Risks from Gmos Due to Horizontal Gene Transfer
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Gene Linkage and Genetic Mapping 4TH PAGES © Jones & Bartlett Learning, LLC
© Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION Gene Linkage and © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC 4NOTGenetic FOR SALE OR DISTRIBUTIONMapping NOT FOR SALE OR DISTRIBUTION CHAPTER ORGANIZATION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR4.1 SALELinked OR alleles DISTRIBUTION tend to stay 4.4NOT Polymorphic FOR SALE DNA ORsequences DISTRIBUTION are together in meiosis. 112 used in human genetic mapping. 128 The degree of linkage is measured by the Single-nucleotide polymorphisms (SNPs) frequency of recombination. 113 are abundant in the human genome. 129 The frequency of recombination is the same SNPs in restriction sites yield restriction for coupling and repulsion heterozygotes. 114 fragment length polymorphisms (RFLPs). 130 © Jones & Bartlett Learning,The frequency LLC of recombination differs © Jones & BartlettSimple-sequence Learning, repeats LLC (SSRs) often NOT FOR SALE OR DISTRIBUTIONfrom one gene pair to the next. NOT114 FOR SALEdiffer OR in copyDISTRIBUTION number. 131 Recombination does not occur in Gene dosage can differ owing to copy- Drosophila males. 115 number variation (CNV). 133 4.2 Recombination results from Copy-number variation has helped human populations adapt to a high-starch diet. 134 crossing-over between linked© Jones alleles. & Bartlett Learning,116 LLC 4.5 Tetrads contain© Jonesall & Bartlett Learning, LLC four products of meiosis. -
Horizontal Gene Transfer
Genetic Variation: The genetic substrate for natural selection Horizontal Gene Transfer Dr. Carol E. Lee, University of Wisconsin Copyright ©2020; Do not upload without permission What about organisms that do not have sexual reproduction? In prokaryotes: Horizontal gene transfer (HGT): Also termed Lateral Gene Transfer - the lateral transmission of genes between individual cells, either directly or indirectly. Could include transformation, transduction, and conjugation. This transfer of genes between organisms occurs in a manner distinct from the vertical transmission of genes from parent to offspring via sexual reproduction. These mechanisms not only generate new gene assortments, they also help move genes throughout populations and from species to species. HGT has been shown to be an important factor in the evolution of many organisms. From some basic background on prokaryotic genome architecture Smaller Population Size • Differences in genome architecture (noncoding, nonfunctional) (regulatory sequence) (transcribed sequence) General Principles • Most conserved feature of Prokaryotes is the operon • Gene Order: Prokaryotic gene order is not conserved (aside from order within the operon), whereas in Eukaryotes gene order tends to be conserved across taxa • Intron-exon genomic organization: The distinctive feature of eukaryotic genomes that sharply separates them from prokaryotic genomes is the presence of spliceosomal introns that interrupt protein-coding genes Small vs. Large Genomes 1. Compact, relatively small genomes of viruses, archaea, bacteria (typically, <10Mb), and many unicellular eukaryotes (typically, <20 Mb). In these genomes, protein-coding and RNA-coding sequences occupy most of the genomic sequence. 2. Expansive, large genomes of multicellular and some unicellular eukaryotes (typically, >100 Mb). In these genomes, the majority of the nucleotide sequence is non-coding. -
Genetic Recombination Promote Genetic Diversity in Prokaryotes
CAMPBELL TENTH BIOLOGY EDITION Reece • Urry • Cain • Wasserman • Minorsky • Jackson 27 Bacteria and Archaea Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick © 2014 Pearson Education, Inc. Masters of Adaptation . Utah’s Great Salt Lake can reach a salt concentration of 32% . Its pink color comes from living prokaryotes © 2014 Pearson Education, Inc. Figure 27.1 © 2014 Pearson Education, Inc. Prokaryotes thrive almost everywhere, including places too acidic, salty, cold, or hot for most other organisms . Most prokaryotes are microscopic, but what they lack in size they make up for in numbers . There are more in a handful of fertile soil than the number of people who have ever lived . Prokaryotes are divided into two domains: bacteria and archaea © 2014 Pearson Education, Inc. Concept 27.1: Structural and functional adaptations contribute to prokaryotic success . Earth’s first organisms were likely prokaryotes . Most prokaryotes are unicellular, although some species form colonies . Most prokaryotic cells are 0.5–5 µm, much smaller than the 10–100 µm of many eukaryotic cells . Prokaryotic cells have a variety of shapes . The three most common shapes are spheres (cocci), rods (bacilli), and spirals © 2014 Pearson Education, Inc. Figure 27.2 1 µm 1 µm 3 µm (a) Spherical (b) Rod-shaped (c) Spiral © 2014 Pearson Education, Inc. Figure 27.2a 1 µm (a) Spherical © 2014 Pearson Education, Inc. Figure 27.2b 1 µm (b) Rod-shaped © 2014 Pearson Education, Inc. Figure 27.2c 3 µm (c) Spiral © 2014 Pearson Education, Inc. Cell-Surface Structures . An important feature of nearly all prokaryotic cells is their cell wall, which maintains cell shape, protects the cell, and prevents it from bursting in a hypotonic environment . -
Horizontal Gene Transfer Elements: Plasmids in Antarctic Microorganisms
Chapter 5 Horizontal Gene Transfer Elements: Plasmids in Antarctic Microorganisms Matías Giménez, Gastón Azziz, Paul R. Gill, and Silvia Batista Abstract Plasmids play an important role in the evolution of microbial communi- ties. These mobile genetic elements can improve host survival and may also be involved in horizontal gene transfer (HGT) events between individuals. Diverse culture-dependent and culture-independent approaches have been used to character- ize these mobile elements. Culture-dependent methods are usually associated with classical microbiological techniques. In the second approach, development of spe- cific protocols for analysis of metagenomes involves many challenges, including assembly of sequences and availability of a reliable database, which are crucial. In addition, alternative strategies have been developed for the characterization of plas- mid DNA in a sample, generically referred to as plasmidome. The Antarctic continent has environments with diverse characteristics, including some with very low temperatures, humidity levels, and nutrients. The presence of microorganisms and genetic elements capable of being transferred horizontally has been confirmed in these environments, and it is generally accepted that some of these elements, such as plasmids, actively participate in adaptation mechanisms of host microorganisms. Information related to structure and function of HGT elements in Antarctic bac- teria is very limited compared to what is known about HGT in bacteria from temper- ate/tropical environments. Some studies are done with biotechnological objectives. The search for mobile elements, such as plasmids, may be related to improve the expression of heterologous genes in host organisms growing at very low tempera- tures. More recently, however, additional studies have been done to detect plasmids in isolates, associated or not with specific phenotypes such as drug resistance. -
A Mechanism for Genetic Recombination Generating One Parent and One Recombinant* by Thierry Boon and Norton D
A MECHANISM FOR GENETIC RECOMBINATION GENERATING ONE PARENT AND ONE RECOMBINANT* BY THIERRY BOON AND NORTON D. ZINDER ROCKEFELLER UNIVERSITY, NEW YORK Communicated August 18, 1969 Abstract.-A mechanism is proposed for generating one parental and one re- combinant genome in a single recombination event between two DNA mole- cules. Three stages of the event are described: initiation, replication, and re- turn. Initiation requires breakage and joining of strands. Replication pro- ceeds through a biparental "replication fork" generated in initiation. Return also involves breakage and joining of strands. Some of the implications of such a mechanism for genetic recombination are discussed. Introduction.-We have undertaken a study of the products of recombination of bacteriophage fil under conditions in which the parental genomes cannot replicate in the cell prior to recombination. The results obtained suggest that the products of one recombination event between two parental genomes are one parental genome and one recombinant genome. Previous studies of genetic recombination in bacteriophage did not demon- strate a correlation between the yields of reciprocal recombinants produced in single cells.2-5 Similarly, recombination between closely linked markers is often nonreciprocal in Neurospora and other fungi.6' 7 Although the results with phage f, are still preliminary, we wish to propose a mechanism of recom- bination having main features that are compatible with such nonreciprocal events. This mechanism involves breakage and joining of DNA strands and also requires DNA synthesis. Description of the Mechanism. -The DNA of phage f1 (similar to M13 and fd) is single stranded and circular.8 It has a molecular weight of about 1.7 X 106.9 After entrance into the host cell this DNA is transformed into a circular double-stranded form.10' 11 As the mechanism to be proposed is primarily aimed at understanding the recombina- tion events in phage fl, we describe it, using two double-stranded circular DNA molecules as parents. -
Comprehensive Analysis of Mobile Genetic Elements in the Gut Microbiome Reveals Phylum-Level Niche-Adaptive Gene Pools
bioRxiv preprint doi: https://doi.org/10.1101/214213; this version posted December 22, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Comprehensive analysis of mobile genetic elements in the gut microbiome 2 reveals phylum-level niche-adaptive gene pools 3 Xiaofang Jiang1,2,†, Andrew Brantley Hall2,3,†, Ramnik J. Xavier1,2,3,4, and Eric Alm1,2,5,* 4 1 Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, 5 Cambridge, MA 02139, USA 6 2 Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA 7 3 Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard 8 Medical School, Boston, MA 02114, USA 9 4 Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General 10 Hospital and Harvard Medical School, Boston, MA 02114, USA 11 5 MIT Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 12 02142, USA 13 † Co-first Authors 14 * Corresponding Author bioRxiv preprint doi: https://doi.org/10.1101/214213; this version posted December 22, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 15 Abstract 16 Mobile genetic elements (MGEs) drive extensive horizontal transfer in the gut microbiome. This transfer 17 could benefit human health by conferring new metabolic capabilities to commensal microbes, or it could 18 threaten human health by spreading antibiotic resistance genes to pathogens. Despite their biological 19 importance and medical relevance, MGEs from the gut microbiome have not been systematically 20 characterized. -
Genetic Engineering and Protein Synthesis
Key: Yellow highlight = required component Genetic Engineering and Protein Synthesis Subject Area(s) Biology Life Science Curricular Unit Title What does DNA do? Header Image 1 Image file: DNA.gif ADA Description: A computer generated model of DNA Source/Rights: Copyright © Spiffistan, Wikimedia Commons (http://commons.wikimedia.org/wiki/File:Bdna_cropped.gif) Caption: Double Stranded DNA structure Grade Level 9 (9-12) Summary This unit begins with an introduction to genetic engineering to grab the students attention before moving on to some basic biology topics. The entire gene expression process is covered, focusing on DNA transcription/translation and how this relates to protein synthesis. Mutations are also covered at the end of this unit to emphasize that changes to DNA are not always intentional. Multiple activities are included to help the students better understand the lessons. Engineering Connection Version: August 2013 1 Genetic engineering is a field with a growing number of practical applications. Engineers have developed genetic recombination techniques to manipulate gene sequences to have organisms express specific traits. It is integral that genetic engineers understand how traits are expressed and what effects will be produced by altering the DNA of an organism. Gene expression is a result of the protein synthesis process which reads DNA as a set of instructions for building specific proteins. Once this process is well understood, and genes are classified based on the desired trait, engineers develop ways to alter the genes to create a net benefit to us or the organism. This could include anything such as larger cows that produce more meat, pest resistant crops, or bacteria that produce fuel. -
A New Biological Definition of Life
BioMol Concepts 2020; 11: 1–6 Research Article Open Access Victor V. Tetz, George V. Tetz* A new biological definition of life https://doi.org/10.1515/bmc-2020-0001 received August 17, 2019; accepted November 22, 2019. new avenues for drug development and prediction of the results of genetic interventions. Abstract: Here we have proposed a new biological Defining life is important to understand the definition of life based on the function and reproduction development and maintenance of living organisms of existing genes and creation of new ones, which is and to answer questions on the origin of life. Several applicable to both unicellular and multicellular organisms. definitions of the term “life” have been proposed (1-14). First, we coined a new term “genetic information Although many of them are highly controversial, they are metabolism” comprising functioning, reproduction, and predominantly based on important biological properties creation of genes and their distribution among living and of living organisms such as reproduction, metabolism, non-living carriers of genetic information. Encompassing growth, adaptation, stimulus responsiveness, genetic this concept, life is defined as organized matter that information inheritance, evolution, and Darwinian provides genetic information metabolism. Additionally, approach (1-5, 15). we have articulated the general biological function of As suggested by the Nobel Prize-winning physicist, life as Tetz biological law: “General biological function Erwin Schrödinger, in his influential essay What Is of life is to provide genetic information metabolism” and Life ?, the purpose of life relies on creating an entropy, formulated novel definition of life: “Life is an organized and therefore defined living things as not just a “self- matter that provides genetic information metabolism”. -
Section 4. Guidance Document on Horizontal Gene Transfer Between Bacteria
306 - PART 2. DOCUMENTS ON MICRO-ORGANISMS Section 4. Guidance document on horizontal gene transfer between bacteria 1. Introduction Horizontal gene transfer (HGT) 1 refers to the stable transfer of genetic material from one organism to another without reproduction. The significance of horizontal gene transfer was first recognised when evidence was found for ‘infectious heredity’ of multiple antibiotic resistance to pathogens (Watanabe, 1963). The assumed importance of HGT has changed several times (Doolittle et al., 2003) but there is general agreement now that HGT is a major, if not the dominant, force in bacterial evolution. Massive gene exchanges in completely sequenced genomes were discovered by deviant composition, anomalous phylogenetic distribution, great similarity of genes from distantly related species, and incongruent phylogenetic trees (Ochman et al., 2000; Koonin et al., 2001; Jain et al., 2002; Doolittle et al., 2003; Kurland et al., 2003; Philippe and Douady, 2003). There is also much evidence now for HGT by mobile genetic elements (MGEs) being an ongoing process that plays a primary role in the ecological adaptation of prokaryotes. Well documented is the example of the dissemination of antibiotic resistance genes by HGT that allowed bacterial populations to rapidly adapt to a strong selective pressure by agronomically and medically used antibiotics (Tschäpe, 1994; Witte, 1998; Mazel and Davies, 1999). MGEs shape bacterial genomes, promote intra-species variability and distribute genes between distantly related bacterial genera. Horizontal gene transfer (HGT) between bacteria is driven by three major processes: transformation (the uptake of free DNA), transduction (gene transfer mediated by bacteriophages) and conjugation (gene transfer by means of plasmids or conjugative and integrated elements). -
Horizontal Gene Transfer and Recombination Analysis of SARS-Cov-2 Genes Helps Discover Its Close Relatives and Shed Light on Its Origin
bioRxiv preprint doi: https://doi.org/10.1101/2020.12.03.410233; this version posted December 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Horizontal gene transfer and recombination analysis of SARS-CoV-2 genes helps discover its close relatives and shed light on its origin Vladimir Makarenkov1*, Bogdan Mazoure2*, Guillaume Rabusseau2,3 and Pierre Legendre4 1. Département d’informatique, Université du Québec à Montréal, Montréal, QC, Canada 2. Montreal Institute for Learning Algorithms (Mila), Montréal, QC, Canada 3. Département d'informatique et de recherche opérationnelle, Université de Montréal, Montréal, QC, Canada 4. Département de sciences biologiques, Université de Montréal, C. P. 6128, succursale Centre-ville, Montréal, QC, H3C 3J7 Canada *Both authors contributed equally to this manuscript. Vladimir Makarenkov is the corresponding author of this manuscript (email: [email protected]) Abstract Background The SARS-CoV-2 pandemic is among the most dangerous infectious diseases that have emerged in recent history. Human CoV strains discovered during previous SARS outbreaks have been hypothesized to pass from bats to humans using intermediate hosts, e.g. civets for SARS-CoV and camels for MERS-CoV. The discovery of an intermediate host of SARS-CoV-2 and the identification of specific mechanism of its emergence in humans are topics of primary evolutionary importance. In this study we investigate the evolutionary patterns of 11 main genes of SARS-CoV-2. -
Electron Microscopic Observation of Recombination Intermediates
Proc. Nati. Acad. Sci. USA Vol. 73, No. 9, pp. 3000-3004, September 1976 Biochemistry On the mechanism of genetic recombination: Electron microscopic observation of recombination intermediates (electron microscopy of DNA/chi form/Holliday model/plasmid DNA) HUNTINGTON POTTER AND DAVID DRESSLER Department of Biochemistry and Molecular Biology, Harvard University, Cambridge, Massachusetts 02138 Communicated by J. D. Watson, June 1, 1976 ABSTRACT This paper deals with the nature of recombi- nation intermediates. Using the electron microscope to study the DNA of the plasmid colicin El, we have observed more than 800 molecules that appear to represent intermediates in the process of recombination. Specifically, after isolating colicin DNA and linearizing it with the restriction enzyme EcoRI, we find crossed molecules with twice the normal colicin DNA content. These forms consist of two genome-length elements held together at a region of DNA homology. The molecules can be recovered from wild type and Rec B-C host cells but are not present among the colicin DNA forms isolated from recombi- nation-deficient Rec A cells. We have termed the experimentally observed molecules "chi forms" and believe that they represent the recombination in- termediate of the Holliday model. FIG. 1. A double-size colicin DNA molecule with the shape of a The study of DNA metabolism falls into three general catego- figure 8. Such molecules may represent two monomer circles in the ries: replication, repair, and recombination. In contrast to our crossover stage of recombination. Alternatively, they might simply consist of two monomer rings interlocked like links in a chain. Lastly, knowledge about replication and repair, relatively little is the structure could be a double-length DNA circle that accidentally known about the nature of the intermediates or the enzymes crosses itself in the middle. -
Managing Risks Associated with Outdoor Use of Genetically Modified Organisms
July 2012 Commissioned Review | July 2014 Managing Risks Associated with Outdoor Use of Genetically Modified Organisms Professor Barry Scott FRSNZ Professor Clive Ronson FRSNZ Foreword In February 2014 the Council of the Royal Society of New Zealand considered a request from Federated Farmers to review the validity of scientific conclusions underpinning Auckland Council, Far North District Council, Kaipara District Council and Whangarei District Council Draft Proposed Plan Change to the District /Unitary Plan for Managing Risks Associated with Outdoor Use of Genetically Modified Organisms (GMO) Draft Section 32 Report (January 2013). Professor Barry Scott FRSNZ and Professor Clive Ronson FRSNZ are the authors of this focused review of scientific and technical assertions in that Report, on behalf of the Royal Society of New Zealand. Economic and cultural aspects relating to the outdoor use of GMOs were outside the scope of this review. We thank the authors and peer reviewer Dr Tony Conner FRSNZ for undertaking this work. Sir David Skegg FRSNZ, President, Royal Society of New Zealand Benefits and risks In assessing benefits and risks, both the magnitude and the likelihood of each need to be taken into account; this is the approach taken in New Zealand by agencies such as the Environmental Protection Authority1 and Food Standards Australia New Zealand2. There is an element of risk associated with most human activities but it is the weighing up of magnitude and likelihood that is important in the decision making process. The Report’s section on benefits and risks, however, does not include these considerations in the issues it raises. In considering the risks, the Report highlights the impact of rare events and uses the emergence of bovine spongiform encephalopathy (BSE) in United Kingdom cattle as the example.