Control of Wheat Quality by Improvers

Lutz Popper, Ph.D., Head R & D Mühlench emi e GbHGmbH &&C Co. KG Ahrensburg, Germany

LP04012001 Diversity of Baking Procedures

Time Germany China Brazil Ghana India France U.S./Canada Mexico Arabia [min] RMT (rolls) Steam bread Baguette Sugar bread Parothas Baguette, direct Pan bread Bolillos Flat bread 5 Mixing 1 min Mixing 9 min Mixing 10 min Mixing 9 min Mixing 5 min Mixing 10 min Mixing 10 min Mixing 4 min Mixing 9 min 10 Dough rest Dough rest Moulding 15 Dough rest Dough rest 2 min Dough rest 2 min 20 min Dough rest Moulding Final proof Dough rest 20 80% r. h. 60 min Firs t proo f MldiMoulding 20 min FtFrozen storage 30 min 20 min 25 10 m i n First proof Ambient conditions 30 First proof First proof Moulding Moulding 10 h 35 10 m i n Moulding Final proof First proof Moulding Moulding 40 Moulding Final proof 30 min First proof First proof 45 82% r.h. 30 min Moulding 10 m i n 50 Final proof 82% r.h. 180 min Baking Moulding 55 Final proof 60 80% r.h. shortened 65 "Drying", 2 min Moulding 82% r.h. 70 Baking First proof Moulding 30 min 75 Laminieren Final proof Final proof Temperature 80 25min Moulding 20 min ca. °C 85 Final proof ambient conditions 82% r.h. Baking ‐15 90 12 0 m i n 6 95 82% r.h. Baking 15 m i n 18 10 0 45 min 20 10 5 20 min Thawing 25 110 Baking 32‐35 115 8 h 40‐45 12 0 18 m i n 100 12 5 200‐220 13 0 Steaming 230‐250 13 5 Shortened 14 0 25 min Wt Wheat 14 5 15 0 15 5 2 nd Fermentation 16 0 (final proof) 16 5 90 min 17 0 1st Fermentation 17 5 18 0 4 h Shortened 18 5 19 0 19 5 Baking 200 Shortened 205 25 min 210 Baking 215 Baking 220 20 min 225 60 min 230 235 240 LP06102014 3 Flour Improvers

Standardization and optimization of flour quality with micro‐ingredients

4 Reasons for Application of Flour Improvers

Equilibrate fluctuations of flour ppproperties due to grain from new harvest or different varieties or different lots grain damage Improve baking performance Diversify applicability Suit customers specifications

LP03052001 5 Additives Used in Flour Improvers

1 – 100 ppm on flour 500 – 3,000 ppm on flour Enzymes Emulsifiers Oxidizing agents Acidity regulators Ascorbic acid Malt flour Reducing agents Vita l whtheat gltluten Hydrocolloids Soy flour

LP24082015 6 Oxidizi ng Agents Reasons for the Use of Oxidation

Modern milling technology (roller mills instead of stones) reduces thermal and oxidative stress Short storage of flour / just‐in‐time production reduces maturation peridiod Air‐tight packaging material or silo storage reduce access of oxygen Industrial bakers requiring very constant flour properties, and Higher dough tolerance Bleaching effects on flour and/or bread crumb Wheat varieties and high protein levels reqgquiring / allowin g for more oxidative maturation (?)

LP24082015 8 Oxidizing Agents as Flour Improvers

Potassium bromate & iodate Hypochlorite Calcium bromate Benzoyl Calcium iodate Ascorbic acid, resp. Dehdhydro‐ascorbic acid Sodium hypophosphite persulfate Sodium perborate Sodium percarbonate Oxygen Ozone

LP14032013 9 in.html Ascorbic acid mm ry/vitamin/vita ee .edu/micro/gall microscopy.fsu Source: www. Ascorbic acid under the microscope

10 Reactions of Ascorbic Acid in Dough

Glutathione 1 /2 O2 Ascorbic acid dimer Protein-SH HS-Protein Ascorbate Glutathione oxidase oxidase

H2O Dehydro- Reduced Protein-SS-Protein ascorbic acid glutathione

(modified from Grosch and Wieser, 1999)

LP04012001 11 General Directions for Use of Ascorbic Acid in Flour Improvement

Typical dosage: 2 – 6 g per 100 kg flour = 20 – 60 ppm

High and soft protein: 60 – 100 ppm High and short protein: 20 – 40 ppm Low and soft protein: max. 60 ppm Low and short protein: 20 ppm Low Falling Numbers (below 220 s): Increase dosages by 50 %

LP08022006 12 Effects of Ascorbic Acid in Baking

Compensates lack of flour maturation Improves dough stability Improves fermentation tolerance Increases dough elasticity Reduces dough extensibility Reduces dough stickiness Improves dough handling properties and machinability Results in finer crumb structure (smaller pores) Increases volume yield

LP08022006 13 Effect of Ascorbic Acid on Baking Results

Wheat flour T 55 Ash 0.497 % without Protein d.b. 13.3 % treatment Wet gluten 34.3 % Falling no. 314 s Water abs. 58. 8 % Gluten index 89

ELCO C-100 3.5 g/100 kg

LP26042001 14 AdibAzodicarbonamid e (ADA)

15 Possible Actions of Azodicarbonamide

OO II II Prot-SS-Prot 2GSH2 GSH H2 NCN= NCNH2 2 Prot-SH Azodicarbonamide

O O II II Prot-SS-Prot 2 Prot-SH GSSG H2NCN-NCNH2 I I HHH H

GSH  reduced glutathione GSSG  oxidized glutathione Prot-SS-Prot  gluteline

LP24082015 16 Properties of Azodicarbonamide

Fast oxidizing effect Results in bucky doughs Improves dough stability Improves crumb structure, but Sometimes a few larger holes Bread surfaces rough when insufficient relaxing time Recommenddded max. lllevel in bbdread flour 45 ppm

LP24082015 17 Enzymes

Nature’s all‐purpose tools No Baking without Enzymes!

In all baking processes, enzymes are involved, because flour conttiains cereal enzymes yeast has enzymes to convert flour components into fermentable substances Flour & bread improvers contribute additional enzymes to the baking process. for standardization of optimization of the flour’s baking performance and for improvement of the end product quality If all enzyme activiti es shhllall be avoided , the flour has to be tttdreated by chemicals (f.i. chlorine) or heat in order to inactivate the enzymes. An accordingly treated flour could only be used to produce flat bread, chemically leavened bread, soft biscuits or the like Some extruded snack products can be made from enzyme‐ inactive flour.

LP17062014 19 Sources for lndustrial Food Enzymes

Figs  Ficin Plants Pineapple  Bromelain Papaya  Papain

Pigs, calves  Pancreatin, Chymosin Animals Hen eggs  Lysozyme Milk  Lactoperoxidase

Yeast  Invertase, Lipase Microbes Moulds  Amylase, Xylanase, Bacteria  Protease, Oxidase

LP04012001 20 Energy of Activation & Enzyme Catalysis

LP04012001 21 Enzyme Activity Depends on Many Factors

LP17072002 22 Typical Compositions of Doughs and Batters

140

120

100

80 er's %) kk 60 rts (Ba rts

aa 40 P 20

0 Wheat Cookies Cracker Hard Flat Bread Biscuits Wafers Flour Water Fat Sugar

LP21022003 23 Amylllolyti cEnzymes

24 Amylolytic Enzymes used in Baking

Maltose

Glucose

LP17072002 25 Effect of α‐Amylase on Dough and Baked Good

Break‐down of hydrated starch ((yonly mechanically or thermally damag ed starch) Release of water Reduction of dough viscosity/consistency Improved extensibility May cause stiikickiness, large pores or weak crumb if used i n excess Produces “limit dextrins” (branched fragments) and short linear dextrins and finally maltose from linear sections of the starch molecule Improved browning Improved shelf life Better fermentation Enhanced volume yield and bread aspect

LP24082015 26 Dosage Recommendation for Fungal α‐Amylase

Minimum dosage (ppm) of Alphamalt VC 5000 (5,000 SKB/g) estimated from Falling Number and extraction rate

Type 405 / 550, Type 812 / 1050, Falling number 70-75 % extraction 80-85 % extraction 220 – 240 20 0 240 – 260 25 0 260 – 280 40 20 280 – 300 45 40 300 – 320 55 45 320 – 350 65 > 55 350 – 380 80 - >380 > 100 - Strong gluten allows for hhhigher dosages

LP24082015 27 Hemilllicellulases

Pentosanases, Xylanases and Co.

28 Enzymatic Hydrolysis Sites in Wheat Xylan

Arabinose

Xylose

Coumaric acid

Ferulic acid

α-L-Arabinofuranosidase

Endo-1,4-ß-xylanase

Coumaric acid esterase

Ferulic acid esterase

LP21032002 29 Effect of Various Xylanases on Pentosan* Viscosity

Break-down of Break-down of SWUX and WUX WEX 140 130 A. niger 2 )

%% AiA. niger 6

( 120 T. reesei 1 ity ity 110 ss Ti3T. reesei 3 100 B. subtilis Visco 90 80 0 2 4 6 8 10 12 *Pentosan from Xylanase concentration (uDNS/mL) wheat starch tailings

WUX – water-unextractable xylans WEX – water-extractable xylans SWUX – solubilized water-unextractable xylans

LP04012001 30 Summary of the Effects of Xylanases

Break down xylan backbone Soften gluten‐xylan network Hydrolyse soluble and insoluble pentosans initial increase of water absorption  dough drying release of water  softening of gluten Improve extensibility Dough softening Volume increase of baked goods Can be used to achieve finer or coarser crumb May cause stiikickiness if not suiibltableoroverdddosed

LP17062014 31 Oxidases

32 Some Oxidizing Enzymes

Glucose oxidase Galactose oxidase Hexose oxidase Sulfhydryl oxidase Phenoloxidase (laccase) Peroxidase Katalase

LP04012001 33 Effects of Glucose Oxidase in Dough

GOD Glucose + O2 + H2O Gluconic acid + H2O2

H2O2 H2O Glutathion Ascorbic acid dimer Protein-SH HS-Protein H2O2 Glu ta thione oxidase

H2O Dehydro- Reduced Protein-SS-Protein ascorbic acid glutathion

H2O2 H2O

(Peroxidase) Pentosan + H2O2 Oxidative gelation

LP01022012 34 Effect of Glucose‐Oxidase on Dough Development

500 U) BB ce ( nn

ista Reference ss Glucose Oxidase Re

0 0 5 10 15 20 Time (min)

LP04012001 35 Comparison of Glucose Oxidase in Germany Breakfast Rolls (over‐fermented)

AAc, 30 ppm GOX, 12 u/kg GOX, 40 u/kg GOX, 120 u/kg

Wheat flour: German soft wheat; SOX from pilot scale production

LP01022008 36 Summary of the Effects of Oxidases

Create hyygdrogen peroxide Cause cross‐linking of proteins and pentosans “Inactivate” softening (reducing) substances such as or glutathione Increase water absorption Result in dryer dough surfaces and hence better handling properties Improve the opening of the cut, f.i. of baguette Improve doug h stabilit y Help to preserve the dough shape in long fermentations

LP23022015 37 Carblboxyl Esterase

Lipase, Phospholipase, Galactolipase & Co. Simplified Classification and Distribution of the Main Lipids in Wheat Flour (averages; % dsd.s.)

Wheat flour lipids 2.7

Free lipids Bound lipids 090.9 181.8

Nonpolar Polar Nonpolar Polar 070.7 020.2 060.6 121.2

Glycolipids Phospholipids Glycolipids Phospholipids 0140.14 0050.05 0250.25 0950.95

Modif. from Pomeranz & Chung, 1978, using data from Chung & Ohm, 2009

LP27042011 39 Effect of Wheat Lipids on Volume Yield of Defatted Wheat Flour r)

uu 660 polar lipids g flo , 1973 00 ss 600 total lipids ml/10 itchie & Gra & itchie ((

530 lume . from MacR ff

oo non-polar lipids Modi ead v

rr 460

B volume prior to baking 00.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 Re-added wheat lipid (g/100 g flour)

LP04072002 40 Effect of Dosage and Proof Time on Baguette Rolls with Alphamalt EFX Super (Carboxyl Esterase) 0 ppm 10 ppm 25 ppm 50 ppm Basic treatment: FAA, 1 SKB/g ADA, 40 ppm Asc., 160 ppm 1.5 h, SSL, 0.3 % normal proof 743 748 787 856

Volume yield, 2 h, mL/100 g flour over-proof 1 803 852 882 935

2.5 h, over-proof 2

863 937 965 1015

LP01062007 41 Bleaching Mechanism of Triacyl Lipase

(1) Triglyceride Triacyl Lipase FFA + Lyso‐Lipid

Lipoxygenase(2) FFA + O2 R‐OOH (hydro peroxide)

R‐OOH the flour pigment and oxidizes the thiol groups of proteins

(1) ItiIntrinsi c or added titriacyl lipase (2) Flour lipoxygenase type 1 FFA –free fatty acid (R‐H)

TKP17082011 42 Summary of the Properties of Carboxyl Esterases

Produce emulsifier‐like substances from lipids Enhance dough stability Increase volume yield Result in fine porer structure Enhance crumb whiteness be physical (shallower shadows) and chemical (indirect bleaching) effects Improvement of initial crumb structure & bread volume  Improved crumb softness after storage May cause off‐flavour if not compatible with involved lipids

LP17062014 43 Enzymes Summary Typical Effects of Enzymes on Bread Quality used at common dosages

Enzyme WA(1) Volume(2) Stability(3) Cut(4) Colour(5) Crumb(6) Shelf-life(7) -Amylase, fungal o++- + + - + -Amylase, cereal - + -- - ++ -- + -Amylase, bacterial - (+) (-) o o - + -Amylase, maltogenic oooooo++

XlXylanaseWUX ++++ + o +()(+)

XylanaseWEX -+- -o-o Protease o (+) (+)/- + o (-) o Oxidase +++++++o+(+) Carboxylesterases ++++ + o+++ Transglutaminase oo++ooo

(1) Water absorption (2) Baking volume yield (3) Shape stabilty (4) Opening of the cut, shred (5) Crust colour (6) Crumb fineness (7) Non-microbial shelf-life WUX – water-unextractable xylans WEX – water-extractable xylans

LP04112014 45 SiSynergies of Improvers Combined Effect of Ascorbic Acid Enzymes

German wheat flour Type 550, harvest 2003

Untreated Asc. Asc.+Amyl. Asc.+(Amyl.+Xyl.) 4 g 8 ggg + 30 g 8 ggg + 10 g

490 mL* 820 mL 950 mL 970 mL

* Volume yield in mL per 100 g flour

LP22022010 47 Carboxyl Esterase Boosts the Baking Results

ELCO C 100K: Ascorbic acid, 100 % Alphamalt A 15140: Amylase, 140,000 SKB/g Alphamalt HC 13045: Hemicellulase Alphamalt Gloxy 14080: Glucose oxidase Alphamalt EFX Mega: Carboxyl esterase

Reference ELCO, 50 ppm ELCO, 50 ppm ELCO, 40 ppm A 15140, 10 ppm A 15140, 10 ppm A 15140, 10 ppm HC 13045 , 30 ppm HC 13045, 30 ppm Gloxy 14080, 20 ppm EFX Mega, 10 ppm

LP05112014 48 Effects of Flour Improvers on Rheology Fa lling NbNumber Effect of Amylases on Falling Number

600 North American 550 hard wheat tFAA MBEX MWF [s] 500 450

umber 400 350 lling N

aa 300 F 250 German soft wheat 200 0 50 100 150 200 250 Dosage [g /100 k g fl our]

LP09062004 51 A New Amylase for Falling Number Control

Dough consistency 5 4 Pore 3 Dough structure 2 stability 1 Alph ama lt A 0 Alphamalt FN

Crust color Volume yield

Bloom Dough consistency: 0 = soft; 5 = firm Pore stttructure: 0 = fine; 5 = coarse

LP24082015 52 Effect of Rowelit on Falling Number and Baking

700 280 0 g) s) 00 650 260 (( mber (mL/1 uu

dd 600 VlVolume 240 Falling No. e yiel lling N mm 550 220 aa Wheat flour T550 F 12.6 % protein Volu 500 200 0 255075100125150 Dosagg(gg)e Rowelit (g/100 kg flour)

LP18112010 53 The Farinogram [Mixolab Curve] Farinograph Examples for Weak & Strong Flour

Mix ing time (m in)

LP28062006 55 Effect of Glucose Oxidase on the Farinogram

500 U)

nce (B German wheat flour 10 ppm Alphamalt Gloxy 5080 esista

RR Re fe r e nce Glucos e Oxidas e

0 0 5 10 15 20 Time (min)

LP09062004 56 Effect of Alphamalt BX on the Farinogram

500 U) BB ce ( nn German wheat flour sista

ee no treatment

R 400 ppm BX 0 0 5 10 15 20 Time (min)

LP09062004 57 Effect of Flour Treatment on Farinogram

Oxidation, Enzyme, WA Developm. Stability Softening nd ppm ppm % min min B.U. ,, uu untreated 59.8 3.0 4.5 30 AA, 10 59.8 3.5 10.0 10 romate ound, AA, 20 59.8 3.0 12.0 0 compo bb pp AA, 40 59.8 2.5 12.0 10 ss AA, 80 59.5 3.0 12.0 20

PBr, 10 60.0 3.5 5.0 30 se com assium g agent tt aa PBr, 20 60.1 3.0 7.0 25 nn PBr, 40 60.0 3.0 7.0 20 PBr, 80 60.1 3.5 7.5 20 e/xylan /maturi PBr=po ss A 10033, 50 59. 8 303.0 454.5 30 ss A 10033, 100 59.8 3.0 3.5 50 A 10033, 150 59.8 3.5 2.0 60 =amyla bic acid, enzyme 33 AA, 20 A 10033, 100 59. 5 252.5 303.0 30 rr AA, 40 A 10033, 100 59.3 3.0 1.0 25 AA, 80 A 10033, 100 59.8 2.5 1.0 45 A 1003 A A=asco BX, 100 59.5 3.0 10.5 20 multiple AA BX, 200 59.6 2.5 8.5 25 ==

BX, 400 59.3 3.0 7.0 70 BX

LP22022001 58 The Alveograph Effect of Various Flour Additives on Alveograms

Treatment P L P/L W Remarks untreated 83 97 0.86 209 Ascorbic acid (1) +-+++ ++ - + ++ Cysteine (2) -+-- Sodium metabisulfite---- alpha-Amylase (3) -- ++ -- - Hemi cell ul ase, AN - o -- Hemicellulase, TR -- + - - Hemicellulase, BS - - + - (4) (1) ELCO C-100 Protease, fungal -+-- (2) EMCEsoft P Glucose oxidase (5) +-+o (3) Alphamalt A 4050 (4) Alphamalt Pro Alphamalt A 6003 - + - - (5) Alphamalt Gloxy 4092 Alphamalt A 9029 - + - - (6) Alphamalt LQ 4020 Wafer enzyme (6) -- + -- -- (7) EMCEvit C

Alphamalt BX ++ -- ++ + AN = Aspergillus niger Alphamalt BX + cysteine ++ -- ++ + softer than BX TR = Trichoderma reseei Vital wheat gluten (7) +-/o+++ BS = Bacillus subtilis

LP22022001 60 Effect of Various Enzymes on the Alveogram

150

Lipase B, 100 ppm Reference

) 100 B2000B 2000, 500 ppm VC 5000, 500 ppm HCF, 30 ppm

ight (mm ight Gloxy 4090, 250 ppm

He 50

0 0 50 100 150 Length (mm) VC 5000 = alpha-amylase from Aspergillus oryzae, 5,000 u/g (SKB) HCF = hemicellulase from Trichoderma reesei B 2000 (Alphamalt Pro) = protease from Aspergillus oryzae Gloxy 4090 = glucose oxidase from Aspergillus niger, 1,500 u/g

LP10042015 61 Effect of Ascorbic Acid on Alveograms

20 ppm 10 ppm 20 ppm 5 ppm untreated 10 ppm 5 ppm untreated

Standard + 3 h

After Faridi & Rasper, 1987

LP22022001 62 Effect of Alphamalt BX on the Alveogram

US flour

untreated 200 ppm 400 ppm

LP22022001 63 Replacement of Potassium Bromate

Reference 7 g bromate, 40 g Alphamalt BX 10 g VC 5000

LP22022001 64 The Extensogram

65 Effect of Protein Content on Alveo‐ & Extensograms

LP13052010 66 Effect of Ascorbic Acid on the Extensogram

1000 135 min 900 800 ) ELCO C-100 UU 700 0 ppm 600

ce (B 30 ppm

nn 500 60 ppm 400 120 ppm

esista 300

RR 300 ppm 200 100 0 0 50 100 150 200 Ex tension (mm)

LP13052010 67 The MC NNitavigator

A Quick Guide through the Action of Flour Improvers The MC Navigator, an Orientation Chart for Baking & Rheology Additives

LP05102007 69 1 MC Navigator Baking (1)

LP05102007 70 1 MC Navigator Baking (2)

LP05102007 71 1 MC Navigator Baking (3)

LP05102007 72