusiasm for revitalising Scotland’s Old Caledonian pinewoods. Management has focused on regenerating trees within the few remaining natural woods and establishing trees to create ‘new native woodlands’ but with relatively little attention to the wider plant community of these woods. This booklet provides land managers with advice on managing native and semi-natural pinewoods for their vascular plant communities, based on recent and ongoing management trials. It focuses especially on the characteristic pinewood herbs. Plantlife is the organisation that is Wild plants have been marginalised and speaking up for the nation’s wild plants. taken for granted for too long. Please help We work hard to protect wild plants on the us by supporting our work. ground and to build understanding of the vital role they play in everyone’s lives. Wild plants To find out more, please visit our website are essential to life – they clean our air and or contact us at the office below. water, provide food and shelter for our insects, birds and animals and are critical in the fight Plantlife Scotland against climate change. Balallan House Allan Park Plantlife carries out practical conservation Stirling work across Scotland, manages nature FK8 2QG reserves, influences policy and legislation, Tel. 01786 478509/479382 runs events and activities that help people discover wild plants and works with others to promote the conservation of wild plants www.plantlife.org.uk for the benefit of all. -
Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- ERICACEAE
Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- ERICACEAE ERICACEAE (Heath Family) A family of about 107 genera and 3400 species, primarily shrubs, small trees, and subshrubs, nearly cosmopolitan. The Ericaceae is very important in our area, with a great diversity of genera and species, many of them rather narrowly endemic. Our area is one of the north temperate centers of diversity for the Ericaceae. Along with Quercus and Pinus, various members of this family are dominant in much of our landscape. References: Kron et al. (2002); Wood (1961); Judd & Kron (1993); Kron & Chase (1993); Luteyn et al. (1996)=L; Dorr & Barrie (1993); Cullings & Hileman (1997). Main Key, for use with flowering or fruiting material 1 Plant an herb, subshrub, or sprawling shrub, not clonal by underground rhizomes (except Gaultheria procumbens and Epigaea repens), rarely more than 3 dm tall; plants mycotrophic or hemi-mycotrophic (except Epigaea, Gaultheria, and Arctostaphylos). 2 Plants without chlorophyll (fully mycotrophic); stems fleshy; leaves represented by bract-like scales, white or variously colored, but not green; pollen grains single; [subfamily Monotropoideae; section Monotropeae]. 3 Petals united; fruit nodding, a berry; flower and fruit several per stem . Monotropsis 3 Petals separate; fruit erect, a capsule; flower and fruit 1-several per stem. 4 Flowers few to many, racemose; stem pubescent, at least in the inflorescence; plant yellow, orange, or red when fresh, aging or drying dark brown ...............................................Hypopitys 4 Flower solitary; stem glabrous; plant white (rarely pink) when fresh, aging or drying black . Monotropa 2 Plants with chlorophyll (hemi-mycotrophic or autotrophic); stems woody; leaves present and well-developed, green; pollen grains in tetrads (single in Orthilia). -
Sclerotinia Pirolae: Sclerotia! Ontogeny and Occurrence in Finland
Karstenia 20: 28-32. 1980 Sclerotinia pirolae: sclerotia! ontogeny and occurrence in Finland MAIRE PYYKKO & LEENA HAMET-AHTI PYYKKO, M. & HAMET-AHTI, L. 1980: Sclerotinia pirolae: sclerotia! ontogeny and occurrence in Finland. - Karstenia 20: 28-32. Sclerotinia pirolae Grosse (Ascomycetes: Helotiales), an ovaricolous, sclerotia forming fungus, is reported as new to Finland on Pyrola chlorantha Swartz, P. media Swartz, P. minor L., P. minor x norvegica, P. minor x rotundifolia, P. norvegica Knaben and P. rotundifolia L. It has also been found on P. minor x norvegica and P. norvegica from the adjacent Soviet Karelia. No ascocarps were discovered, but its sclerotia! morphology suggests that the species probably belongs to the genus Monilinia Honey. The sclerotia! stroma includes suscept tissues of the host and is of the hollowspheroid type characteristic of Monilinia. The sclerotia! ontogeny of the species is described and illustrated. Maire Pyykkb & Leena Hiimet-Ahti, Department of Botany, University of Helsinki, Unioninkatu 44, SF- 00170 Helsinki 17, Finland Sclerotinia pirolae and the Soviet Union. Sclerotinia pirolae Grosse, Ann. Mycol. 10: 388 . 1912. Specimens examined: - Stromatinia pirolae (Grosse) Naumov (in Kursanov, On Pyrola rotundifolia: Finland. Uusimaa. Helsinki, Opredel. Nizh. Rast. 3:379, 1954; comb. inval.) Fl. grib. Mellunkyla, 1980 Hamet-Ahti 2858. (H). Espoo, Leningr. obi. 2:136, 1964. Bredviken, 1964 Gyllenberg (H); Ollas, 1980 Ahti (37964) & Slack (H). Vantaa, !so-Basta, 1930 Paalanen (OULU). Sclerotinia pirolae was described from Latvia, Mantsala, SW part, 1963 Suominen & Kytavuori (H); Estonia, Byelorussia and the Leningrad Region, Mantsala village, 1954 Korhonen (H).- Satakunta. Eura, where it was reported as a frequent parasite in the Vahajarvi, 1973 Kause & Seikkula (OULU). -
Botanist Interior 43.1
2011 THE MICHIGAN BOTANIST 129 THE MYCORRHIZAL SYSTEM OF PTEROSPORA ANDROMEDEA (PINE-DROPS) IN WEST MICHIGAN INFERRED FROM DNA SEQUENCE DATA Jianhua Li*, Jeffrey Corajod, Holly Vander Stel, and Austin Homkes Department of Biology Hope College 35 E 12th St., Schaap Science Center, Holland, MI 49423 ABSTRACT Pterospora andromedea is a mycoheterotrophic plant with a disjunct distribution between west - ern and eastern North America and obtains carbon and nutrients indirectly from photosynthetic plants via an ectomycorrhizal fungal bridge. In this study, we used DNA sequence data to determine the or - ganisms involved in the system in West Michigan. Our results suggest that at least two photosyn - thetic plants ( Tsuga and Acer ) are the potential carbon source of the system and that Pterospora is specifically associated with an unidentified species of subgenus Amylopogon of Rhizopogon . Previ - ous studies have shown that seed germination of Pterospora relies on chemical cues from the fungus, implying a dominant role of the fungus in the system. Our field observations suggest that repeated branching of Pterospora roots increases the mass production of the fungal mycelia and lead us to speculate that Pterospora may be a mutualistic partner, not a parasite or exploiter, in the mycorrhizal system. KEYWORDS: Pterospora , nrDNA ITS, rbc L, mutualism, mycorrhizal, subgenus Amylopogon , Rhizopogon . Pterospora andromedea Torr. (pine-drops) is a mycoheterotrophic plant rely - ing on fungal host for germination, growth, and development (Bakshi 1959 ). Molecular studies have shown its close relationship with other myco - heterotrophic plants in Ericaceae such as Monotropa , Allotropa , and Sarcodes (Cullings 1994 ; Kron et al. 2002 ). Pine-drops show a disjunct distribution between the eastern and western North America with an extension in the west to northern Mexico (Bakshi 1959 ). -
THE IRISH RED DATA BOOK 1 Vascular Plants
THE IRISH RED DATA BOOK 1 Vascular Plants T.G.F.Curtis & H.N. McGough Wildlife Service Ireland DUBLIN PUBLISHED BY THE STATIONERY OFFICE 1988 ISBN 0 7076 0032 4 This version of the Red Data Book was scanned from the original book. The original book is A5-format, with 168 pages. Some changes have been made as follows: NOMENCLATURE has been updated, with the name used in the 1988 edition in brackets. Irish Names and family names have also been added. STATUS: There have been three Flora Protection Orders (1980, 1987, 1999) to date. If a species is currently protected (i.e. 1999) this is stated as PROTECTED, if it was previously protected, the year(s) of the relevant orders are given. IUCN categories have been updated as follows: EN to CR, V to EN, R to V. The original (1988) rating is given in brackets thus: “CR (EN)”. This takes account of the fact that a rare plant is not necessarily threatened. The European IUCN rating was given in the original book, here it is changed to the UK IUCN category as given in the 2005 Red Data Book listing. MAPS and APPENDIX have not been reproduced here. ACKNOWLEDGEMENTS We are most grateful to the following for their help in the preparation of the Irish Red Data Book:- Christine Leon, CMC, Kew for writing the Preface to this Red Data Book and for helpful discussions on the European aspects of rare plant conservation; Edwin Wymer, who designed the cover and who, as part of his contract duties in the Wildlife Service, organised the computer applications to the data in an efficient and thorough manner. -
Flora of Vascular Plants of the Seili Island and Its Surroundings (SW Finland)
Biodiv. Res. Conserv. 53: 33-65, 2019 BRC www.brc.amu.edu.pl DOI 10.2478/biorc-2019-0003 Submitted 20.03.2018, Accepted 10.01.2019 Flora of vascular plants of the Seili island and its surroundings (SW Finland) Andrzej Brzeg1, Wojciech Szwed2 & Maria Wojterska1* 1Department of Plant Ecology and Environmental Protection, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614 Poznań, Poland 2Department of Forest Botany, Faculty of Forestry, Poznań University of Life Sciences, Wojska Polskiego 71D, 60-625 Poznań, Poland * corresponding author (e-mail: [email protected]; ORCID: https://orcid.org/0000-0002-7774-1419) Abstract. The paper shows the results of floristic investigations of 12 islands and several skerries of the inner part of SW Finnish archipelago, situated within a square of 11.56 km2. The research comprised all vascular plants – growing spontaneously and cultivated, and the results were compared to the present flora of a square 10 × 10 km from the Atlas of Vascular Plants of Finland, in which the studied area is nested. The total flora counted 611 species, among them, 535 growing spontaneously or escapees from cultivation, and 76 exclusively in cultivation. The results showed that the flora of Seili and adjacent islands was almost as rich in species as that recorded in the square 10 × 10 km. This study contributed 74 new species to this square. The hitherto published analyses from this area did not focus on origin (geographic-historical groups), socioecological groups, life forms and on the degree of threat of recorded species. Spontaneous flora of the studied area constituted about 44% of the whole flora of Regio aboënsis. -
Conservation Assessment for Pterospora Andromedea Nutt
Conservation Assessment For Pterospora andromedea Nutt. (Pine-drops) USDA Forest Service, Eastern Region Hiawatha National Forest November 2004 This Conservation Assessment was prepared to compile the published and unpublished information on Pterospora andromedea Nutt. This report provides information to serve as a Conservation Assessment for the Eastern Region of the Forest Service. It is an administrative study only and does not represent a management decision by the U.S. Forest Service. Although the best scientific information available was used and subject experts were consulted in preparation of this document and its review, it is expected that new information will arise. In the spirit of continuous learning and adaptive management, if the reader has any information that will assist in conserving this species, please contact the Eastern Region of the Forest Service – Threatened and Endangered Species Program at 310 Wisconsin Avenue, Suite 580 Milwaukee, Wisconsin 53203. Conservation Assessment for Pterospora andromedea ii Acknowledgements Outside Reviewers: We would like to thank our academic reviewers and agency reviewers outside of the United States Forest Service for their helpful comments on this manuscript. • Phyllis Higman, Botanist, Michigan Natural Features Inventory National Forest Reviewers: We also thank our internal National Forest reviewers for their suggestions and corrections and for providing element occurrences for their National Forests. Complete contact information is available under Contacts section. • Jan Schultz, Forest Plant Ecologist, on the Hiawatha National Forest • Sue Trull, Forest Botanist, on the Ottawa National Forest • Ian Shackleford, Botanist, on the Ottawa National Forest Herbarium and Heritage Data: We appreciate the sharing of occurrence information for this species from Heritage personnel both in the United States and Canada, along with the helpful assistance of Herbarium personnel. -
243-246 42(3) 06.엄안흠.Fm
한국균학회지 The Korean Journal of Mycology Research Note Monotropoid Mycorrhizal Characteristics of Monotropa uniflora (Ericaceae) Collected from a Forest in Korea Eun-Hwa Lee and Ahn-Heum Eom* Department of Biology Education, Korea National University of Education, Cheongju 363-791, Korea ABSTRACT : The roots of Monotropa uniflora were collected from a forest in Korea. Morphological characteristics of monotropid mycorrhizas of the plants were determined. Thick mantles covered the roots and fungal pegs inside the epidermal cells of the roots were observed. Fungal symbionts were identified by sequence analysis of internal transcribed spacer region. Phylogenetic analysis based on the sequences demonstrated that the fungus was the most closely related to Russula heterophylla. The result support the strong specificity between M. uniflora and Russula species. KEYWORDS : Monotropoid mycorrhizas, Monotropa uniflora, Russula sp. Monotropoideae is a subfamily of the Ericaceae, and The mycorrhizal structure has typical ectomycorrhizal most of the species in this subfamily are achlorophyllous, characteristics, including a hyphal mantle covering the and thus, heterotrophic plants [1]. These plants are not roots and Hartig nets between cortex cells of the roots. able to fix carbon by themselves because they have very In addition, fungal hyphae penetrate and produce fungal low amounts of chlorophyll-related pigments [2]. They pegs inside the epidermal cells of plant roots, which is obtain fixed carbon from photosynthetic plants through the characteristic structure of monotropoid mycorrhizas. mycorrhizal hyphae; plants exhibiting this relationship Fungal pegs have been known as structures that trans- are referred to as mycoheterotrophic plants [3, 4]. The locate photosynthetic carbon compounds from the fungi mycorrhizal relationship between Monotropoideae plants to photosynthetic plants. -
Draft Plant Propagation Protocol
Plant Propagation Protocol for Hemitomes congestum A. Gray ESRM 412 – Native Plant Production Protocol URL: https://courses.washington.edu/esrm412/protocols/HECO6 [3] [3] [3] TAXONOMY Plant Family Scientific Name Ericaceae [1, 2, 3, 4, 5, 6, 7] Common Name Heath family or Heather family [1, 2] Species Scientific Name Scientific Name Hemitomes congestum A. Gray [3, 4, 5, 6, 7, 8] Varieties None Sub-species None Cultivar None Common Newberrya congestum Torr. [3, 4, 6, 7, 8] Synonym(s) Common Name(s) Gnome-plant, Coneplant [3, 4, 5, 6, 7, 8] Species Code (as HECO6 [8] per USDA Plants database) GENERAL INFORMATION Geographical Occurs sporadically from southern B.C. to Kern County, CA; range mostly growing west of the Cascades and the Sierra Nevada [3, 4, 6, 8, 9] [8] Ecological Damp coniferous forests with rich humus in lowland and montane zones distribution [3, 4, 6, 8, 9] Climate and Low to mid elevation areas (20 to 1070 meters, or 65 to 3510 feet) with elevation range moist to mesic precipitation regimes. Occurs more in mid- elevation/montane zones than in lowland areas [3, 4, 5, 6, 8, 9] Local habitat and Occurs sporadically throughout damp coniferous forests. Less common in abundance the northern and southern parts of its range, as well as the lower end of its elevation range [3, 4, 6, 7, 8, 9] Most commonly found in mixed coniferous forests consisting of Tsuga heterophylla, Pseudotsuga menziesii, and Thuja plicata. Also associated with Polystichum munitum, Gaultheria shallon, and Linnaea borealis [10] Plant strategy type Mycoparasitic [2-12] / successional stage Plant A fleshy perennial herb of 3 to 20 centimeters that lacks chlorophyll and characteristics forms small clusters of densely packed pinkish flowers. -
Mycorrhizal Fungi Associated with Taiwanese Pyrola Morrisonensis (Ericaceae) in a Naturally Regenerated Forest
Taiwania 62(4): 399-406, 2017 DOI: 10.6165/tai.2017.62.399 Mycorrhizal fungi associated with Taiwanese Pyrola morrisonensis (Ericaceae) in a naturally regenerated forest Yosuke MATSUDA1,*, Takashi UESUGI1, Tsai-Wen HSU2 and Chien-Fan CHEN3 1. Graduate School of Bioresources, Mie University, Kurimamachiya 1577, Mie, 514-8507, Japan. 2. Endemic Species Research Institute, 1 Ming-Sheng E. Road, Chi-Chi, Nantou 552, Taiwan. 3. Division of Botanical Garden, Taiwan Forestry Research Institute, 53 Nanhai Road, Taipei, Taiwan. * Corresponding author's tel./fax: +81-59-231-9639, e-mail: [email protected] (Manuscript received 16 June 2017; accepted 6 November 2017; online published 17 November 2017) ABSTRACT: Pyrola morrisonensis, an evergreen herb in the family Ericaceae, is endemic to Taiwan. We examined mycorrhizal development and the associated fungi in this species. Nine plants were collected in a naturally regenerated forest in central Taiwan. The plants were genetically identical in their internal transcribed spacer (ITS) region, and their sequences matched the known sequence for P. morrisonensis. Fine roots of each plant were colonized by mycorrhizal fungi that formed mycorrhizas either with or without fungal mantles. DNA sequences of the ITS region of these fungi suggested that they belonged to mycorrhizal taxa that are common tree symbionts. Among them, members of Thelephoraceae were the dominant taxon in the host plants. These results indicate that P. morrisonensis is intimately associated with mycorrhizal fungi that might also connect with neighboring trees. KEY WORDS: ITS, Molecular identification, Operational taxonomic unit, Pyrola morrisonensis, root morphology, Thelephoraceae. INTRODUCTION mycorrhizal networks (Selosse et al., 2006, 2016; Simard et al., 2012).