Path Integrals in Quantum Physics 3

Total Page:16

File Type:pdf, Size:1020Kb

Path Integrals in Quantum Physics 3 Path Integrals in Quantum Physics Lectures given at ETH Zurich R. Rosenfelder Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland Abstract These lectures are intended for graduate students who want to acquire a working knowledge of path integral methods in a wide variety of fields in physics. In general the presentation is elementary and path integrals are developed in the usual heuristic, non-mathematical way for application in many diverse problems in quantum physics. Three main parts deal with path integrals in non-relativistic quantum mechanics, many- body physics and field theory and contain standard examples (quadratic Lagrangians, tunneling, description of bosons and fermions etc.) as well as specialized topics (scattering, dissipative systems, spin & color in the path integral, lattice methods etc.). In each part simple Fortran programs which can be run on a PC, illustrate the numerical evaluation of (Euclidean) path integrals by Monte-Carlo or variational methods. Also included are the set of problems which accompanied the lectures and their solutions. arXiv:1209.1315v4 [nucl-th] 30 Jul 2017 2 Content 0. Contents First, an overview over the planned topics. The subsections marked by ⋆ are optional and may be left out if there is no time available whereas the chapters printed in blue deal with basic concepts. Problems from the optional chapters or referring to ”Details” are marked by a ⋆ as well. 1. Path Integrals in Non-Relativistic Quantum Mechanics of a Single Particle 1. Action Principle and Sum over all Paths ...................................................................... 6 2. Lagrange, Hamilton and other Path-Integral Formulations ........................................ 10 3. Quadratic Lagrangians ................................................................................................ 22 4. Perturbation Theory ⋆ ................................................................................................ 26 5. Semiclassical Expansions .............................................................................................. 29 6. Potential Scattering and Eikonal Approximation ⋆ ..................................................... 33 7. Green Functions as Path Integrals .............................................................................. 44 8. Symmetries and Conservation Laws ⋆ .......................................................................... 53 9. Numerical Treatment of Path Integrals ⋆ ..................................................................... 56 10. Tunneling and Instanton Solutions ⋆ ............................................................................ 63 2. Path Integrals in Statistical Mechanics and Many-Body Physics 1. Partition Function ......................................................................................................... 72 2. The Polaron ................................................................................................................. 74 3. Dissipative Quantum Systems ⋆ ................................................................................... 79 4. Particle Number Representation and Path Integrals over Coherent States ................. 88 5. Description of Fermions: Grassmann Variables ........................................................... 95 6. Perturbation Theory and Diagrams ⋆ .......................................................................... 98 7. Auxiliary Fields and Hartree Approximation ⋆ .......................................................... 105 8. Asymptotic Expansion of a Class of Path Integrals ⋆ ................................................ 109 3. Path Integrals in Field Theory 1. Generating Functionals and Perturbation Theory ................................................... 120 2. Effective Action ⋆ .................................................................................................... 135 3. Quantization of Gauge Theories ............................................................................... 139 4. Worldlines and Spin in the Path Integral ⋆ .............................................................. 149 5. Anomalies ⋆ .............................................................................................................. 157 6. Lattice Field Theories ⋆ ............................................................................................ 162 Additional Literature ................................................................................................................ 175 Original Publications ............................................................................................................... 176 Problems ................................................................................................................................... 180 Solutions ................................................................................................................................... 195 R. Rosenfelder : Path Integrals in Quantum Physics 3 Literature: There is a large number of text books which are dealing with path integrals either as a tool for specific problems or as basis for an unified treatment. In the following a small selection is presented in which my favorite books (whom I mostly follow 1) are marked by the symbol . ♣ Section 1 : R. P. Feynman and A. R. Hibbs: Quantum Mechanics and Path Integrals, McGraw-Hill (1965). • L. S. Schulman: Techniques and Applications of Path Integration, John Wiley (1981). • ♣ J. Glimm and A. Jaffe: Quantum Physics: A Functional Point of View, Springer (1987). • G. Roepstorff: Path Integral Approach to Quantum Physics, Springer (1994). • G. W. Johnson and M. L. Lapidus: The Feynman Integral and Feynman’s Operational Calculus, • Oxford University Press (2000). J. Zinn-Justin: Path Integrals in Quantum Mechanics, Oxford University Press (2006). • Section 2 : R. P. Feynman: Statistical Mechanics, Benjamin (1976). • V. N. Popov: Functional Integrals in Quantum Field Theory and Statistical Physics, Reidel (1983). • J. W. Negele and H. Orland: Quantum Many-Particle Systems, Addison-Wesley (1987). • ♣ J. Zinn-Justin: Quantum Field Theory and Critical Phenomena, 4th ed., Oxford U. Press (2002). • H. Kleinert: Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, • 3rd ed., World Scientific (2004). Section 3 : C. Itzykson and J.-B. Zuber: Quantum Field Theory, McGraw-Hill (1980), ch. 9. • T.-P. Cheng and L.-F. Li: Gauge Theory of Elementary Particle Physics, Clarendon (1988). • R. J. Rivers: Path Integral Methods in Quantum Field Theory, Cambridge University Press (1990). • M. E. Peskin and D. V. Schroeder: An Introduction to Quantum Field Theory, Addison-Wesley • (1995), ch. 9. ♣ V. Parameswaran Nair: Quantum Field Theory. A Modern Perspective, Springer (2005). • ♣ H. J. Rothe: Lattice Gauge Theories. An Introduction, 3rd ed., World Scientific Lecture Notes in • Physics, Vol. 74, World Scientific (2005). A. Das: Field Theory. A Path Integral Approach, 2nd ed., World Scientific Lecture Notes in Physics, • Vol. 75, World Scientific (2006). ♣ 1”(My father used to say: ’If you steal from one book, you are condemned as a plagiarist, but if you steal from ten books, you are considered a scholar, and if you steal from thirty or fourty books, a distinguished scholar.’)” {Oz}, p.129. 4 Content Prerequisites: Quantum Mechanics: A two-semester course, a little bit of Statistical Mechanics, basic concepts of Field Theory. Practice Lessons: Participation in the Practice Sessions is strongly recommended – according to the motto “I hear – and I forget, I see – and I remember, I do – and I understand !” (Chinese proverb 2) Remarks: In order to find some orientation in the jungle of (over 1300 listed) equations, the most important equations are framed according to the following scheme fundamental ( 9 times) very important ( 24 times) important ( 101 times) , where, of course, my rating may be debatable ... The “Details” in small print give more in-depth information or detailed derivations and can be omitted in a first study. Additional literature is referenced in the text in curly brackets, e.g. {Weiss} and is listed at the end in aphabetical order. Original publications are cited by consecutive numbers, e.g. [11], which are collected at the end of the text just before the Problems. 2Attributed to Xun Kuang (c. 310 - c. 235 BC) known as Xunzi (”Master Xun”), a Chinese Realist Confucian philosopher (see https://en.wikipedia.org/wiki/Xun−Kuang). R. Rosenfelder : Path Integrals in Quantum Physics 5 The following abbreviations are frequently used in the text: w.r.t. : with respect to i.e. : (Latin: id est) that is viz. : (Latin: videlicet) namely l.h.s. : left-hand side r.h.s. : right-hand side e.g. : (Latin: exemplum gratum) for example cf. : (Latin: confer) compare q.e.d. : (Latin: quod erat demonstrandum) which was to be proved. Despite the word ”Integral” appearing in the title no knowledge of particular integrals is needed – the only integral which appears again and again in various (multi-dimensional) generalizations is the Gaussian integral + ∞ ax2 π (0.1) G(a) = dx e− = , Re a> 0 . a Z−∞ r Proof: Evaluate + + G2(a) = ∞ ∞ dx dy exp a(x2 + y2) (0.2a) − Z−∞ Z−∞ h i in polar coordinates x = r cos φ,y = r sin φ, dxdy = rdrdφ . Then one obtains 2π 1 d π G2(a) = dφ ∞ dr r exp( ar2) = 2π ∞ dr exp( ar2) = . (0.2b) − − 2a dr − a Z0 Z0 Z0 The constraint for the complex parameter a is needed for convergence of the integral or for vanishing of the integrated term at infinity,
Recommended publications
  • An Introduction to Quantum Field Theory
    AN INTRODUCTION TO QUANTUM FIELD THEORY By Dr M Dasgupta University of Manchester Lecture presented at the School for Experimental High Energy Physics Students Somerville College, Oxford, September 2009 - 1 - - 2 - Contents 0 Prologue....................................................................................................... 5 1 Introduction ................................................................................................ 6 1.1 Lagrangian formalism in classical mechanics......................................... 6 1.2 Quantum mechanics................................................................................... 8 1.3 The Schrödinger picture........................................................................... 10 1.4 The Heisenberg picture............................................................................ 11 1.5 The quantum mechanical harmonic oscillator ..................................... 12 Problems .............................................................................................................. 13 2 Classical Field Theory............................................................................. 14 2.1 From N-point mechanics to field theory ............................................... 14 2.2 Relativistic field theory ............................................................................ 15 2.3 Action for a scalar field ............................................................................ 15 2.4 Plane wave solution to the Klein-Gordon equation ...........................
    [Show full text]
  • Effective Quantum Field Theories Thomas Mannel Theoretical Physics I (Particle Physics) University of Siegen, Siegen, Germany
    Generating Functionals Functional Integration Renormalization Introduction to Effective Quantum Field Theories Thomas Mannel Theoretical Physics I (Particle Physics) University of Siegen, Siegen, Germany 2nd Autumn School on High Energy Physics and Quantum Field Theory Yerevan, Armenia, 6-10 October, 2014 T. Mannel, Siegen University Effective Quantum Field Theories: Lecture 1 Generating Functionals Functional Integration Renormalization Overview Lecture 1: Basics of Quantum Field Theory Generating Functionals Functional Integration Perturbation Theory Renormalization Lecture 2: Effective Field Thoeries Effective Actions Effective Lagrangians Identifying relevant degrees of freedom Renormalization and Renormalization Group T. Mannel, Siegen University Effective Quantum Field Theories: Lecture 1 Generating Functionals Functional Integration Renormalization Lecture 3: Examples @ work From Standard Model to Fermi Theory From QCD to Heavy Quark Effective Theory From QCD to Chiral Perturbation Theory From New Physics to the Standard Model Lecture 4: Limitations: When Effective Field Theories become ineffective Dispersion theory and effective field theory Bound Systems of Quarks and anomalous thresholds When quarks are needed in QCD É. T. Mannel, Siegen University Effective Quantum Field Theories: Lecture 1 Generating Functionals Functional Integration Renormalization Lecture 1: Basics of Quantum Field Theory Thomas Mannel Theoretische Physik I, Universität Siegen f q f et Yerevan, October 2014 T. Mannel, Siegen University Effective Quantum
    [Show full text]
  • Quantum Field Theory*
    Quantum Field Theory y Frank Wilczek Institute for Advanced Study, School of Natural Science, Olden Lane, Princeton, NJ 08540 I discuss the general principles underlying quantum eld theory, and attempt to identify its most profound consequences. The deep est of these consequences result from the in nite number of degrees of freedom invoked to implement lo cality.Imention a few of its most striking successes, b oth achieved and prosp ective. Possible limitation s of quantum eld theory are viewed in the light of its history. I. SURVEY Quantum eld theory is the framework in which the regnant theories of the electroweak and strong interactions, which together form the Standard Mo del, are formulated. Quantum electro dynamics (QED), b esides providing a com- plete foundation for atomic physics and chemistry, has supp orted calculations of physical quantities with unparalleled precision. The exp erimentally measured value of the magnetic dip ole moment of the muon, 11 (g 2) = 233 184 600 (1680) 10 ; (1) exp: for example, should b e compared with the theoretical prediction 11 (g 2) = 233 183 478 (308) 10 : (2) theor: In quantum chromo dynamics (QCD) we cannot, for the forseeable future, aspire to to comparable accuracy.Yet QCD provides di erent, and at least equally impressive, evidence for the validity of the basic principles of quantum eld theory. Indeed, b ecause in QCD the interactions are stronger, QCD manifests a wider variety of phenomena characteristic of quantum eld theory. These include esp ecially running of the e ective coupling with distance or energy scale and the phenomenon of con nement.
    [Show full text]
  • Casimir Effect on the Lattice: U (1) Gauge Theory in Two Spatial Dimensions
    Casimir effect on the lattice: U(1) gauge theory in two spatial dimensions M. N. Chernodub,1, 2, 3 V. A. Goy,4, 2 and A. V. Molochkov2 1Laboratoire de Math´ematiques et Physique Th´eoriqueUMR 7350, Universit´ede Tours, 37200 France 2Soft Matter Physics Laboratory, Far Eastern Federal University, Sukhanova 8, Vladivostok, 690950, Russia 3Department of Physics and Astronomy, University of Gent, Krijgslaan 281, S9, B-9000 Gent, Belgium 4School of Natural Sciences, Far Eastern Federal University, Sukhanova 8, Vladivostok, 690950, Russia (Dated: September 8, 2016) We propose a general numerical method to study the Casimir effect in lattice gauge theories. We illustrate the method by calculating the energy density of zero-point fluctuations around two parallel wires of finite static permittivity in Abelian gauge theory in two spatial dimensions. We discuss various subtle issues related to the lattice formulation of the problem and show how they can successfully be resolved. Finally, we calculate the Casimir potential between the wires of a fixed permittivity, extrapolate our results to the limit of ideally conducting wires and demonstrate excellent agreement with a known theoretical result. I. INTRODUCTION lattice discretization) described by spatially-anisotropic and space-dependent static permittivities "(x) and per- meabilities µ(x) at zero and finite temperature in theories The influence of the physical objects on zero-point with various gauge groups. (vacuum) fluctuations is generally known as the Casimir The structure of the paper is as follows. In Sect. II effect [1{3]. The simplest example of the Casimir effect is we review the implementation of the Casimir boundary a modification of the vacuum energy of electromagnetic conditions for ideal conductors and propose its natural field by closely-spaced and perfectly-conducting parallel counterpart in the lattice gauge theory.
    [Show full text]
  • Quantum Vacuum Energy Density and Unifying Perspectives Between Gravity and Quantum Behaviour of Matter
    Annales de la Fondation Louis de Broglie, Volume 42, numéro 2, 2017 251 Quantum vacuum energy density and unifying perspectives between gravity and quantum behaviour of matter Davide Fiscalettia, Amrit Sorlib aSpaceLife Institute, S. Lorenzo in Campo (PU), Italy corresponding author, email: [email protected] bSpaceLife Institute, S. Lorenzo in Campo (PU), Italy Foundations of Physics Institute, Idrija, Slovenia email: [email protected] ABSTRACT. A model of a three-dimensional quantum vacuum based on Planck energy density as a universal property of a granular space is suggested. This model introduces the possibility to interpret gravity and the quantum behaviour of matter as two different aspects of the same origin. The change of the quantum vacuum energy density can be considered as the fundamental medium which determines a bridge between gravity and the quantum behaviour, leading to new interest- ing perspectives about the problem of unifying gravity with quantum theory. PACS numbers: 04. ; 04.20-q ; 04.50.Kd ; 04.60.-m. Key words: general relativity, three-dimensional space, quantum vac- uum energy density, quantum mechanics, generalized Klein-Gordon equation for the quantum vacuum energy density, generalized Dirac equation for the quantum vacuum energy density. 1 Introduction The standard interpretation of phenomena in gravitational fields is in terms of a fundamentally curved space-time. However, this approach leads to well known problems if one aims to find a unifying picture which takes into account some basic aspects of the quantum theory. For this reason, several authors advocated different ways in order to treat gravitational interaction, in which the space-time manifold can be considered as an emergence of the deepest processes situated at the fundamental level of quantum gravity.
    [Show full text]
  • Dirac Notation Frank Rioux
    Elements of Dirac Notation Frank Rioux In the early days of quantum theory, P. A. M. (Paul Adrian Maurice) Dirac created a powerful and concise formalism for it which is now referred to as Dirac notation or bra-ket (bracket ) notation. Two major mathematical traditions emerged in quantum mechanics: Heisenberg’s matrix mechanics and Schrödinger’s wave mechanics. These distinctly different computational approaches to quantum theory are formally equivalent, each with its particular strengths in certain applications. Heisenberg’s variation, as its name suggests, is based matrix and vector algebra, while Schrödinger’s approach requires integral and differential calculus. Dirac’s notation can be used in a first step in which the quantum mechanical calculation is described or set up. After this is done, one chooses either matrix or wave mechanics to complete the calculation, depending on which method is computationally the most expedient. Kets, Bras, and Bra-Ket Pairs In Dirac’s notation what is known is put in a ket, . So, for example, p expresses the fact that a particle has momentum p. It could also be more explicit: p = 2 , the particle has momentum equal to 2; x = 1.23 , the particle has position 1.23. Ψ represents a system in the state Q and is therefore called the state vector. The ket can also be interpreted as the initial state in some transition or event. The bra represents the final state or the language in which you wish to express the content of the ket . For example,x =Ψ.25 is the probability amplitude that a particle in state Q will be found at position x = .25.
    [Show full text]
  • Large-Deviation Principles, Stochastic Effective Actions, Path Entropies
    Large-deviation principles, stochastic effective actions, path entropies, and the structure and meaning of thermodynamic descriptions Eric Smith Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA (Dated: February 18, 2011) The meaning of thermodynamic descriptions is found in large-deviations scaling [1, 2] of the prob- abilities for fluctuations of averaged quantities. The central function expressing large-deviations scaling is the entropy, which is the basis for both fluctuation theorems and for characterizing the thermodynamic interactions of systems. Freidlin-Wentzell theory [3] provides a quite general for- mulation of large-deviations scaling for non-equilibrium stochastic processes, through a remarkable representation in terms of a Hamiltonian dynamical system. A number of related methods now exist to construct the Freidlin-Wentzell Hamiltonian for many kinds of stochastic processes; one method due to Doi [4, 5] and Peliti [6, 7], appropriate to integer counting statistics, is widely used in reaction-diffusion theory. Using these tools together with a path-entropy method due to Jaynes [8], this review shows how to construct entropy functions that both express large-deviations scaling of fluctuations, and describe system-environment interactions, for discrete stochastic processes either at or away from equilibrium. A collection of variational methods familiar within quantum field theory, but less commonly applied to the Doi-Peliti construction, is used to define a “stochastic effective action”, which is the large-deviations rate function for arbitrary non-equilibrium paths. We show how common principles of entropy maximization, applied to different ensembles of states or of histories, lead to different entropy functions and different sets of thermodynamic state variables.
    [Show full text]
  • Dirac Equation - Wikipedia
    Dirac equation - Wikipedia https://en.wikipedia.org/wiki/Dirac_equation Dirac equation From Wikipedia, the free encyclopedia In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it 1 describes all spin-2 massive particles such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity,[1] and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine details of the hydrogen spectrum in a completely rigorous way. The equation also implied the existence of a new form of matter, antimatter, previously unsuspected and unobserved and which was experimentally confirmed several years later. It also provided a theoretical justification for the introduction of several component wave functions in Pauli's phenomenological theory of spin; the wave functions in the Dirac theory are vectors of four complex numbers (known as bispinors), two of which resemble the Pauli wavefunction in the non-relativistic limit, in contrast to the Schrödinger equation which described wave functions of only one complex value. Moreover, in the limit of zero mass, the Dirac equation reduces to the Weyl equation. Although Dirac did not at first fully appreciate the importance of his results, the entailed explanation of spin as a consequence of the union of quantum mechanics and relativity—and the eventual discovery of the positron—represents one of the great triumphs of theoretical physics.
    [Show full text]
  • Appendix: the Interaction Picture
    Appendix: The Interaction Picture The technique of expressing operators and quantum states in the so-called interaction picture is of great importance in treating quantum-mechanical problems in a perturbative fashion. It plays an important role, for example, in the derivation of the Born–Markov master equation for decoherence detailed in Sect. 4.2.2. We shall review the basics of the interaction-picture approach in the following. We begin by considering a Hamiltonian of the form Hˆ = Hˆ0 + V.ˆ (A.1) Here Hˆ0 denotes the part of the Hamiltonian that describes the free (un- perturbed) evolution of a system S, whereas Vˆ is some added external per- turbation. In applications of the interaction-picture formalism, Vˆ is typically assumed to be weak in comparison with Hˆ0, and the idea is then to deter- mine the approximate dynamics of the system given this assumption. In the following, however, we shall proceed with exact calculations only and make no assumption about the relative strengths of the two components Hˆ0 and Vˆ . From standard quantum theory, we know that the expectation value of an operator observable Aˆ(t) is given by the trace rule [see (2.17)], & ' & ' ˆ ˆ Aˆ(t) =Tr Aˆ(t)ˆρ(t) =Tr Aˆ(t)e−iHtρˆ(0)eiHt . (A.2) For reasons that will immediately become obvious, let us rewrite this expres- sion as & ' ˆ ˆ ˆ ˆ ˆ ˆ Aˆ(t) =Tr eiH0tAˆ(t)e−iH0t eiH0te−iHtρˆ(0)eiHte−iH0t . (A.3) ˆ In inserting the time-evolution operators e±iH0t at the beginning and the end of the expression in square brackets, we have made use of the fact that the trace is cyclic under permutations of the arguments, i.e., that Tr AˆBˆCˆ ··· =Tr BˆCˆ ···Aˆ , etc.
    [Show full text]
  • Hamiltonian Dynamics of Yang-Mills Fields on a Lattice
    DUKE-TH-92-40 Hamiltonian Dynamics of Yang-Mills Fields on a Lattice T.S. Bir´o Institut f¨ur Theoretische Physik, Justus-Liebig-Universit¨at, D-6300 Giessen, Germany C. Gong and B. M¨uller Department of Physics, Duke University, Durham, NC 27708 A. Trayanov NCSC, Research Triangle Park, NC 27709 (Dated: July 2, 2018) Abstract We review recent results from studies of the dynamics of classical Yang-Mills fields on a lattice. We discuss the numerical techniques employed in solving the classical lattice Yang-Mills equations in real time, and present results exhibiting the universal chaotic behavior of nonabelian gauge theories. The complete spectrum of Lyapunov exponents is determined for the gauge group SU(2). We survey results obtained for the SU(3) gauge theory and other nonlinear field theories. We also discuss the relevance of these results to the problem of thermalization in gauge theories. arXiv:nucl-th/9306002v2 6 Jun 2005 1 I. INTRODUCTION Knowledge of the microscopic mechanisms responsible for the local equilibration of energy and momentum carried by nonabelian gauge fields is important for our understanding of non-equilibrium processes occurring in the very early universe and in relativistic nuclear collisions. Prime examples for such processes are baryogenesis during the electroweak phase transition, the creation of primordial fluctuations in the density of galaxies in cosmology, and the formation of a quark-gluon plasma in heavy-ion collisions. Whereas transport and equilibration processes have been extensively investigated in the framework of perturbative quantum field theory, rigorous non-perturbative studies of non- abelian gauge theories have been limited to systems at thermal equilibrium.
    [Show full text]
  • On the Definition of the Renormalization Constants in Quantum Electrodynamics
    On the Definition of the Renormalization Constants in Quantum Electrodynamics Autor(en): Källén, Gunnar Objekttyp: Article Zeitschrift: Helvetica Physica Acta Band(Jahr): 25(1952) Heft IV Erstellt am: Mar 18, 2014 Persistenter Link: http://dx.doi.org/10.5169/seals-112316 Nutzungsbedingungen Mit dem Zugriff auf den vorliegenden Inhalt gelten die Nutzungsbedingungen als akzeptiert. Die angebotenen Dokumente stehen für nicht-kommerzielle Zwecke in Lehre, Forschung und für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und unter deren Einhaltung weitergegeben werden. Die Speicherung von Teilen des elektronischen Angebots auf anderen Servern ist nur mit vorheriger schriftlicher Genehmigung möglich. Die Rechte für diese und andere Nutzungsarten der Inhalte liegen beim Herausgeber bzw. beim Verlag. Ein Dienst der ETH-Bibliothek Rämistrasse 101, 8092 Zürich, Schweiz [email protected] http://retro.seals.ch On the Definition of the Renormalization Constants in Quantum Electrodynamics by Gunnar Källen.*) Swiss Federal Institute of Technology, Zürich. (14.11.1952.) Summary. A formulation of quantum electrodynamics in terms of the renor- malized Heisenberg operators and the experimental mass and charge of the electron is given. The renormalization constants are implicitly defined and ex¬ pressed as integrals over finite functions in momentum space. No discussion of the convergence of these integrals or of the existence of rigorous solutions is given. Introduction. The renormalization method in quantum electrodynamics has been investigated by many authors, and it has been proved by Dyson1) that every term in a formal expansion in powers of the coupling constant of various expressions is a finite quantity.
    [Show full text]
  • Implications of Perturbative Unitarity for Scalar Di-Boson Resonance Searches at LHC
    Implications of perturbative unitarity for scalar di-boson resonance searches at LHC Luca Di Luzio∗1,2, Jernej F. Kameniky3,4, and Marco Nardecchiaz5,6 1Dipartimento di Fisica, Universit`adi Genova and INFN, Sezione di Genova, via Dodecaneso 33, 16159 Genova, Italy 2Institute for Particle Physics Phenomenology, Department of Physics, Durham University, DH1 3LE, United Kingdom 3JoˇzefStefan Institute, Jamova 39, 1000 Ljubljana, Slovenia 4Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia 5DAMTP, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom 6CERN, Theoretical Physics Department, Geneva, Switzerland Abstract We study the constraints implied by partial wave unitarity on new physics in the form of spin-zero di-boson resonances at LHC. We derive the scale where the effec- tive description in terms of the SM supplemented by a single resonance is expected arXiv:1604.05746v3 [hep-ph] 2 Apr 2019 to break down depending on the resonance mass and signal cross-section. Likewise, we use unitarity arguments in order to set perturbativity bounds on renormalizable UV completions of the effective description. We finally discuss under which condi- tions scalar di-boson resonance signals can be accommodated within weakly-coupled models. ∗[email protected] [email protected] [email protected] 1 Contents 1 Introduction3 2 Brief review on partial wave unitarity4 3 Effective field theory of a scalar resonance5 3.1 Scalar mediated boson scattering . .6 3.2 Fermion-scalar contact interactions . .8 3.3 Unitarity bounds . .9 4 Weakly-coupled models 12 4.1 Single fermion case . 15 4.2 Single scalar case .
    [Show full text]