Video Quality Assessment: Subjective Testing of Entertainment Scenes Margaret H
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Digital Video Quality Handbook (May 2013
Digital Video Quality Handbook May 2013 This page intentionally left blank. Executive Summary Under the direction of the Department of Homeland Security (DHS) Science and Technology Directorate (S&T), First Responders Group (FRG), Office for Interoperability and Compatibility (OIC), the Johns Hopkins University Applied Physics Laboratory (JHU/APL), worked with the Security Industry Association (including Steve Surfaro) and members of the Video Quality in Public Safety (VQiPS) Working Group to develop the May 2013 Video Quality Handbook. This document provides voluntary guidance for providing levels of video quality in public safety applications for network video surveillance. Several video surveillance use cases are presented to help illustrate how to relate video component and system performance to the intended application of video surveillance, while meeting the basic requirements of federal, state, tribal and local government authorities. Characteristics of video surveillance equipment are described in terms of how they may influence the design of video surveillance systems. In order for the video surveillance system to meet the needs of the user, the technology provider must consider the following factors that impact video quality: 1) Device categories; 2) Component and system performance level; 3) Verification of intended use; 4) Component and system performance specification; and 5) Best fit and link to use case(s). An appendix is also provided that presents content related to topics not covered in the original document (especially information related to video standards) and to update the material as needed to reflect innovation and changes in the video environment. The emphasis is on the implications of digital video data being exchanged across networks with large numbers of components or participants. -
(A/V Codecs) REDCODE RAW (.R3D) ARRIRAW
What is a Codec? Codec is a portmanteau of either "Compressor-Decompressor" or "Coder-Decoder," which describes a device or program capable of performing transformations on a data stream or signal. Codecs encode a stream or signal for transmission, storage or encryption and decode it for viewing or editing. Codecs are often used in videoconferencing and streaming media solutions. A video codec converts analog video signals from a video camera into digital signals for transmission. It then converts the digital signals back to analog for display. An audio codec converts analog audio signals from a microphone into digital signals for transmission. It then converts the digital signals back to analog for playing. The raw encoded form of audio and video data is often called essence, to distinguish it from the metadata information that together make up the information content of the stream and any "wrapper" data that is then added to aid access to or improve the robustness of the stream. Most codecs are lossy, in order to get a reasonably small file size. There are lossless codecs as well, but for most purposes the almost imperceptible increase in quality is not worth the considerable increase in data size. The main exception is if the data will undergo more processing in the future, in which case the repeated lossy encoding would damage the eventual quality too much. Many multimedia data streams need to contain both audio and video data, and often some form of metadata that permits synchronization of the audio and video. Each of these three streams may be handled by different programs, processes, or hardware; but for the multimedia data stream to be useful in stored or transmitted form, they must be encapsulated together in a container format. -
Image Sensors and Image Quality in Mobile Phones
Image Sensors and Image Quality in Mobile Phones Juha Alakarhu Nokia, Technology Platforms, Camera Entity, P.O. Box 1000, FI-33721 Tampere [email protected] (+358 50 4860226) Abstract 2. Performance metric This paper considers image sensors and image quality A reliable sensor performance metric is needed in order in camera phones. A method to estimate the image to have meaningful discussion on different sensor quality and performance of an image sensor using its options, future sensor performance, and effects of key parameters is presented. Subjective image quality different technologies. Comparison of individual and mapping camera technical parameters to its technical parameters does not provide general view to subjective image quality are discussed. The developed the image quality and can be misleading. A more performance metrics are used to optimize sensor comprehensive performance metric based on low level performance for best possible image quality in camera technical parameters is developed as follows. phones. Finally, the future technology and technology First, conversion from photometric units to trends are discussed. The main development trend for radiometric units is needed. Irradiation E [W/m2] is images sensors is gradually changing from pixel size calculated as follows using illuminance Ev [lux], reduction to performance improvement within the same energy spectrum of the illuminant (any unit), and the pixel size. About 30% performance improvement is standard luminosity function V. observed between generations if the pixel size is kept Equation 1: Radiometric unit conversion the same. Image sensor is also the key component to offer new features to the user in the future. s(λ) d λ E = ∫ E lm v 683 s()()λ V λ d λ 1. -
On the Accuracy of Video Quality Measurement Techniques
On the accuracy of video quality measurement techniques Deepthi Nandakumar Yongjun Wu Hai Wei Avisar Ten-Ami Amazon Video, Bangalore, India Amazon Video, Seattle, USA Amazon Video, Seattle, USA Amazon Video, Seattle, USA, [email protected] [email protected] [email protected] [email protected] Abstract —With the massive growth of Internet video and therefore measuring and optimizing for video quality in streaming, it is critical to accurately measure video quality these high quality ranges is an imperative for streaming service subjectively and objectively, especially HD and UHD video which providers. In this study, we lay specific emphasis on the is bandwidth intensive. We summarize the creation of a database measurement accuracy of subjective and objective video quality of 200 clips, with 20 unique sources tested across a variety of scores in this high quality range. devices. By classifying the test videos into 2 distinct quality regions SD and HD, we show that the high correlation claimed by objective Globally, a healthy mix of devices with different screen sizes video quality metrics is led mostly by videos in the SD quality and form factors is projected to contribute to IP traffic in 2021 region. We perform detailed correlation analysis and statistical [1], ranging from smartphones (44%), to tablets (6%), PCs hypothesis testing of the HD subjective quality scores, and (19%) and TVs (24%). It is therefore necessary for streaming establish that the commonly used ACR methodology of subjective service providers to quantify the viewing experience based on testing is unable to capture significant quality differences, leading the device, and possibly optimize the encoding and delivery to poor measurement accuracy for both subjective and objective process accordingly. -
The H.264 Advanced Video Coding (AVC) Standard
Whitepaper: The H.264 Advanced Video Coding (AVC) Standard What It Means to Web Camera Performance Introduction A new generation of webcams is hitting the market that makes video conferencing a more lifelike experience for users, thanks to adoption of the breakthrough H.264 standard. This white paper explains some of the key benefits of H.264 encoding and why cameras with this technology should be on the shopping list of every business. The Need for Compression Today, Internet connection rates average in the range of a few megabits per second. While VGA video requires 147 megabits per second (Mbps) of data, full high definition (HD) 1080p video requires almost one gigabit per second of data, as illustrated in Table 1. Table 1. Display Resolution Format Comparison Format Horizontal Pixels Vertical Lines Pixels Megabits per second (Mbps) QVGA 320 240 76,800 37 VGA 640 480 307,200 147 720p 1280 720 921,600 442 1080p 1920 1080 2,073,600 995 Video Compression Techniques Digital video streams, especially at high definition (HD) resolution, represent huge amounts of data. In order to achieve real-time HD resolution over typical Internet connection bandwidths, video compression is required. The amount of compression required to transmit 1080p video over a three megabits per second link is 332:1! Video compression techniques use mathematical algorithms to reduce the amount of data needed to transmit or store video. Lossless Compression Lossless compression changes how data is stored without resulting in any loss of information. Zip files are losslessly compressed so that when they are unzipped, the original files are recovered. -
Image Quality Assessment Through FSIM, SSIM, MSE and PSNR—A Comparative Study
Journal of Computer and Communications, 2019, 7, 8-18 http://www.scirp.org/journal/jcc ISSN Online: 2327-5227 ISSN Print: 2327-5219 Image Quality Assessment through FSIM, SSIM, MSE and PSNR—A Comparative Study Umme Sara1, Morium Akter2, Mohammad Shorif Uddin2 1National Institute of Textile Engineering and Research, Dhaka, Bangladesh 2Department of Computer Science and Engineering, Jahangirnagar University, Dhaka, Bangladesh How to cite this paper: Sara, U., Akter, M. Abstract and Uddin, M.S. (2019) Image Quality As- sessment through FSIM, SSIM, MSE and Quality is a very important parameter for all objects and their functionalities. PSNR—A Comparative Study. Journal of In image-based object recognition, image quality is a prime criterion. For au- Computer and Communications, 7, 8-18. thentic image quality evaluation, ground truth is required. But in practice, it https://doi.org/10.4236/jcc.2019.73002 is very difficult to find the ground truth. Usually, image quality is being as- Received: January 30, 2019 sessed by full reference metrics, like MSE (Mean Square Error) and PSNR Accepted: March 1, 2019 (Peak Signal to Noise Ratio). In contrast to MSE and PSNR, recently, two Published: March 4, 2019 more full reference metrics SSIM (Structured Similarity Indexing Method) Copyright © 2019 by author(s) and and FSIM (Feature Similarity Indexing Method) are developed with a view to Scientific Research Publishing Inc. compare the structural and feature similarity measures between restored and This work is licensed under the Creative original objects on the basis of perception. This paper is mainly stressed on Commons Attribution International License (CC BY 4.0). -
AVC, HEVC, VP9, AVS2 Or AV1? — a Comparative Study of State-Of-The-Art Video Encoders on 4K Videos
AVC, HEVC, VP9, AVS2 or AV1? | A Comparative Study of State-of-the-art Video Encoders on 4K Videos Zhuoran Li, Zhengfang Duanmu, Wentao Liu, and Zhou Wang University of Waterloo, Waterloo, ON N2L 3G1, Canada fz777li,zduanmu,w238liu,[email protected] Abstract. 4K, ultra high-definition (UHD), and higher resolution video contents have become increasingly popular recently. The largely increased data rate casts great challenges to video compression and communication technologies. Emerging video coding methods are claimed to achieve su- perior performance for high-resolution video content, but thorough and independent validations are lacking. In this study, we carry out an in- dependent and so far the most comprehensive subjective testing and performance evaluation on videos of diverse resolutions, bit rates and content variations, and compressed by popular and emerging video cod- ing methods including H.264/AVC, H.265/HEVC, VP9, AVS2 and AV1. Our statistical analysis derived from a total of more than 36,000 raw sub- jective ratings on 1,200 test videos suggests that significant improvement in terms of rate-quality performance against the AVC encoder has been achieved by state-of-the-art encoders, and such improvement is increas- ingly manifest with the increase of resolution. Furthermore, we evaluate state-of-the-art objective video quality assessment models, and our re- sults show that the SSIMplus measure performs the best in predicting 4K subjective video quality. The database will be made available online to the public to facilitate future video encoding and video quality research. Keywords: Video compression, quality-of-experience, subjective qual- ity assessment, objective quality assessment, 4K video, ultra-high-definition (UHD), video coding standard 1 Introduction 4K, ultra high-definition (UHD), and higher resolution video contents have en- joyed a remarkable growth in recent years. -
Using H.264 and H.265 Codecs for 4K Transmissions
ISSN 1843-6188 Scientific Bulletin of the Electrical Engineering Faculty – Year 15 No.1 (29) OBJECTIVE VIDEO QUALITY ASSESMENT: USING H.264 AND H.265 CODECS FOR 4K TRANSMISSIONS NICOLETA ANGELESCU Department of Electronics, Telecommunications and Energetics, Valahia University of Targoviste E-mail: [email protected] Abstract. H.265 codecs has attracted a lot of attention solution can be applied only to MPEG 2 video files to for transmission of digital video content with 4k reduce storage space. In [5], the H.265 and H.264 codecs resolution (3840x2160 pixels), since offers necessary are evaluated on video quality for 4k resolution. The bandwidths saving in comparison with H.264 codec. We authors use three objective quality metrics for evaluation. compare both codecs using three objective video quality The authors conclude that H.265 codec offer the best metrics on five standard 4k video test sequences for improvement comparing to H.264 codec for low bit-rate. digital TV transmissions using both codecs. In [6], a solution to reduce bit rate for MPEG 2 and H.264 transmission is proposed. The base layer at MPEG Keywords: H.264, HECV, VQM, SSIM, objective video 2 standard resolution is multiplexed with the enhanced quality layer (which is the difference between scaled MPEG 2 video content and original high resolution video captured) compressed with H.264 codec and transmitted to user 1. INTRODUCTION destination. The same solution can be applied for H.264 and H.265 content. The users with receivers which Nowadays, the majority of video content is stored in support Full HD resolution view the 4K content scaled lossy compressed form. -
Revisiting Image Vignetting Correction by Constrained Minimization of Log-Intensity Entropy
Revisiting Image Vignetting Correction by Constrained Minimization of log-Intensity Entropy Laura Lopez-Fuentes, Gabriel Oliver, and Sebastia Massanet Dept. Mathematics and Computer Science, University of the Balearic Islands Crta. Valldemossa km. 7,5, E-07122 Palma de Mallorca, Spain [email protected],[email protected],[email protected] Abstract. The correction of the vignetting effect in digital images is a key pre-processing step in several computer vision applications. In this paper, some corrections and improvements to the image vignetting cor- rection algorithm based on the minimization of the log-intensity entropy of the image are proposed. In particular, the new algorithm is able to deal with images with a vignetting that is not in the center of the image through the search of the optical center of the image. The experimen- tal results show that this new version outperforms notably the original algorithm both from the qualitative and the quantitative point of view. The quantitative measures are obtained using an image database with images to which artificial vignetting has been added. Keywords: Vignetting, entropy, optical center, gain function. 1 Introduction Vignetting is an undesirable effect in digital images which needs to be corrected as a pre-processing step in computer vision applications. This effect is based on the radial fall off of brightness away from the optical center of the image. Specially, those applications which rely on consistent intensity measurements of a scene are highly affected by the existence of vignetting. For example, image mosaicking, stereo matching and image segmentation, among many others, are applications where the results are notably improved if some previous vignetting correction algorithm is applied to the original image. -
On Evaluating Perceptual Quality of Online User-Generated Videos Soobeom Jang, and Jong-Seok Lee, Senior Member, IEEE
JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 1 On Evaluating Perceptual Quality of Online User-Generated Videos Soobeom Jang, and Jong-Seok Lee, Senior Member, IEEE Abstract—This paper deals with the issue of the perceptual quality assessment by employing multiple human subjects. quality evaluation of user-generated videos shared online, which However, subjective quality assessment is not feasible for is an important step toward designing video-sharing services online videos because of a tremendous amount of videos that maximize users’ satisfaction in terms of quality. We first analyze viewers’ quality perception patterns by applying graph in online video-sharing services. An alternative is objective analysis techniques to subjective rating data. We then examine quality assessment, which uses a model that mimics the human the performance of existing state-of-the-art objective metrics for perceptual mechanism. the quality estimation of user-generated videos. In addition, we The traditional objective quality metrics to estimate video investigate the feasibility of metadata accompanied with videos quality have two limitations. First, the existence of the ref- in online video-sharing services for quality estimation. Finally, various issues in the quality assessment of online user-generated erence video, i.e., the pristine video of the given video, is videos are discussed, including difficulties and opportunities. important. In general, objective quality assessment frameworks are classified into three groups: full-reference (FR), reduced- Index Terms—User-generated video, paired comparison, qual- ity assessment, metadata. reference (RR), and no-reference (NR). In the cases of FR and RR frameworks, full or partial information about the reference is provided. -
Comparison of Color Demosaicing Methods Olivier Losson, Ludovic Macaire, Yanqin Yang
Comparison of color demosaicing methods Olivier Losson, Ludovic Macaire, Yanqin Yang To cite this version: Olivier Losson, Ludovic Macaire, Yanqin Yang. Comparison of color demosaicing methods. Advances in Imaging and Electron Physics, Elsevier, 2010, 162, pp.173-265. 10.1016/S1076-5670(10)62005-8. hal-00683233 HAL Id: hal-00683233 https://hal.archives-ouvertes.fr/hal-00683233 Submitted on 28 Mar 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Comparison of color demosaicing methods a, a a O. Losson ∗, L. Macaire , Y. Yang a Laboratoire LAGIS UMR CNRS 8146 – Bâtiment P2 Université Lille1 – Sciences et Technologies, 59655 Villeneuve d’Ascq Cedex, France Keywords: Demosaicing, Color image, Quality evaluation, Comparison criteria 1. Introduction Today, the majority of color cameras are equipped with a single CCD (Charge- Coupled Device) sensor. The surface of such a sensor is covered by a color filter array (CFA), which consists in a mosaic of spectrally selective filters, so that each CCD ele- ment samples only one of the three color components Red (R), Green (G) or Blue (B). The Bayer CFA is the most widely used one to provide the CFA image where each pixel is characterized by only one single color component. -
Video Resolution Enhancement Using Deep Neural Networks and Intensity Based Registrations
International Journal of Innovative Computing, Information and Control ICIC International ⃝c 2018 ISSN 1349-4198 Volume 14, Number 5, October 2018 pp. 1969{1976 VIDEO RESOLUTION ENHANCEMENT USING DEEP NEURAL NETWORKS AND INTENSITY BASED REGISTRATIONS Gholamreza Anbarjafari1;2 1iCV Research Group Institute of Technology University of Tartu Nooruse Street, Tartu 50411, Estonia [email protected] 2Faculty of Engineering Hasan Kalyoncu University Gaziantep, Turkey Received January 2018; revised May 2018 Abstract. Thanks to the recent rapid improvements made to the maximum possible resolution of display devices, higher qualities of experience have been made possible, which necessitates either producing and transmitting considerably higher volumes of data or super-resolving lower-resolution contents at the display side, where the former might not be practically feasible. Therefore, aiming at the latter, this paper proposes a novel super-resolution technique, which takes advantage of convolutional neural networks. Each image is registered into a window consisting of two frames, the second one standing for the reference image, using various intensity-based techniques, which have been tested and compared throughout the paper. According to the experimental results, the proposed method leads to substantial enhancements in the quality of the super-resolved images, compared with the state-of-the-art techniques introduced within the existing literature. On the Akiyo video sequence, on average, the result possesses 5.38dB higher PSNR values than those of the Vandewalle registration technique, with structure adaptive normalised convolution being utilized as the reconstruction approach. Keywords: Super resolution, Deep learning, Convolutional neural network, Intensity based registration, Video resolution enhancement 1. Introduction. The issue of high quality image reconstruction from the low quality version of the same image or the sequence of similar video frames has been extensively studied for several decades, and it is still an ongoing research [1, 2, 3, 4, 5, 6].