Towards Better Quality Assessment of High-Quality Videos Suiyi Ling Yoann Baveye Deepthi Nandakumar
[email protected] [email protected] [email protected] CAPACITÉS SAS CAPACITÉS SAS Amazon Video Nantes, France Nantes, France Bangalore, India Sriram Sethuraman Patrick Le Callet
[email protected] [email protected] Amazon Video LS2N lab, University of Nantes Bangalore, India Nantes, France ABSTRACT significantly along with the rapid development of display manu- In recent times, video content encoded at High-Definition (HD) and facturers, high-quality video producers (film industry) and video Ultra-High-Definition (UHD) resolution dominates internet traf- streaming services. Video quality assessment (VQA) metrics are fic. The significantly increased data rate and growing expectations aimed at predicting the perceived quality, ideally, by mimicking of video quality from users create great challenges in video com- the human visual system. Such metrics are imperative for achiev- pression and quality assessment, especially for higher-resolution, ing higher compression and for monitoring the delivered video higher-quality content. The development of robust video quality quality. According to one of the most recent relevant studies [21], assessment metrics relies on the collection of subjective ground correlation between the subjective scores and the objective scores truths. As high-quality video content is more ambiguous and diffi- predicted by commonly used video quality metrics is significantly cult for a human observer to rate, a more distinguishable subjective poorer in the high quality range (HD) than the ones in the lower protocol/methodology should be considered. In this study, towards quality range (SD). Thus, a reliable VQA metric is highly desirable better quality assessment of high-quality videos, a subjective study for the high quality range to tailor the compression level to meet was conducted focusing on high-quality HD and UHD content with the growing user expectation.