Member Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Characteristics of Satellite-Based Ocean Turbulent Heat Flux Around the Korean Peninsula and Relationship with Changes in Typhoon Intensity
remote sensing Article Characteristics of Satellite-Based Ocean Turbulent Heat Flux around the Korean Peninsula and Relationship with Changes in Typhoon Intensity Jaemin Kim and Yun Gon Lee * Atmospheric Sciences, Department of Astronomy, Space Science, and Geology, Chungnam National University, Daejeon 34134, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-042-821-7107 Abstract: Ocean-atmosphere energy exchange is an important factor in the maintenance of oceanic and atmospheric circulation and the regulation of meteorological and climate systems. Oceanic sensible and latent heat fluxes around the Korean Peninsula were determined using satellite-based air-sea variables (wind speed, sea surface temperature, and atmospheric specific humidity and temperature) and the coupled ocean-atmosphere response experiment (COARE) 3.5 bulk algorithm for six years between 2014 and 2019. Seasonal characteristics of the marine heat flux and its short- term fluctuations during summer typhoons were also investigated. Air-sea variables were produced through empirical relationships and verified with observational data from marine buoys around the Korean Peninsula. Satellite-derived wind speed, sea surface temperature, atmospheric specific humidity, and air temperature were strongly correlated with buoy data, with R2 values of 0.80, 0.97, 0.90, and 0.91, respectively. Satellite-based sensible and latent heat fluxes around the peninsula were also validated against fluxes calculated from marine buoy data, and displayed low values in summer and higher values in autumn and winter as the difference between air-sea temperature and specific humidity increased. Through analyses of spatio-temporal fluctuations in the oceanic turbulent heat Citation: Kim, J.; Lee, Y.G. -
Forecasting of Storm Surge and Wave Along Taiwan Coast Y
Forecasting of Storm Surge and Wave along Taiwan Coast Y. Peter Sheng1, *, Vladimir A. Paramygin2, Chuen-Teyr Terng 3, and Chi-Hao Chu 3 1Advanced Aqua Dynamics, Inc., Gainesville, Florida, U.S.A. 2 University of Florida, Gainesville, Florida, U.S.A. 3 Central Weather Bureau, Taipei, Taiwan, R.O.C. *Corresponding Author: [email protected] Abstract This paper describes the application of a coupled surge-wave modeling system CH3D-SWAN for simulating storm surge and wave along Taiwan coast. The modeling system has been used for simulating storm surge and wave in the U.S., Arabian Gulf, and Taiwan. This paper presents the hindcasting of Typhoon Soudelor in 2015 and the forecasting of the typhoon season in 2016 with Typhoon Meiji as an example. Performance of the forecasting system is assessed and future forecasting effort is discussed. Key words: Storm Surge, Wave, Numerical Simulation, Forecasting, Taiwan 1. Introduction typhoons of Taiwan. In the following section, we first give a brief description of the CH3D-SWAN modeling In Taiwan, typhoons are an annual threat. Typhoons not only bring torrential rain, but often cause storm surge, wave, and coastal inundation that system with all the associated modules of the impact areas near the coast and amplifies the flooding forecasting system and model domains. Model from rainfall. The impact of tropical cyclones on the hindcasting of storm surge and wave during Typhoon coastal regions in Taiwan depend on the Soudelor in 2015 is then described, followed by a characteristics of tropical cyclones and coastal regions. description of the forecasting performance of the 2016 For example, along the southwest coast of Taiwan typhoon season using Typhoon Meji as an example. -
Summary of 2014 NW Pacific Typhoon Season and Verification of Authors’ Seasonal Forecasts
Summary of 2014 NW Pacific Typhoon Season and Verification of Authors’ Seasonal Forecasts Issued: 27th January 2015 by Dr Adam Lea and Professor Mark Saunders Dept. of Space and Climate Physics, UCL (University College London), UK. Summary The 2014 NW Pacific typhoon season was characterised by activity slightly below the long-term (1965-2013) norm. The TSR forecasts over-predicted activity but mostly to within the forecast error. The Tropical Storm Risk (TSR) consortium presents a validation of their seasonal forecasts for the NW Pacific basin ACE index, numbers of intense typhoons, numbers of typhoons and numbers of tropical storms in 2014. These forecasts were issued on the 6th May, 3rd July and the 5th August 2014. The 2014 NW Pacific typhoon season ran from 1st January to 31st December. Features of the 2014 NW Pacific Season • Featured 23 tropical storms, 12 typhoons, 8 intense typhoons and a total ACE index of 273. These numbers were respectively 12%, 25%, 0% and 7% below their corresponding long-term norms. Seven out of the last eight years have now had a NW Pacific ACE index below the 1965-2013 climate norm value of 295. • The peak months of August and September were unusually quiet, with only one typhoon forming within the basin (Genevieve formed in the NE Pacific and crossed into the NW Pacific basin as a hurricane). Since 1965 no NW Pacific typhoon season has seen less than two typhoons develop within the NW Pacific basin during August and September. This lack of activity in 2014 was in part caused by an unusually strong and persistent suppressing phase of the Madden-Julian Oscillation. -
Improved Global Tropical Cyclone Forecasts from NOAA: Lessons Learned and Path Forward
Improved global tropical cyclone forecasts from NOAA: Lessons learned and path forward Dr. Vijay Tallapragada Chief, Global Climate and Weather Modeling Branch & HFIP Development Manager Typhoon Seminar, JMA, Tokyo, Japan. NOAA National Weather Service/NCEP/EMC, USA January 6, 2016 Typhoon Seminar JMA, January 6, 2016 1/90 Rapid Progress in Hurricane Forecast Improvements Key to Success: Community Engagement & Accelerated Research to Operations Effective and accelerated path for transitioning advanced research into operations Typhoon Seminar JMA, January 6, 2016 2/90 Significant improvements in Atlantic Track & Intensity Forecasts HWRF in 2012 HWRF in 2012 HWRF in 2015 HWRF HWRF in 2015 in 2014 Improvements of the order of 10-15% each year since 2012 What it takes to improve the models and reduce forecast errors??? • Resolution •• ResolutionPhysics •• DataResolution Assimilation Targeted research and development in all areas of hurricane modeling Typhoon Seminar JMA, January 6, 2016 3/90 Lives Saved Only 36 casualties compared to >10000 deaths due to a similar storm in 1999 Advanced modelling and forecast products given to India Meteorological Department in real-time through the life of Tropical Cyclone Phailin Typhoon Seminar JMA, January 6, 2016 4/90 2014 DOC Gold Medal - HWRF Team A reflection on Collaborative Efforts between NWS and OAR and international collaborations for accomplishing rapid advancements in hurricane forecast improvements NWS: Vijay Tallapragada; Qingfu Liu; William Lapenta; Richard Pasch; James Franklin; Simon Tao-Long -
Appendix 8: Damages Caused by Natural Disasters
Building Disaster and Climate Resilient Cities in ASEAN Draft Finnal Report APPENDIX 8: DAMAGES CAUSED BY NATURAL DISASTERS A8.1 Flood & Typhoon Table A8.1.1 Record of Flood & Typhoon (Cambodia) Place Date Damage Cambodia Flood Aug 1999 The flash floods, triggered by torrential rains during the first week of August, caused significant damage in the provinces of Sihanoukville, Koh Kong and Kam Pot. As of 10 August, four people were killed, some 8,000 people were left homeless, and 200 meters of railroads were washed away. More than 12,000 hectares of rice paddies were flooded in Kam Pot province alone. Floods Nov 1999 Continued torrential rains during October and early November caused flash floods and affected five southern provinces: Takeo, Kandal, Kampong Speu, Phnom Penh Municipality and Pursat. The report indicates that the floods affected 21,334 families and around 9,900 ha of rice field. IFRC's situation report dated 9 November stated that 3,561 houses are damaged/destroyed. So far, there has been no report of casualties. Flood Aug 2000 The second floods has caused serious damages on provinces in the North, the East and the South, especially in Takeo Province. Three provinces along Mekong River (Stung Treng, Kratie and Kompong Cham) and Municipality of Phnom Penh have declared the state of emergency. 121,000 families have been affected, more than 170 people were killed, and some $10 million in rice crops has been destroyed. Immediate needs include food, shelter, and the repair or replacement of homes, household items, and sanitation facilities as water levels in the Delta continue to fall. -
Member Report (Malaysia)
MEMBER REPORT (MALAYSIA) ESCAP/WMO Typhoon Committee 15th Integrated Workshop Video Conference 1-2 December 2020 Organised by Viet Nam Table of Contents I. Overview of tropical cyclones which have affected/impacted Malaysia in 2020 1. Meteorological Assessment (highlighting forecasting issues/impacts) 2. Hydrological Assessment (highlighting water-related issues/impact) (a) Flash flood in Kajang & Kuala Lumpur in July and September 2020 (b) Enhancement of Hydrological Data Management for DID Malaysia (c) Hydrological Instrumentation Updates for Malaysia (d) Drought Monitoring Updates 3. Socio-Economic Assessment (highlighting socio-economic and DRR issues/impacts) 4. Regional Cooperation Assessment (highlighting regional cooperation successes and challenges) II. Summary of progress in Priorities supporting Key Result Areas 1. Annual Operating Plan (AOP) for Working Group of Meteorology [AOP4: Radar Integrated Nowcasting System (RaINS)] 2. Annual Operating Plan (AOP) for Working Group of Hydrology (AOP2, AOP4, AOP5, AOP6) 3. The Government of Malaysia’s Commitment Towards Supporting the Sendai Framework for Disaster Risk Reduction I. Overview of tropical cyclones which have affected/impacted Malaysia in 2020 1. Meteorological Assessment (highlighting forecasting issues/impacts) During the period of 1 November 2019 to 31 October 2020, 27 tropical cyclones (TCs) formed over the Western Pacific Ocean, the Philippines waters as well as the South China Sea. Eight of the TCs entered the area of responsibility of the Malaysian Meteorological Department (MET Malaysia) as shown in Figure 1. The TCs, which consisted of seven typhoons and a tropical storm that required the issuance of strong winds and rough seas warnings over the marine regions under the responsibility of MET Malaysia, are listed in Table 1. -
Simulating Storm Surge and Inundation Along the Taiwan Coast During Typhoons Fanapi in 2010 and Soulik in 2013
Terr. Atmos. Ocean. Sci., Vol. 27, No. 6, 965-979, December 2016 doi: 10.3319/TAO.2016.06.13.01(Oc) Simulating Storm Surge and Inundation Along the Taiwan Coast During Typhoons Fanapi in 2010 and Soulik in 2013 Y. Peter Sheng1, *, Vladimir A. Paramygin1, Chuen-Teyr Terng 2, and Chi-Hao Chu 2 1 University of Florida, Gainesville, Florida, U.S.A. 2 Central Weather Bureau, Taipei City, Taiwan, R.O.C. Received 10 January 2016, revised 9 June 2016, accepted 13 June 2016 ABSTRACT Taiwan is subjected to significant storm surges, waves, and coastal inundation during frequent tropical cyclones. Along the west coast, with gentler bathymetric slopes, storm surges often cause significant coastal inundation. Along the east coast with steep bathymetric slopes, waves can contribute significantly to the storm surge in the form of wave setup. To examine the importance of waves in storm surges and quantify the significance of coastal inundation, this paper presents numerical simulations of storm surge and coastal inundation during two major typhoons, Fanapi in 2010 and Soulik in 2013, which impacted the southwest and northeast coasts of Taiwan, respectively. The simulations were conducted with an integrated surge-wave modeling system using a large coastal model domain wrapped around the island of Taiwan, with a grid resolution of 50 - 300 m. During Fanapi, the simulated storm surge and coastal inundation near Kaohsiung are not as accurate as those obtained using a smaller coastal domain with finer resolution (40 - 150 m). During Soulik, the model simulations show that wave setup contributed significantly (up to 20%) to the peak storm surge along the northeast coast of Taiwan. -
Economic Analysis of Disaster Management Investment Effectiveness in Korea
sustainability Article Economic Analysis of Disaster Management Investment Effectiveness in Korea Bo-Young Heo 1 and Won-Ho Heo 2,* 1 National Disaster Management Research Institute, Ulsan 44538, Korea; [email protected] 2 School of Civil and Environmental Engineering, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea * Correspondence: [email protected]; Tel.: +82-52-928-8112 Received: 12 March 2019; Accepted: 21 May 2019; Published: 28 May 2019 Abstract: Governments have been investing in extensive operations to minimize economic losses and casualties from natural disasters such as floods and storms. A suitable verification process is required to guarantee maximum effectiveness and efficiency of investments while ensuring sustained funding. Active investment can be expected by verifying the effectiveness of disaster prevention spending. However, the results of the budget invested in disaster-safety-related projects are not immediate but evident only over a period of time. Additionally, their effects should be verified in terms of the state or society overall, not from an individualistic perspective because of the nature of public projects. In this study, an economic analysis of the short- and long-term effects of investment in a disaster-safety-related project was performed and the effects of damage reduction before and after project implementation were analyzed to evaluate the short-term effects and a cost–benefit analysis was conducted to assess the long-term effects. The results show that disaster prevention projects reduce damages over both the short and long term. Therefore, investing in preventive projects to cope with disasters effectively is important to maximize the return on investment. -
Upper Ocean Response to Typhoon Kalmaegi and Sarika in the South China Sea from Multiple-Satellite Observations and Numerical Simulations
remote sensing Article Upper Ocean Response to Typhoon Kalmaegi and Sarika in the South China Sea from Multiple-Satellite Observations and Numerical Simulations Xinxin Yue 1, Biao Zhang 1,* ID , Guoqiang Liu 1,2, Xiaofeng Li 3 ID , Han Zhang 4 and Yijun He 1 ID 1 School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China; [email protected] (X.Y.); [email protected] (G.L.); [email protected] (Y.H.) 2 Bedford Institute of Oceanography, Fisheries and Oceans, Dartmouth, NS B2Y 4A2, Canada 3 GST at National Oceanic and Atmospheric Administration (NOAA)/NESDIS, College Park, MD 20740-3818, USA; [email protected] 4 State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Hangzhou 310012, China; [email protected] * Correspondence: [email protected] Received: 12 December 2017; Accepted: 22 February 2018; Published: 24 February 2018 Abstract: We investigated ocean surface and subsurface physical responses to Typhoons Kalmaegi and Sarika in the South China Sea, utilizing synergistic multiple-satellite observations, in situ measurements, and numerical simulations. We found significant typhoon-induced sea surface cooling using satellite sea surface temperature (SST) observations and numerical model simulations. This cooling was mainly caused by vertical mixing and upwelling. The maximum amplitudes were 6 ◦C and 4.2 ◦C for Typhoons Kalmaegi and Sarika, respectively. For Typhoon Sarika, Argo temperature profile measurements showed that temperature response beneath the surface showed a three-layer vertical structure (decreasing-increasing-decreasing). Satellite salinity observations showed that the maximum increase of sea surface salinity (SSS) was 2.2 psu on the right side of Typhoon Sarika’s track, and the maximum decrease of SSS was 1.4 psu on the left. -
Philippines: 106 Dead* China
Creation date: 20 Feb 2015 Philippines, China: Typhoon RAMMASUN, Flood and landslide Philippines, China Country Philippines: Northern and central parts of the country Philippines: 106 dead* and China: Southern part District China: 62 dead* Duration 15 Jul 2014- Typhoon Rammasun that landed on the eastern part of Philippines: 5 missing* Philippines on 15 Jul, moved across Luzon Island and made Outline final landfall in southern China. Rammasun was the most powerful typhoon that hit southern China in 40 years. 106 China: 21 missing* people in Philippines, and 62 in China were killed. *Philippines: Reported on 16 Sep 2014 *China: Reported on 27 Jul 2014 Photo 1 A man gathering bamboos that drifted to the bridge due to the Typhoon Rammasun, in Batangas in the southwest of Manila (17 Jul 2014) Source http://www.afpbb.com/articles/-/3020815 Copyright © 1956 Infrastructure Development Institute – Japan. All Rights Reserved. The reproduction or republication of this material is strictly prohibited without the prior written permission of IDI. 一般社団法人 国際建設技術協会 Infrastructure Development Institute – Japan Photo 2 Residents heading to an evacuation shelter in the strong wind and heavy rain caused by the typhoon in Manila (16 Jul 2014) Source http://www.afpbb.com/articles/-/3020815?pid=14054270 Photo 3 A resident climbs on a bridge destroyed during the onslaught of Typhoon Rammasun, (locally named Glenda) in Batangas city south of Manila, July 17, 2014. Source http://www.reuters.com/article/2014/07/17/us-philippines-typhoon-idUSKBN0FM01320140717 Photo 4 A person taking photos of storm-swept sea in Hainan province (18 Jul 2014) Source http://www.afpbb.com/articles/-/3021050?pid=14066126 Copyright © 1956 Infrastructure Development Institute – Japan. -
Field Measurements of Wind Effects on the Tallest Building in Hong Kong†
______________________________________________________________________http://www.paper.edu.cn THE STRUCTURAL DESIGN OF TALL AND SPECIAL BUILDINGS Struct. Design Tall Spec. Build. 12, 67–82 (2003) Published online in Wiley InterScience (www.interscience.wiley.com). DOI:10.1002/tal.213 FIELD MEASUREMENTS OF WIND EFFECTS ON THE TALLEST BUILDING IN HONG KONG† Q. S. LI1*, Y. Q. XIAO1,2, C. K. WONG1 AND A. P. JEARY3 1Department of Building and Construction, City University of Hong Kong, Kowloon, Hong Kong 2School of Civil Engineering, Harbin Institute of Technology, Harbin, China 3School of Building and Construction Science, University of Western Sydney, NSW, Australia SUMMARY Central Plaza has a height of approximately 374 m and is 78-storeys tall. It is the tallest structure in Hong Kong and was the highest reinforced-concrete building in the world when it was built several years ago. This paper describes some results obtained from the full-scale measurements of wind effects on Central Plaza. The field data such as wind speed, wind direction and acceleration responses have been measured during the close passage of several typhoons in recent years. Detailed analysis of the field data is conducted to investigate wind effects on the tall building. The full-scale measurements are compared with the wind tunnel results. The amplitude-dependent characteristics of damping that were obtained by using the random decrement technique are investigated on the basis of the field measurements. Copyright 2003 John Wiley & Sons, Ltd. 1. INTRODUCTION Hong Kong is close to the most active typhoon-generating area in the world, with tropical cyclones formed in the western Pacific Ocean or in the South China Sea several times each year. -
2008 Tropical Cyclone Review Summarises Last Year’S Global Tropical Cyclone Activity and the Impact of the More Significant Cyclones After Landfall
2008 Tropical Cyclone 09 Review TWO THOUSAND NINE Table of Contents EXECUTIVE SUMMARY 1 NORTH ATLANTIC BASIN 2 Verification of 2008 Atlantic Basin Tropical Cyclone Forecasts 3 Tropical Cyclones Making US Landfall in 2008 4 Significant North Atlantic Tropical Cyclones in 2008 5 Atlantic Basin Tropical Cyclone Forecasts for 2009 15 NORTHWEST PACIFIC 17 Verification of 2008 Northwest Pacific Basin Tropical Cyclone Forecasts 19 Significant Northwest Pacific Tropical Cyclones in 2008 20 Northwest Pacific Basin Tropical Cyclone Forecasts for 2009 24 NORTHEAST PACIFIC 25 Significant Northeast Pacific Tropical Cyclones in 2008 26 NORTH INDIAN OCEAN 28 Significant North Indian Tropical Cyclones in 2008 28 AUSTRALIAN BASIN 30 Australian Region Tropical Cyclone Forecasts for 2009/2010 31 Glossary of terms 32 FOR FURTHER DETAILS, PLEASE CONTACT [email protected], OR GO TO OUR CAT CENTRAL WEBSITE AT HTTP://WWW.GUYCARP.COM/PORTAL/EXTRANET/INSIGHTS/CATCENTRAL.HTML Tropical Cyclone Report 2008 Guy Carpenter ■ 1 Executive Summary The 2008 Tropical Cyclone Review summarises last year’s global tropical cyclone activity and the impact of the more significant cyclones after landfall. Tropical 1 cyclone activity is reviewed by oceanic basin, covering those that developed in the North Atlantic, Northwest Pacific, Northeast Pacific, North Indian Ocean and Australia. This report includes estimates of the economic and insured losses sus- tained from each cyclone (where possible). Predictions of tropical cyclone activity for the 2009 season are given per oceanic basin when permitted by available data. In the North Atlantic, 16 tropical storms formed during the 2008 season, compared to the 1950 to 2007 average of 9.7,1 an increase of 65 percent.