COMPRESSIVE TECHNIQUES APPLICABLE for VIDEO COMPRESSION Jayshree R

Total Page:16

File Type:pdf, Size:1020Kb

COMPRESSIVE TECHNIQUES APPLICABLE for VIDEO COMPRESSION Jayshree R COMPRESSIVE TECHNIQUES APPLICABLE FOR VIDEO COMPRESSION Jayshree R. Pansare1, Ketki R. Jadhav2 1,2 Department of Computer Engineering, M.E.S. College of Engineering, Pune, India Abstract there lot of techniques for compression of Communication over internet is becoming images/ videos, finding better compression important part of our lives. Now days techniques for diversified applications or millions of peoples spend their time on you improving performance of existing techniques is tube, video communication and video still concern of lot of researchers. conferencing etc. Videos require large Images/videos are either get compressed by amount of bandwidth and transmission time. using lossless compression methods consist of Lot of video compression standards, Run length encoding (RLE), LZW ( Lempel Ziv- techniques and algorithms had been Welch) Coding, Huffman coding, Area Coding developed to reduce data quantity and gain or using lossy compression techniques consist of expected quality as possible as can. Video Transformation coding, Fractal segmentation, compressions technologies are now become Vector quantization, Sub band coding and Block the important part of the way we create, truncation coding. Even though most of us want consume and communicate visual image representation of content rather than text information. Paper reviews no of video for better understanding and visual appearance, compression techniques. It divides those videos turned out to be standards now days and techniques based on used techniques and used used by lot of applications such as DVD, digital concepts in survey papers. And shows that for TV, HDTV, Video calls and teleconferencing. which type of videos these techniques are Because of lot of advancement in network useful. computing and communication technologies as Keywords: Video compression, SBT, ORVC, well as advanced video compression techniques, RCT, BAPME, GBST, RGB-CFA, L-SEABI. this application becomes more and more feasible. Reducing 4 types of redundancies is I. INTRODUCTION main purpose of video compression techniques; Raw data comes with lot of transmission cost, consist of perceptual, spatial, temporal and bandwidth and memory requirement. Image/ statistical redundancies. Perceptual information video compression is traditional concept that has is data which are unseen to human eye get used for compression of video and image data. reduced without affecting video quality. Image/video compression means reducing the As video is sequence of frames, reducing size of any type of data such as audio, video and redundancies between pixels of each frame text so it should save time, bandwidth and comes under spatial redundancy reduction. memory. As multimedia information becomes While redundancy reduction between two really a important aspect of today’s life and adjacent frames comes under the temporal generated in vast amount, image/video redundancy reduction. Statistical redundancies compression is becoming more and more uses binary codes to compress transform important. Image/ video compression may lossy coefficients, motion vectors and other data at last or lossless. Lossless transmission means stage of video compression. Paper reviews no of reconstructed information is similar to originally video compression techniques use transmitted information, while lossy transformation coding, motion estimation, compression comes with loss in information but motion segmentation etc. to compress the gives better compression ratio. Even though different types of videos. Application of ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-3, 2018 54 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR) techniques on videos comes with no of 2. Filters advantages such as bandwidth reduction, bit rate reduction, compression efficiency increment etc. Novel chroma subsampling proposed in [10] is mosaic video compression technique uses RGB- II. EXISTING TECHNIQUES IN CFA structures. First it subsamples 2*2 YUV VIDEO COMPRESSION blocks of mosaic image frames into 4:2:0 1. Truncation coding formats. And then performs sampling of those U Truncation coding is based on segmentation of and V components that consist of required images into no of blocks consist of pixels. And information by calculating quality twisting then assign threshold and reconstruction values between original YUV block and sampled block. to each block. Threshold value is sum of all the By performing experimental results on 28 video pixel values, while reconstruction value sets the proposed method gives best quality and determined by finding bitmap for each block. As bitrate tradeoff than proposed methods. video is sequence of images, increase in image size results in required transmission bandwidth In-loop filtering useful in increasing the issue. EC (Embedded Compression) algorithms compression performance of videos. Existing are useful to overcome this problems, but not techniques based on in-loop filters mainly uses single EC technique able to solve video local smoothness prior information for compression for large size videos such as HD compression. Proposed method in [13] first time videos,[3] proposed method uses hardware with uses nonlocal prior information for compression Significant Bit Truncation (SBT) to compress the of videos. This method considers the in-loop HD videos reduces the required memory filter as an optimization issue by applying low bandwidth upto 60% by and large. Reach out to level constraints on each category of image 14.2pixels/cycle for throughput gain. Hardware patches separately. And then solves it by architecture Hierarchical Average and Copy matrix consist of singular values made up of Prediction (HACP) uses as much as possible image patches of similar categories. It models the predictions on block to gain accurate prediction image adaptive threshold derivation model for calculations than previously known prediction image patch groups depending on properties of techniques. And then uses SBT for grouping of encoded image patches, quantization variables prediction errors with same length of bits and and encoding manners. It improves the CR store them as compressed data. Bandwidth performance of existing video encoding reduction is main purpose of frame standards like HEVC and saves upto 16% bit recompression technique. rate. A professional video application comes with noise affect video compression (MLL) Mixed Lossy Lossless reference frame performance. It is possible for HEVC to recompression technique [6] used with video compress the professional videos. But low to encoder to diminish the enormous transfer speed medium QPs (Quantization Parameters) consist required by the external memory. Bandwidth of noise that could affect compression reduction is done through by use of truncated performance of HEVC. So that’s why proposed pixel and embedded compression of truncated method in [5] uses an explicit in-loop reference pixels (PR). It stores obtained data in levels: frame denoising filter in professional video Base level and Enhancement Level. Base level is application. Proposed method improves coding used for IME and enhancement level is used for efficiency for LDP settings. FME and MC in combination with base level. Base level data get compressed by using 3b- 3. Prediction Based Compression truncation method which consist of tailing-bit Increase in surveillance video applications truncation (TBT), in-block prediction (IBP), and creates new challenges for highly efficient small-value optimized variable length coding surveillance video compression techniques. The (SVO-VLC). And stores enhancement level data CR of surveillance videos got affected by the as it is in outer memory. It reduces outer memory “exposed background regions” is those areas bandwidth requirement upto 74.5%. show up in current frames however canvassed by objects in the reference frames. BMAP method uses BPR (Background Reference Prediction) ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-3, 2018 55 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR) and BDP (Background Difference Prediction) to search for JPEG-LS, CALIC, ADAP and LI. compress surveillance videos gives better CR BAPME works through 2 stages :(i) It uses 4 than AVC. BMAP Uses various prediction predictors: west predictor, neighbor predictor, manners for various types of blocks. BPR used median predictor and center predictor for pixel in for background coding while BDP used for current frame for generation of motion vector background and foreground coding. By and scheme. (ii) By setting up target window around large, there are 7.15%/6.25% (IPPP) and the pixel it searches in previously obtained frame 5.28%/4.79% (IBBP) increment in the and find the motion vector that minimizes whole compression time over AVC on SD/CIF of outright contrast (SAD) of the objective groupings [4]. window. Proposed motion estimation outperforms than block-based full search. It Low complexity lossless/near lossless video increases the speed and gives better entropy codec design is used as an embedded encoding [1]. compression engine reduces the required bandwidth for transmission of HD videos to In[12], three motion estimation algorithms: transfer them over wireless network [11]. Gives diamond search algorithms, adaptive motion the CR 21% and 46% over the low- estimation algorithm and full search algorithm in unpredictability competing technologies like combination MPEG-4 are compared with other JPEG-LS and FELICS respectively. The near
Recommended publications
  • On Computational Complexity of Motion Estimation Algorithms in MPEG-4 Encoder
    On Computational Complexity of Motion Estimation Algorithms in MPEG-4 Encoder Muhammad Shahid This thesis report is presented as a part of degree of Master of Science in Electrical Engineering Blekinge Institute of Technology, 2010 Supervisor: Tech Lic. Andreas Rossholm, ST-Ericsson Examiner: Dr. Benny Lovstrom, Blekinge Institute of Technology Abstract Video Encoding in mobile equipments is a computationally demanding fea- ture that requires a well designed and well developed algorithm. The op- timal solution requires a trade off in the encoding process, e.g. motion estimation with tradeoff between low complexity versus high perceptual quality and efficiency. The present thesis works on reducing the complexity of motion estimation algorithms used for MPEG-4 video encoding taking SLIMPEG motion estimation algorithm as reference. The inherent prop- erties of video like spatial and temporal correlation have been exploited to test new techniques of motion estimation. Four motion estimation algo- rithms have been proposed. The computational complexity and encoding quality have been evaluated. The resulting encoded video quality has been compared against the standard Full Search algorithm. At the same time, reduction in computational complexity of the improved algorithm is com- pared against SLIMPEG which is already about 99 % more efficient than Full Search in terms of computational complexity. The fourth proposed algorithm, Adaptive SAD Control, offers a mechanism of choosing trade off between computational complexity and encoding quality in a dynamic way. Acknowledgements It is a matter of great pleasure to express my deepest gratitude to my ad- visors Dr. Benny L¨ovstr¨om and Andreas Rossholm for all their guidance, support and encouragement throughout my thesis work.
    [Show full text]
  • 1. in the New Document Dialog Box, on the General Tab, for Type, Choose Flash Document, Then Click______
    1. In the New Document dialog box, on the General tab, for type, choose Flash Document, then click____________. 1. Tab 2. Ok 3. Delete 4. Save 2. Specify the export ________ for classes in the movie. 1. Frame 2. Class 3. Loading 4. Main 3. To help manage the files in a large application, flash MX professional 2004 supports the concept of _________. 1. Files 2. Projects 3. Flash 4. Player 4. In the AppName directory, create a subdirectory named_______. 1. Source 2. Flash documents 3. Source code 4. Classes 5. In Flash, most applications are _________ and include __________ user interfaces. 1. Visual, Graphical 2. Visual, Flash 3. Graphical, Flash 4. Visual, AppName 6. Test locally by opening ________ in your web browser. 1. AppName.fla 2. AppName.html 3. AppName.swf 4. AppName 7. The AppName directory will contain everything in our project, including _________ and _____________ . 1. Source code, Final input 2. Input, Output 3. Source code, Final output 4. Source code, everything 8. In the AppName directory, create a subdirectory named_______. 1. Compiled application 2. Deploy 3. Final output 4. Source code 9. Every Flash application must include at least one ______________. 1. Flash document 2. AppName 3. Deploy 4. Source 10. In the AppName/Source directory, create a subdirectory named __________. 1. Source 2. Com 3. Some domain 4. AppName 11. In the AppName/Source/Com directory, create a sub directory named ______ 1. Some domain 2. Com 3. AppName 4. Source 12. A project is group of related _________ that can be managed via the project panel in the flash.
    [Show full text]
  • Digital Video Quality Handbook (May 2013
    Digital Video Quality Handbook May 2013 This page intentionally left blank. Executive Summary Under the direction of the Department of Homeland Security (DHS) Science and Technology Directorate (S&T), First Responders Group (FRG), Office for Interoperability and Compatibility (OIC), the Johns Hopkins University Applied Physics Laboratory (JHU/APL), worked with the Security Industry Association (including Steve Surfaro) and members of the Video Quality in Public Safety (VQiPS) Working Group to develop the May 2013 Video Quality Handbook. This document provides voluntary guidance for providing levels of video quality in public safety applications for network video surveillance. Several video surveillance use cases are presented to help illustrate how to relate video component and system performance to the intended application of video surveillance, while meeting the basic requirements of federal, state, tribal and local government authorities. Characteristics of video surveillance equipment are described in terms of how they may influence the design of video surveillance systems. In order for the video surveillance system to meet the needs of the user, the technology provider must consider the following factors that impact video quality: 1) Device categories; 2) Component and system performance level; 3) Verification of intended use; 4) Component and system performance specification; and 5) Best fit and link to use case(s). An appendix is also provided that presents content related to topics not covered in the original document (especially information related to video standards) and to update the material as needed to reflect innovation and changes in the video environment. The emphasis is on the implications of digital video data being exchanged across networks with large numbers of components or participants.
    [Show full text]
  • An Overview of Block Matching Algorithms for Motion Vector Estimation
    Proceedings of the Second International Conference on Research in DOI: 10.15439/2017R85 Intelligent and Computing in Engineering pp. 217–222 ACSIS, Vol. 10 ISSN 2300-5963 An Overview of Block Matching Algorithms for Motion Vector Estimation Sonam T. Khawase1, Shailesh D. Kamble2, Nileshsingh V. Thakur3, Akshay S. Patharkar4 1PG Scholar, Computer Science & Engineering, Yeshwantrao Chavan College of Engineering, India 2Computer Science & Engineering, Yeshwantrao Chavan College of Engineering, India 3Computer Science & Engineering, Prof Ram Meghe College of Engineering & Management, India 4Computer Technology, K.D.K. College of Engineering, India [email protected], [email protected],[email protected], [email protected] Abstract–In video compression technique, motion estimation is one of the key components because of its high computation complexity involves in finding the motion vectors (MV) between the frames. The purpose of motion estimation is to reduce the storage space, bandwidth and transmission cost for transmission of video in many multimedia service applications by reducing the temporal redundancies while maintaining a good quality of the video. There are many motion estimation algorithms, but there is a trade-off between algorithms accuracy and speed. Among all of these, block-based motion estimation algorithms are most robust and versatile. In motion estimation, a variety of fast block based matching algorithms has been proposed to address the issues such as reducing the number of search/checkpoints, computational cost, and complexities etc. Due to its simplicity, the Fig. 1. Classification of Frames block-based technique is most popular. Motion estimation is only known for video coding process but for solving real life redundancies.
    [Show full text]
  • Motion Estimation at the Decoder Sven Klomp and Jorn¨ Ostermann Leibniz Universit¨At Hannover Germany
    5 Motion Estimation at the Decoder Sven Klomp and Jorn¨ Ostermann Leibniz Universit¨at Hannover Germany 1. Introduction All existing video coding standards, such as MPEG-1,2,4 or ITU-T H.26x, perform motion estimation at the encoder in order to exploit temporal dependencies within the video sequence. The estimated motion vectors are transmitted and used by the decoder to assemble a prediction of the current frame. Since only the prediction error and the motion information are transmitted, instead of intra coding the pixel values, compression is achieved. Due to block-based motion estimation, accurate compensation at object borders can only be achieved with small block sizes. Large blocks may contain several objects which move in different directions. Thus, accurate motion estimation and compensation is not possible, as shown by Klomp et al. (2010a) using prediction error variance, and small block sizes are favourable. However, the smaller the block, the more motion vectors have to be transmitted, resulting in a contradiction to bit rate reduction. 4.0 3.5 3.0 2.5 MV Backward MV Forward MV Bidirectional 2.0 RS Backward Rate (bit/pixel) RS Forward 1.5 RS Bidirectional 1.0 0.5 0.0 2 4 8 16 32 Block Size Fig. 1. Data rates of residual (RS) and motion vectors (MV) for different motion compensation techniques (Kimono sequence). 782 Effective Video Coding for MultimediaVideo Applications Coding These characteristics can be observed in Figure 1, where the rates for the residual and the motion vectors are plotted for different block sizes and three prediction techniques.
    [Show full text]
  • (A/V Codecs) REDCODE RAW (.R3D) ARRIRAW
    What is a Codec? Codec is a portmanteau of either "Compressor-Decompressor" or "Coder-Decoder," which describes a device or program capable of performing transformations on a data stream or signal. Codecs encode a stream or signal for transmission, storage or encryption and decode it for viewing or editing. Codecs are often used in videoconferencing and streaming media solutions. A video codec converts analog video signals from a video camera into digital signals for transmission. It then converts the digital signals back to analog for display. An audio codec converts analog audio signals from a microphone into digital signals for transmission. It then converts the digital signals back to analog for playing. The raw encoded form of audio and video data is often called essence, to distinguish it from the metadata information that together make up the information content of the stream and any "wrapper" data that is then added to aid access to or improve the robustness of the stream. Most codecs are lossy, in order to get a reasonably small file size. There are lossless codecs as well, but for most purposes the almost imperceptible increase in quality is not worth the considerable increase in data size. The main exception is if the data will undergo more processing in the future, in which case the repeated lossy encoding would damage the eventual quality too much. Many multimedia data streams need to contain both audio and video data, and often some form of metadata that permits synchronization of the audio and video. Each of these three streams may be handled by different programs, processes, or hardware; but for the multimedia data stream to be useful in stored or transmitted form, they must be encapsulated together in a container format.
    [Show full text]
  • On the Accuracy of Video Quality Measurement Techniques
    On the accuracy of video quality measurement techniques Deepthi Nandakumar Yongjun Wu Hai Wei Avisar Ten-Ami Amazon Video, Bangalore, India Amazon Video, Seattle, USA Amazon Video, Seattle, USA Amazon Video, Seattle, USA, [email protected] [email protected] [email protected] [email protected] Abstract —With the massive growth of Internet video and therefore measuring and optimizing for video quality in streaming, it is critical to accurately measure video quality these high quality ranges is an imperative for streaming service subjectively and objectively, especially HD and UHD video which providers. In this study, we lay specific emphasis on the is bandwidth intensive. We summarize the creation of a database measurement accuracy of subjective and objective video quality of 200 clips, with 20 unique sources tested across a variety of scores in this high quality range. devices. By classifying the test videos into 2 distinct quality regions SD and HD, we show that the high correlation claimed by objective Globally, a healthy mix of devices with different screen sizes video quality metrics is led mostly by videos in the SD quality and form factors is projected to contribute to IP traffic in 2021 region. We perform detailed correlation analysis and statistical [1], ranging from smartphones (44%), to tablets (6%), PCs hypothesis testing of the HD subjective quality scores, and (19%) and TVs (24%). It is therefore necessary for streaming establish that the commonly used ACR methodology of subjective service providers to quantify the viewing experience based on testing is unable to capture significant quality differences, leading the device, and possibly optimize the encoding and delivery to poor measurement accuracy for both subjective and objective process accordingly.
    [Show full text]
  • Motion Vector Forecast and Mapping (MV-Fmap) Method for Entropy Coding Based Video Coders Julien Le Tanou, Jean-Marc Thiesse, Joël Jung, Marc Antonini
    Motion Vector Forecast and Mapping (MV-FMap) Method for Entropy Coding based Video Coders Julien Le Tanou, Jean-Marc Thiesse, Joël Jung, Marc Antonini To cite this version: Julien Le Tanou, Jean-Marc Thiesse, Joël Jung, Marc Antonini. Motion Vector Forecast and Mapping (MV-FMap) Method for Entropy Coding based Video Coders. MMSP’10 2010 IEEE International Workshop on Multimedia Signal Processing, Oct 2010, Saint Malo, France. pp.206. hal-00531819 HAL Id: hal-00531819 https://hal.archives-ouvertes.fr/hal-00531819 Submitted on 3 Nov 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Motion Vector Forecast and Mapping (MV-FMap) Method for Entropy Coding based Video Coders Julien Le Tanou #1, Jean-Marc Thiesse #2, Joël Jung #3, Marc Antonini ∗4 # Orange Labs 38 rue du G. Leclerc, 92794 Issy les Moulineaux, France 1 [email protected] {2 jeanmarc.thiesse,3 joelb.jung}@orange-ftgroup.com ∗ I3S Lab. University of Nice-Sophia Antipolis/CNRS 2000 route des Lucioles, 06903 Sophia Antipolis, France 4 [email protected] Abstract—Since the finalization of the H.264/AVC standard between motion vectors of neighboring frames and blocks, we and in order to meet the target set by both ITU-T and MPEG propose in this paper a method for motion vector coding based to define a new standard that reaches 50% bit rate reduction on a motion vector residuals forecast followed by an adaptive compared to H.264/AVC, many tools have efficiently improved the texture coding and the motion compensation accuracy.
    [Show full text]
  • The H.264 Advanced Video Coding (AVC) Standard
    Whitepaper: The H.264 Advanced Video Coding (AVC) Standard What It Means to Web Camera Performance Introduction A new generation of webcams is hitting the market that makes video conferencing a more lifelike experience for users, thanks to adoption of the breakthrough H.264 standard. This white paper explains some of the key benefits of H.264 encoding and why cameras with this technology should be on the shopping list of every business. The Need for Compression Today, Internet connection rates average in the range of a few megabits per second. While VGA video requires 147 megabits per second (Mbps) of data, full high definition (HD) 1080p video requires almost one gigabit per second of data, as illustrated in Table 1. Table 1. Display Resolution Format Comparison Format Horizontal Pixels Vertical Lines Pixels Megabits per second (Mbps) QVGA 320 240 76,800 37 VGA 640 480 307,200 147 720p 1280 720 921,600 442 1080p 1920 1080 2,073,600 995 Video Compression Techniques Digital video streams, especially at high definition (HD) resolution, represent huge amounts of data. In order to achieve real-time HD resolution over typical Internet connection bandwidths, video compression is required. The amount of compression required to transmit 1080p video over a three megabits per second link is 332:1! Video compression techniques use mathematical algorithms to reduce the amount of data needed to transmit or store video. Lossless Compression Lossless compression changes how data is stored without resulting in any loss of information. Zip files are losslessly compressed so that when they are unzipped, the original files are recovered.
    [Show full text]
  • AVC, HEVC, VP9, AVS2 Or AV1? — a Comparative Study of State-Of-The-Art Video Encoders on 4K Videos
    AVC, HEVC, VP9, AVS2 or AV1? | A Comparative Study of State-of-the-art Video Encoders on 4K Videos Zhuoran Li, Zhengfang Duanmu, Wentao Liu, and Zhou Wang University of Waterloo, Waterloo, ON N2L 3G1, Canada fz777li,zduanmu,w238liu,[email protected] Abstract. 4K, ultra high-definition (UHD), and higher resolution video contents have become increasingly popular recently. The largely increased data rate casts great challenges to video compression and communication technologies. Emerging video coding methods are claimed to achieve su- perior performance for high-resolution video content, but thorough and independent validations are lacking. In this study, we carry out an in- dependent and so far the most comprehensive subjective testing and performance evaluation on videos of diverse resolutions, bit rates and content variations, and compressed by popular and emerging video cod- ing methods including H.264/AVC, H.265/HEVC, VP9, AVS2 and AV1. Our statistical analysis derived from a total of more than 36,000 raw sub- jective ratings on 1,200 test videos suggests that significant improvement in terms of rate-quality performance against the AVC encoder has been achieved by state-of-the-art encoders, and such improvement is increas- ingly manifest with the increase of resolution. Furthermore, we evaluate state-of-the-art objective video quality assessment models, and our re- sults show that the SSIMplus measure performs the best in predicting 4K subjective video quality. The database will be made available online to the public to facilitate future video encoding and video quality research. Keywords: Video compression, quality-of-experience, subjective qual- ity assessment, objective quality assessment, 4K video, ultra-high-definition (UHD), video coding standard 1 Introduction 4K, ultra high-definition (UHD), and higher resolution video contents have en- joyed a remarkable growth in recent years.
    [Show full text]
  • 11.2 Motion Estimation and Motion Compensation 421
    11.2 Motion Estimation and Motion Compensation 421 vertical component to the enhancement filter, making the overall filter separable with 3 3 support. × 11.2 MOTION ESTIMATION AND MOTION COMPENSATION Motion compensation (MC) is very useful in video filtering to remove noise and enhance signal. It is useful since it allows the filter or coder to process through the video on a path of near-maximum correlation based on following motion trajectories across the frames making up the image sequence or video. Motion compensation is also employed in all distribution-quality video coding formats, since it is able to achieve the smallest prediction error, which is then easier to code. Motion can be characterized in terms of either a velocity vector v or displacement vector d and is used to warp a reference frame onto a target frame. Motion estimation is used to obtain these displacements, one for each pixel in the target frame. Several methods of motion estimation are commonly used: • Block matching • Hierarchical block matching • Pel-recursive motion estimation • Direct optical flow methods • Mesh-matching methods Optical flow is the apparent displacement vector field d .d1,d2/ we get from setting (i.e., forcing) equality in the so-called constraint equationD x.n1,n2,n/ x.n1 d1,n2 d2,n 1/. (11.2–1) D − − − All five approaches start from this basic equation, which is really just an ide- alization. Departures from the ideal are caused by the covering and uncovering of objects in the viewed scene, lighting variation both in time and across the objects in the scene, movement toward or away from the camera, as well as rotation about an axis (i.e., 3-D motion).
    [Show full text]
  • Diapositivo 1
    VC 14/15 – TP16 Video Compression Mestrado em Ciência de Computadores Mestrado Integrado em Engenharia de Redes e Sistemas Informáticos Miguel Tavares Coimbra Outline • The need for compression • Types of redundancy • Image compression • Video compression VC 14/15 - TP16 - Video Compression Topic: The need for compression • The need for compression • Types of redundancy • Image compression • Video compression VC 14/15 - TP16 - Video Compression Images are great! VC 14/15 - TP16 - Video Compression But... Images need storage space... A lot of space! Size: 1024 x 768 pixels RGB colour space 8 bits per color = 2,6 MBytes VC 14/15 - TP16 - Video Compression What about video? • VGA: 640x480, 3 bytes per pixel -> 920KB per image. • Each second of video: 23 MB • Each hour of vídeo: 83 GB The death of Digital Video VC 14/15 - TP16 - Video Compression What if... ? • We exploit redundancy to compress image and video information? – Image Compression Standards – Video Compression Standards • “Explosion” of Digital Image & Video – Internet media – DVDs – Digital TV – ... VC 14/15 - TP16 - Video Compression Compression • Data compression – Reduce the quantity of data needed to store the same information. – In computer terms: Use fewer bits. • How is this done? – Exploit data redundancy. • But don’t we lose information? – Only if you want to... VC 14/15 - TP16 - Video Compression Types of Compression • Lossy • Lossless – We do not obtain an – We obtain an exact exact copy of our copy of our compressed data after compressed data after decompression. decompression. – Very high compression – Lower compression rates. rates. – Increased degradation – Freely compress / with sucessive decompress images. compression / It all depends on what we decompression.
    [Show full text]