Botanica Pacifica. A journal of plant science and conservation. 2018. 7(2): 31–39 DOI: 10.17581/bp.2018.07202 Diversity of fungal communities associated with mixotrophic pyroloids (Pyrola rotundifolia, P. media and Orthilia secunda) in their natural habitats EkaterinaF.Malysheva1*,VeraF.Malysheva1, ElenaYu.Voronina2&AlexanderE.Kovalenko1 EkaterinaF.Malysheva1* ABSTRACT email:
[email protected] As it was shown, mixotrophic plants (MxP) strongly depend on their mycorrhi VeraF.Malysheva1 zal fun gi for carbon, at least at the early stages of life cycle, and have rather high email:
[email protected] specificityformycobionts.However,thediversityof fungiassociatedwithMxP ElenaYu.Voronina2 and their role in plant’s life are still poorly known, especially under natural condi email:
[email protected] tions.Inthepresentstudy,thediversityof mycobiontsof thethreemixotrophic py ro loid species (Pyrola rotundifolia, P. media and Orthilia secunda) was investigated AlexanderE.Kovalenko1 by se quencing nrITS from roots and rhizomes. At the same time, we studied email:
[email protected] ectomycorrhizalfungalcommunitiesof neighboringtrees.Themycobiontdi versity slightly differed berween the three species, but they also shared similar 1 fungaltaxa.Thespeciesof basidiomycetegeneraTomentella, Piloderma, Russula KomarovBotanicalInstitute and Mycena weredominantfungalpartnersof thestudiedpyroloids.Theplants of theRussianAcademyof Sciences, were also colonized by other ectomycorrhizal and saprotrophic basidiomycetes SaintPetersburg,Russia and ascomycetes.TheresearchresultsshowedMxP link to tree species by shared 2LomonosovMoscowStateUniversity, mycobiontsandpartialmycoheterotrophybyinvolvementintomycelialnetwork. Moscow, Russia Thirtyninefungaltaxa(atspeciesandgeneralevel)inhabitingpyroloidrootsys tem asmycobiontsandrootendophytesweredetected.Theirroleforplantper formancerequiresfurtherinvestigation.