Ca Ii H and K Emission from Late-Type Stars

Total Page:16

File Type:pdf, Size:1020Kb

Ca Ii H and K Emission from Late-Type Stars CA II H AND K EMISSION FROM LATE-TYPE STARS PROEFSCHRIFT TER VERKRIJGING VAN DE GRAAS VAN DOCTOR IN DE WISKUNDE EN NATUURWETENSCHAPPEN AAN DE RIJKSUNIVERSITEIT TE UTRECHT, OP GEZAG VAN DE RECTOR MAGNIFICUS PROF. DR. M.A. SOUMAN, VOLGENS BESLUIT VAN HET COLLEGE VAN DECANEN IN HET OPENBAAR TE VE^EDIGBN OP MAANDAG 5 JULI 1982 DES NAMIDDAGS TE 4.IS UUR DOOR FRANS MIDDELKOOP GEBOREN OP 30 JANUARI 1953 TE ROTTERDAM •\ PROMOTOR: PROF.DR.C.ZWAAN opgedragen aan: Ans de Jong (mijn vrouw), Adrianus Middelkoop {mijn vader), Alie Twigt (mijn moeder). De hemelen vertellen Gods eer en het uitspansel verkondigt het werk zijner handen Psalm V9:2 Dankbetuiging Graag wil Ik alle personen en Instellingen die bijgedragen hebben tot de totstandkoming van dit proefschrift van harte bedanken. In de eerste plaats dank Ik mijn promotor, Prof.Dr. Kees Zwaan. Zijn steun en begeleiding zijn, vooral in het eerste jaar van dit onderzoek, van groot belang geweest. Zijn enthousiasme en toewijding hebben mij altijd zeer gestimuleerd. Ook ben ik veel dank verschuldigd aan mijn vriend en collega Barto Oranje. De vele gesprekken die ik met hem heb gevoerd hebben duidelijk invloed op dit proefschrift gehad. Dr. Rene' van Helden heeft mij, op bijzonder prettige en leerzame wijze, de eerste beginselen van de sterrekunde bijgebracht en mij in contact gebracht met mijn promotor. Dr. Tony Hearn stond altijd voor mij klaar als de Interne referee van mijn publikaties. I am also indebted to Dr. Arthur Vaughan who has instructed me on how to use his excellent Ca II H and K photometer. Be and his wife Ann never failed to make me feel at home in California. Among the many pleasant people I met in the U.S.A. I mention as well James Frazer, who often helped me as night assistent. I will always remember the many hours we did our job singing loudly (and probably out of tune). De adviezen en programma's van Ed van der Zalm hebben mij veel tijd bespaard. Ik dank hem voor de prettige wijze waarop hij mij altijd heeft bijgestaan. Ook gaat mijn dank uit naar Jan Odljk die al mijn typewerk heeft verricht, Evert Landre' dia alle figuren heeft verzorgd en de heer Repelaer van Driel die veel ponswerk voor mij heeft gedaan. Een groot deel van dit onderzoek is gesteund door de Stichting Astronomisch Onderzoek in Nederland (ASTRON) met financiële steun van de Nederlandse Organisatie voor Zuiver-Wetenschappelijk Onderzoek. Ik ben dankbaar voor de soepele wijze waarop deze steun is verleend. I am also grateful for the hospitality of Mt.Wilson Observatory; the measurements with the Ca II H and K photometer at the 60 inch telescope axe essential for this thesis. Tenslotte dank ik mijn vrouw Ans voor alles wat zij voor de totstandkoming van dit proefschrift heeft overgehad. CONTENTS page CHAPTER SURVEY 9 CHAPTER II ROTATION MODULATION 11.1 Indications for Rotation Modulation and Short- 19 Term Variations in the Ca II H and K Emission from Cool Main-Sequence Stars 11.2 Stellar Rotation in Lower Main-Sequence Stars 27 Measured from Time Variations in H and K Emission-Line Fluxes I: Initial Results CHAPTER III MAIN-SEQUENCE STARS 111.1 Magnetic Structure in Cool Stars III: Ca II H and K Emission and Rotation of Main-Sequence Stars 111.2 Magnetic Structure in Cool Stars 49 IV : Rotation and Ca II H and K Emission of Main-Sequence Stars CHAPTER IV EVOLVED STARS IV.1 Magnetic Structure in Cool Stars 59 I : The Ca II H and K Emission from Giants IV.2 Magnetic Structure in Cool Stars 73 VI: C.a II H and K Fluxes from Evolved Stars SAMENVATTING 87 I CHAPTER I: SURVEY 1. INTRODUCTION The Ca II H and K resonance lines at 3934 A and 3968 & are an important diagnostic for the study of stellar chromospheres. In a number of main-sequence stars of spectral type later than 9a F5, and in nearly all giants of spectral type later than GO, emission features are visible in the cores of both of these lines (Fig. 1 and 2). This thesis is based on a study of these emission features. The Sun is among the late-type stars showing Ca II H and K emission. A picture of the Sun in one of the Ca II H and K line-cores clearly shows (Fig. 3) that the emission originates predominantly in discrete regions. These regions are cospatial to within 1" with discrete magnetic features (see Zwaan 1978) (Fig. 4). Hence we assume that the stellar Ca II H and K flux increases with the magnetic flux passing through the stellar surface. Except for the Sun, magnetic fields on stars can only be measured directly for bright and magnetically active stars (see Sect. 2). Hence,indirect methods to measure magnetic fields on stars have to be used to study a large sample of stars with a strongly differing magnetic activity. The measurement of the Ca II H and K emission of stars is one way to do just that. In this investigation the Sun is used as an example and guide for the study of stellar Ca II H and R emission. The amount of information contained in the Ca II H and K emission cores is enormous. It ranges in time from information about flare-like behavior on time-scales of minutes through information about stellar rotation periods on time-scales of days (weeks, months) and stellar activity cycles on time-scales of years to information about stellar evolution on time-scales of 1010 years. The width of the emission cores is a measure of the absolute magnitude of the star (Wilson and Bappu, 1957, Wilson 1976) while the intensity.in combination with the width contains information about the mass of stars (Sect. 3). Although this. Investigation is based on a tiny fraction of the electromagnetic spectrum it addresses fundamental characteristics of stars such as: mass, rotation period as a function of age, evolutionary phase and last but not least magnetic activity as a function of age. 2. DIRECT MEASUREMENTS OF MAGNETIC FIELDS On the Sun magnetic fields can be measured through the polarization effect in the magnetic Zeeman splitting of absorption lines. However, this method does not apply to cool stars, probably because opposite polarities produce opposite polarization effects, Like on the Sun, magnetic fields of cool stars are expected to appear 1B bipolar regions occupying a fraction of the stellar disk. The net polarization effect of the visible part of the star's surface will therefore be very small and undetectable for most stars (for example: the average magnetic field measured for the sun in this way would be f>a-\ Gauss (Scherrer et al. 1977). A method of measuring magnetic fields of late-type stars and the fractional area they cover has been applied by Robinson et al. (1980). It relies on the fact that magnetic Zeeman splitting (for a simple Zeeman triplet) produces two a components separated from the unshifted n component by an amount depending only on field strength (Unno (1956)). The method results in the average absolute value of the 10 It Fig. 2: Ca II H and K emission cores in speetva (Wilson and Bappu (195?)} CalK line core index CaUK emission index (indices defined relative to some continuum 1iux) Fig.2: Ca II H and K emission aores; definitions \ 11 Fig.3: Filtergram of the Sun in the core of the Ca II K line (courtesy B.J. Oranje) Fig.4: A mature active region: a) Filtergram in the core of the Ca II K Vine: b) magnetogram; the comparison between (a) and (b) demonstrates the dose spatial correspondence between faculae (as observed in Ca II K emission) and magnetic flux outside sunspots (Big Bear Solar Observatory, courtesy H. Zirin) L 12 magnetic field strength present and the area covered by magnetic fields. It requires a high spectral resolution and a large signal-to-noise ratio. For a signal-to-noise ratio of 100:1, field strengths of 1000 Gauss or more can be measured if they cover at least 3-4X of the stellar surface. Hence this method is limited to bright and magnetically active stars. Promising results on two stars have been published (Robinson et al. 1980) and the technique has been applied to a number of stars by Marcy (1981) who reports magnetic fields in at least 50% of the observed stars. In most cases the fraction of the surface covered by magnetic fields is small. This and the direct observation of magnetic fields in stars supports the idea of the presence of magnetic field in discrete magnetic structures on late-type stars and it adds to our confidence in using the Sun as an example and guide for the observation of magnetic activity In other late-type stars. 3. THE CA II H AND K PHOTOMETER AT MT. WILSON All the observations presented in this thesis were obtained wltf the Ca II H and K photometer at the 60 Inch telescope of Ht. Wilson. A short description of this instrument is given here; for a more detailed description I refer to Vaughan et al. (1978). The Ca II H and K photometer (Fig. 5) is a'four-channel photon-counting spectrophotometer consisting of an off-piane flat—field Ebert spectrometer equipped with a multi-exit slit and a chopper for measuring the fluxes in four spectral passbands sequentially at a chopping frequency of about 30 Hz, with a single detector. The spectrum can be shifted parallel to the dispersion to compensate for Doppler shifts.
Recommended publications
  • Winter Constellations
    Winter Constellations *Orion *Canis Major *Monoceros *Canis Minor *Gemini *Auriga *Taurus *Eradinus *Lepus *Monoceros *Cancer *Lynx *Ursa Major *Ursa Minor *Draco *Camelopardalis *Cassiopeia *Cepheus *Andromeda *Perseus *Lacerta *Pegasus *Triangulum *Aries *Pisces *Cetus *Leo (rising) *Hydra (rising) *Canes Venatici (rising) Orion--Myth: Orion, the great ​ ​ hunter. In one myth, Orion boasted he would kill all the wild animals on the earth. But, the earth goddess Gaia, who was the protector of all animals, produced a gigantic scorpion, whose body was so heavily encased that Orion was unable to pierce through the armour, and was himself stung to death. His companion Artemis was greatly saddened and arranged for Orion to be immortalised among the stars. Scorpius, the scorpion, was placed on the opposite side of the sky so that Orion would never be hurt by it again. To this day, Orion is never seen in the sky at the same time as Scorpius. DSO’s ● ***M42 “Orion Nebula” (Neb) with Trapezium A stellar ​ ​ ​ nursery where new stars are being born, perhaps a thousand stars. These are immense clouds of interstellar gas and dust collapse inward to form stars, mainly of ionized hydrogen which gives off the red glow so dominant, and also ionized greenish oxygen gas. The youngest stars may be less than 300,000 years old, even as young as 10,000 years old (compared to the Sun, 4.6 billion years old). 1300 ly. ​ ​ 1 ● *M43--(Neb) “De Marin’s Nebula” The star-forming ​ “comma-shaped” region connected to the Orion Nebula. ● *M78--(Neb) Hard to see. A star-forming region connected to the ​ Orion Nebula.
    [Show full text]
  • Title of the Paper
    Variable Star and Exoplanet Section of Czech Astronomical Society and Planetarium Ostrava Proceedings of the 51st Conference on Variable Stars Research Planetarium Ostrava, Ostrava, Czech Republic 1st November - 3rd November 2019 Editor-in-chief Radek Kocián Participants of the conference OPEN EUROPEAN JOURNAL ON VARIABLE STARS November 2020 http://oejv.physics.muni.cz ISSN 1801-5964 DOI: 10.5817/OEJV2020-0208 TABLE OF CONTENTS Modeling of GX Lacertae ........................................................................................................................................ 5 Cataclysmic variable CzeV404 Her ......................................................................................................................... 8 On the spin period variability in intermediate polars ............................................................................................. 11 Photometric and spectroscopic observation of symbiotic variables at private observatory Liptovská Štiavnica ... 18 Outburst activity of flare stars 2014 – 2019 ........................................................................................................... 29 2 OPEN EUROPEAN JOURNAL ON VARIABLE STARS November 2020 http://oejv.physics.muni.cz ISSN 1801-5964 DOI: 10.5817/OEJV2020-0208 INTRODUCTION The Variable Star and Exoplanet Section of the Czech Astronomical Society organized traditional autumn conference on research and news in the field of variable stars. The conference was held in a comfortable space of Ostrava Planetarium. In addition
    [Show full text]
  • August 13 2016 7:00Pm at the Herrett Center for Arts & Science College of Southern Idaho
    Snake River Skies The Newsletter of the Magic Valley Astronomical Society www.mvastro.org Membership Meeting President’s Message Saturday, August 13th 2016 7:00pm at the Herrett Center for Arts & Science College of Southern Idaho. Public Star Party Follows at the Colleagues, Centennial Observatory Club Officers It's that time of year: The City of Rocks Star Party. Set for Friday, Aug. 5th, and Saturday, Aug. 6th, the event is the gem of the MVAS year. As we've done every Robert Mayer, President year, we will hold solar viewing at the Smoky Mountain Campground, followed by a [email protected] potluck there at the campground. Again, MVAS will provide the main course and 208-312-1203 beverages. Paul McClain, Vice President After the potluck, the party moves over to the corral by the bunkhouse over at [email protected] Castle Rocks, with deep sky viewing beginning sometime after 9 p.m. This is a chance to dig into some of the darkest skies in the west. Gary Leavitt, Secretary [email protected] Some members have already reserved campsites, but for those who are thinking of 208-731-7476 dropping by at the last minute, we have room for you at the bunkhouse, and would love to have to come by. Jim Tubbs, Treasurer / ALCOR [email protected] The following Saturday will be the regular MVAS meeting. Please check E-mail or 208-404-2999 Facebook for updates on our guest speaker that day. David Olsen, Newsletter Editor Until then, clear views, [email protected] Robert Mayer Rick Widmer, Webmaster [email protected] Magic Valley Astronomical Society is a member of the Astronomical League M-51 imaged by Rick Widmer & Ken Thomason Herrett Telescope Shotwell Camera https://herrett.csi.edu/astronomy/observatory/City_of_Rocks_Star_Party_2016.asp Calendars for August Sun Mon Tue Wed Thu Fri Sat 1 2 3 4 5 6 New Moon City Rocks City Rocks Lunation 1158 Castle Rocks Castle Rocks Star Party Star Party Almo, ID Almo, ID 7 8 9 10 11 12 13 MVAS General Mtg.
    [Show full text]
  • The NTT Provides the Deepest Look Into Space 6
    The NTT Provides the Deepest Look Into Space 6. A. PETERSON, Mount Stromlo Observatory,Australian National University, Canberra S. D'ODORICO, M. TARENGHI and E. J. WAMPLER, ESO The ESO New Technology Telescope r on La Silla has again proven its extraor- - dinary abilities. It has now produced the "deepest" view into the distant regions of the Universe ever obtained with ground- or space-based telescopes. Figure 1 : This picture is a reproduction of a I.1 x 1.1 arcmin portion of a composite im- age of forty-one 10-minute exposures in the V band of a field at high galactic latitude in the constellation of Sextans (R.A. loh 45'7 Decl. -0' 143. The individual images were obtained with the EMMI imager/spectrograph at the Nas- myth focus of the ESO 3.5-m New Technolo- gy Telescope using a 1000 x 1000 pixel Thomson CCD. This combination gave a full field of 7.6 x 7.6 arcmin and a pixel size of 0.44 arcsec. The average seeing during these exposures was 1.0 arcsec. The telescope was offset between the indi- vidual exposures so that the sky background could be used to flat-field the frame. This procedure also removed the effects of cos- mic rays and blemishes in the CCD. More than 97% of the objects seen in this sub- field are galaxies. For the brighter galax- ies, there is good agreement between the galaxy counts of Tyson (1988, Astron. J., 96, 1) and the NTT counts for the brighter galax- ies.
    [Show full text]
  • A Review on Substellar Objects Below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs Or What?
    geosciences Review A Review on Substellar Objects below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs or What? José A. Caballero Centro de Astrobiología (CSIC-INTA), ESAC, Camino Bajo del Castillo s/n, E-28692 Villanueva de la Cañada, Madrid, Spain; [email protected] Received: 23 August 2018; Accepted: 10 September 2018; Published: 28 September 2018 Abstract: “Free-floating, non-deuterium-burning, substellar objects” are isolated bodies of a few Jupiter masses found in very young open clusters and associations, nearby young moving groups, and in the immediate vicinity of the Sun. They are neither brown dwarfs nor planets. In this paper, their nomenclature, history of discovery, sites of detection, formation mechanisms, and future directions of research are reviewed. Most free-floating, non-deuterium-burning, substellar objects share the same formation mechanism as low-mass stars and brown dwarfs, but there are still a few caveats, such as the value of the opacity mass limit, the minimum mass at which an isolated body can form via turbulent fragmentation from a cloud. The least massive free-floating substellar objects found to date have masses of about 0.004 Msol, but current and future surveys should aim at breaking this record. For that, we may need LSST, Euclid and WFIRST. Keywords: planetary systems; stars: brown dwarfs; stars: low mass; galaxy: solar neighborhood; galaxy: open clusters and associations 1. Introduction I can’t answer why (I’m not a gangstar) But I can tell you how (I’m not a flam star) We were born upside-down (I’m a star’s star) Born the wrong way ’round (I’m not a white star) I’m a blackstar, I’m not a gangstar I’m a blackstar, I’m a blackstar I’m not a pornstar, I’m not a wandering star I’m a blackstar, I’m a blackstar Blackstar, F (2016), David Bowie The tenth star of George van Biesbroeck’s catalogue of high, common, proper motion companions, vB 10, was from the end of the Second World War to the early 1980s, and had an entry on the least massive star known [1–3].
    [Show full text]
  • Portfolio Holdings Listing Fidelity Advisor Asset Manager 20% As of March 31, 2021
    Portfolio Holdings Listing Fidelity Advisor Asset Manager 20% DUMMY as of June 30, 2021 The portfolio holdings listing (listing) provides information on a fund’s investments as of the date indicated. Top 10 holdings information (top 10 holdings) is also provided for certain equity and high income funds. The listing and top 10 holdings are not part of a fund’s annual/semiannual report or Form N-Q and have not been audited. The information provided in this listing and top 10 holdings may differ from a fund’s holdings disclosed in its annual/semiannual report and Form N-Q as follows, where applicable: With certain exceptions, the listing and top 10 holdings provide information on the direct holdings of a fund as well as a fund’s pro rata share of any securities and other investments held indirectly through investment in underlying non- money market Fidelity Central Funds. A fund’s pro rata share of the underlying holdings of any investment in high income and floating rate central funds is provided at a fund’s fiscal quarter end. For certain funds, direct holdings in high income or convertible securities are presented at a fund’s fiscal quarter end and are presented collectively for other periods. For the annual/semiannual report, a fund’s investments include trades executed through the end of the last business day of the period. This listing and the top 10 holdings include trades executed through the end of the prior business day. The listing includes any investment in derivative instruments, and excludes the value of any cash collateral held for securities on loan and a fund’s net other assets.
    [Show full text]
  • Binocular Double Star Logbook
    Astronomical League Binocular Double Star Club Logbook 1 Table of Contents Alpha Cassiopeiae 3 14 Canis Minoris Sh 251 (Oph) Psi 1 Piscium* F Hydrae Psi 1 & 2 Draconis* 37 Ceti Iota Cancri* 10 Σ2273 (Dra) Phi Cassiopeiae 27 Hydrae 40 & 41 Draconis* 93 (Rho) & 94 Piscium Tau 1 Hydrae 67 Ophiuchi 17 Chi Ceti 35 & 36 (Zeta) Leonis 39 Draconis 56 Andromedae 4 42 Leonis Minoris Epsilon 1 & 2 Lyrae* (U) 14 Arietis Σ1474 (Hya) Zeta 1 & 2 Lyrae* 59 Andromedae Alpha Ursae Majoris 11 Beta Lyrae* 15 Trianguli Delta Leonis Delta 1 & 2 Lyrae 33 Arietis 83 Leonis Theta Serpentis* 18 19 Tauri Tau Leonis 15 Aquilae 21 & 22 Tauri 5 93 Leonis OΣΣ178 (Aql) Eta Tauri 65 Ursae Majoris 28 Aquilae Phi Tauri 67 Ursae Majoris 12 6 (Alpha) & 8 Vul 62 Tauri 12 Comae Berenices Beta Cygni* Kappa 1 & 2 Tauri 17 Comae Berenices Epsilon Sagittae 19 Theta 1 & 2 Tauri 5 (Kappa) & 6 Draconis 54 Sagittarii 57 Persei 6 32 Camelopardalis* 16 Cygni 88 Tauri Σ1740 (Vir) 57 Aquilae Sigma 1 & 2 Tauri 79 (Zeta) & 80 Ursae Maj* 13 15 Sagittae Tau Tauri 70 Virginis Theta Sagittae 62 Eridani Iota Bootis* O1 (30 & 31) Cyg* 20 Beta Camelopardalis Σ1850 (Boo) 29 Cygni 11 & 12 Camelopardalis 7 Alpha Librae* Alpha 1 & 2 Capricorni* Delta Orionis* Delta Bootis* Beta 1 & 2 Capricorni* 42 & 45 Orionis Mu 1 & 2 Bootis* 14 75 Draconis Theta 2 Orionis* Omega 1 & 2 Scorpii Rho Capricorni Gamma Leporis* Kappa Herculis Omicron Capricorni 21 35 Camelopardalis ?? Nu Scorpii S 752 (Delphinus) 5 Lyncis 8 Nu 1 & 2 Coronae Borealis 48 Cygni Nu Geminorum Rho Ophiuchi 61 Cygni* 20 Geminorum 16 & 17 Draconis* 15 5 (Gamma) & 6 Equulei Zeta Geminorum 36 & 37 Herculis 79 Cygni h 3945 (CMa) Mu 1 & 2 Scorpii Mu Cygni 22 19 Lyncis* Zeta 1 & 2 Scorpii Epsilon Pegasi* Eta Canis Majoris 9 Σ133 (Her) Pi 1 & 2 Pegasi Δ 47 (CMa) 36 Ophiuchi* 33 Pegasi 64 & 65 Geminorum Nu 1 & 2 Draconis* 16 35 Pegasi Knt 4 (Pup) 53 Ophiuchi Delta Cephei* (U) The 28 stars with asterisks are also required for the regular AL Double Star Club.
    [Show full text]
  • Anexo Ii: Catálogos De Espectros Estelares
    ANEXO II: CATÁLOGOS DE ESPECTROS ESTELARES Base de datos de espectros estelares del enfoque híbrido I 1 (continuación) 2 (continuación) Catálogo G. H. Jacoby & D. A. Hunter & C. A. Christian 3 4 (continuación) 5 (continuación) Catálogo A.J. Pickles 1988 6 7 (continuación) Catálogo Silva 1992 8 Num Name Sp Type Vr Teff log g 1 HD000245 G2V -93.73 5433. 3.50 2 HD000358 B8IVmnp.. -33.90 14007. 3.77 3 HD000400 F8IV -15.13 6146. 4.09 4 HD000693 F5V 14.79 6156. 4.13 5 HD001227 G8II-III -0.03 5063. 2.65 6 HD001835 G3V -2.46 5777. 4.45 7 HD002665 G5IIIwe -382.34 5004. 2.27 8 HD002665 G5IIIwe -382.57 5004. 2.27 9 HD002796 Fw -61.36 4920. 1.39 10 HD003268 F7V -23.40 6130. 4.01 11 HD003546 G5III... -84.14 4769. 2.22 12 HD003567 F5V -47.62 5991. 3.96 13 HD003628 G2V -27.09 5701. 4.06 14 HD003712 K0II-IIIva -4.49 4608. 2.20 15 HD003712 K0II-IIIva -4.45 4608. 2.20 16 HD004306 G0 -61.71 4933. 1.96 17 HD004306 G0 -61.71 4933. 1.96 18 HD004307 G2V -10.36 5806. 4.04 19 HD004395 G5 -0.75 5471. 3.32 20 HD004614 G0V... 8.29 5890. 4.40 21 HD005234 K2III -23.56 4385. 1.58 22 HD005395 G8III-IV -48.08 4708. 2.42 23 HD005448 A5V 9.60 8029. 3.90 24 HD005516 G8III-IV -25.49 4940. 2.70 25 HD005600 F8 3.70 6631. 3.98 26 HD005916 G8III-IV -68.17 4874.
    [Show full text]
  • A High Contrast Survey for Extrasolar Giant Planets with the Simultaneous Differential Imager (SDI)
    A High Contrast Survey for Extrasolar Giant Planets with the Simultaneous Differential Imager (SDI) Item Type text; Electronic Dissertation Authors Biller, Beth Alison Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 03/10/2021 23:58:44 Link to Item http://hdl.handle.net/10150/194542 A HIGH CONTRAST SURVEY FOR EXTRASOLAR GIANT PLANETS WITH THE SIMULTANEOUS DIFFERENTIAL IMAGER (SDI) by Beth Alison Biller A Dissertation Submitted to the Faculty of the DEPARTMENT OF ASTRONOMY In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2 0 0 7 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dis- sertation prepared by Beth Alison Biller entitled “A High Contrast Survey for Extrasolar Giant Planets with the Simultaneous Differential Imager (SDI)” and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy. Date: June 29, 2007 Laird Close Date: June 29, 2007 Don McCarthy Date: June 29, 2007 John Bieging Date: June 29, 2007 Glenn Schneider Final approval and acceptance of this dissertation is contingent upon the candi- date's submission of the final copies of the dissertation to the Graduate College. I hereby certify that I have read this dissertation prepared under my direction and recommend that it be accepted as fulfilling the dissertation requirement.
    [Show full text]
  • The Hipparcos HR Diagram of Nearby Stars in the Metallicity Range-1.0
    A&A manuscript no. ASTRONOMY (will be inserted by hand later) AND Your thesaurus codes are: 08(08.01.1;08.08.1;08.09.3;08.12.1;10.01.1;10.19.1) ASTROPHYSICS The Hipparcos HR diagram of nearby stars in the metallicity range: -1.0 < [Fe/H] < 0.3 A new constraint on the theory of stellar interiors and model atmospheres Y. Lebreton1⋆, M.-N. Perrin2, R. Cayrel2, A. Baglin3, and J. Fernandes4 1 DASGAL, CNRS URA 335, Observatoire de Paris, Place J. Janssen, 92195 Meudon, France 2 DASGAL, CNRS URA 335, Observatoire de Paris, 61 Av. de l’Observatoire, 75014 Paris, France 3 DESPA, CNRS URA 264, Observatoire de Paris, Place J. Janssen, 92195 Meudon, France 4 Observat´orio Astron´omico da Universidade de Coimbra, 3040 Coimbra, Portugal Received /Accepted Abstract. The Hipparcos mission has provided very high effects, µ Cas A falls on its expected isochrone, within the quality parallaxes of a sample of a hundred nearby disk error bars corresponding to its mass. stars, of spectral types F to K. In parallel, bolometric All stars with -0.3 < [Fe/H] < 0.3 are located be- fluxes, effective temperatures, and accurate Fe/H ratios tween the helium-scaled isochrones corresponding to these of many of these stars became available through infrared metallicities. However five of them are not located exactly photometry and detailed spectroscopic analyses. These where they are expected to be for their metallicity. This new accurate data allow to build the Hertzsprung–Russell may reflect a helium content lower than the metallicity- diagram of stars of the solar neighbourhood with the scaled value.
    [Show full text]
  • MEGARA-GTC Stellar Spectral Library (I)
    MNRAS 000,1– ?? (2019) Preprint 24 January 2020 Compiled using MNRAS LATEX style file v3.0 MEGARA-GTC Stellar Spectral Library (I) M.L. Garc´ıa-Vargas1?, E. Carrasco2, M. Molla´3, A. Gil de Paz4;5, S. R. Berlanas6;7, N. Cardiel 4;5, P. Gomez-Alvarez´ 1, J. Gallego 4;5, J. Iglesias-Paramo´ 8;9, R. Cedazo10, S. Pascual 4;5, A. Castillo-Morales 4;5, A. Perez-Calpena´ 1, I. Mart´ınez-Delgado1 1 FRACTAL S.L.N.E., Calle Tulip´an2, portal 13, 1A, E-28231 Las Rozas de Madrid, Spain 2 Instituto Nacional de Astrof´ısica, Optica´ y Electr´onica,INAOE, Calle Luis Enrique Erro 1, C.P. 72840 Santa Mar´ıaTonantzintla, Puebla, Mexico 3 Dpto. de Investigaci´onB´asica,CIEMAT, Avda. Complutense 40, E-28040 Madrid, Spain 4 Dpto. de F´ısicade la Tierra y Astrof´ısica,Fac. CC. F´ısicas,Universidad Complutense de Madrid, Plaza de las Ciencias, 1, E-28040 Madrid, Spain 5 Instituto de F´ısicade Part´ıculasy del Cosmos, IPARCOS, Fac. CC. F´ısicas,Universidad Complutense de Madrid, Plaza de las Ciencias 1, E-28040 Madrid, Spain 6 Instituto de Astrof´ısicade Canarias, Calle V´ıaL´acteas/n, E-38205 San Crist´obalde la Laguna, Santa Cruz de Tenerife, Spain 7 Dpto. de Astrof´ısica,Universidad de La Laguna, E-38205 San Crist´obalde la Laguna, Santa Cruz de Tenerife, Spain 8 Instituto de Astrof´ısicade Andaluc´ıa,IAA-CSIC, Glorieta de la Astronom´ıas/n, E-18008 Granada, Spain 9 Estaci´onExperimental de Zonas Aridas,´ CSIC, Carretera de Sacramento s/n, E-04120 Almer´ıa,Spain 10 Dpto.
    [Show full text]
  • Download This Issue (Pdf)
    Volume 46 Number 1 JAAVSO 2018 The Journal of the American Association of Variable Star Observers Optical Flares and Quasi-Periodic Pulsations on CR Draconis during Periastron Passage Upper panel: 2017-10-10-flare photon counts, time aligned with FFT spectrogram. Lower panel: FFT spectrogram shows time in UT seconds versus QPP periods in seconds. Flares cited by Doyle et al. (2018) are shown with (*). Also in this issue... • The Dwarf Nova SY Cancri and its Environs • KIC 8462852: Maria Mitchell Observatory Photographic Photometry 1922 to 1991 • Visual Times of Maxima for Short Period Pulsating Stars III • Recent Maxima of 86 Short Period Pulsating Stars Complete table of contents inside... The American Association of Variable Star Observers 49 Bay State Road, Cambridge, MA 02138, USA The Journal of the American Association of Variable Star Observers Editor John R. Percy Kosmas Gazeas Kristine Larsen Dunlap Institute of Astronomy University of Athens Department of Geological Sciences, and Astrophysics Athens, Greece Central Connecticut State University, and University of Toronto New Britain, Connecticut Toronto, Ontario, Canada Edward F. Guinan Villanova University Vanessa McBride Associate Editor Villanova, Pennsylvania IAU Office of Astronomy for Development; Elizabeth O. Waagen South African Astronomical Observatory; John B. Hearnshaw and University of Cape Town, South Africa Production Editor University of Canterbury Michael Saladyga Christchurch, New Zealand Ulisse Munari INAF/Astronomical Observatory Laszlo L. Kiss of Padua Editorial Board Konkoly Observatory Asiago, Italy Geoffrey C. Clayton Budapest, Hungary Louisiana State University Nikolaus Vogt Baton Rouge, Louisiana Katrien Kolenberg Universidad de Valparaiso Universities of Antwerp Valparaiso, Chile Zhibin Dai and of Leuven, Belgium Yunnan Observatories and Harvard-Smithsonian Center David B.
    [Show full text]