Mirror Symmetry of Life Beata Zagórska-Marek

Total Page:16

File Type:pdf, Size:1020Kb

Mirror Symmetry of Life Beata Zagórska-Marek Chapter Mirror Symmetry of Life Beata Zagórska-Marek Abstract Functioning in the Earth gravity field imposes on living organisms a necessity to read directions. The characteristic feature of their bodies, regardless unicellular or multicellular, is axial symmetry. The development of body plan orchestrated by spatiotemporal changes in gene expression patterns is based on formation of the vertical and radial axes. Especially for immobile plants, anchored to the substrate, vertical axis is primary and most important. But also in animals the primary is the axis, which defines the anterior and posterior pole of the embryo. There are many little known chiral processes and structures that are left- or right oriented with respect to this axis. Recent developments indicate the role of intrinsic cell chirality that determines the direction of developmental chiral processes in living organisms. The still enigmatic events in cambia of trees and handedness of phyllotaxis as well as plant living crystals are in focus of the chapter. Keywords: intrinsic cell chirality, charophytes, cambium, morphogenesis, figured wood, plant development, phyllotaxis, shoot apical meristem, snail shells, handedness, dislocations I see the mirror fairy tale of infinite reflections spinning out to weave no end.... Bolesław Leśmian “Prolog” 1. Introduction Polarized environment, from the beginning of life on our planet, imposes on living organisms a necessity to read directions. Light and gravity are the two most important oriented signals that come from well-defined sources. The response to these primary polar signals allowed for development of the second- ary, more sophisticated reactions to the network of other polar signals like gradients of chemical molecules or mechanical stresses. The signals of chemical and physical nature provide the extrinsic but also an intrinsic information for biological systems. One of the basic features of the organism developing in polar environment is its axiality. This brings in consequence following possibilities: 1) multiplication of repetitive units of the body and their special alignment along the axis (segmenta- tion, metamerism) and 2) deviations of structures from the axis to the left or to the right (development of L/R symmetry). The main axis in the motionless plants, fastened to the ground, is mostly verti- cal, extending between the apical and basal poles. The animal main axis, regardless its position in the gravity field, connects the anterior and posterior poles. The axis 1 Current Topics in Chirality - From Chemistry to Biology formation starts at the very early stages of development. The identity of segments formed iteratively along the axis in both plants and animals is genetically controlled and their evolutionary multiplication creates a great potential for morphological and functional diversity through many useful modifications. This process is in a sense similar to the effects of gene duplication on the molecular level. Subsequent emergence of L/R symmetry may be observed on all, hierarchi- cally different levels of body organization. Some general principles, like minimum energy rule, are universal in nature leading to the identical solutions on all these levels. Good example represent spherical geodesic shapes. The structure of carbon allotrope - C60 closed fullerene, is also present in coated endocytic vesicles rein- forced by the clathrin cage [1], in regularly sculptured surface of pollen grains [2] and in a cellular pattern on the surface of the plant paraboloid apical meristem [3]. Other universal basic forms are chiral helices and spirals commonly observed on molecular, cellular and organismal levels. They are of particular interest here because of distinct mirror symmetry they have, which is the main focus of this chapter. Chirality of many macromolecules: nucleic acids, proteins or cellulose fibers [4], coiled coils of collagen, or such structures as tubulin cytoskeleton, thickenings of plant cell wall, plant tendrils, spiral snail shells or narwhal tusks are but a few examples. Not only structures but also some developmental processes may be chiral. The apical cell divisions in moss gametophores [5], cell cleavage in the embryos of snails [6, 7] or lateral organ initiation on plant shoot apical meristem (SAM) proceed clockwise (CW) or counterclockwise (CCW). Two interest- ing problems may be addressed while considering chiral structures in biological systems – mechanism of their formation and proportion between the two chiral configurations. The aim of this chapter is to provide the readers with the overview of some examples of bio-chirality discovered over the years both in animals and plants. The stronger accent will be placed on the latter because they are less known and because they have always been in a focus of the author’s research. The mechanisms of many cases of mirror-symmetry presence in plants are yet to be elucidated. 2. Mirror symmetry on cellular level Cell chirality or handedness is a newly discovered phenomenon, which nowa- days is intensely studied, mostly in animal cells [7–10]. It is manifested in the presence of chiral structures within the cells but also in the cell behavior that may lead to directional movements or assuming L or R orientation of cell alignment. In animals it affects organs laterality [10], in plants results in development of spiral, helical or wavy patterns [3, 11–15]. During primary axis formation on the cellular level the polarity of the cell is manifested in an uneven distribution of receptors, ion channels and hormone carri- ers on plasma membrane, and internally in the ion currents and cytoskeletal fibers parallel to the developing axis but also in the polar distribution of ultrastructural components like cell organelles or nutrients. All these sophisticated processes have been investigated mainly in plant egg cells or fucoid zygotes [16–18] and animal oocytes [19, 20]. However, even in the integrated system of multicellular organism, singular cell polarity is often a case. In animal body the epithelial cells of intestines constituting a planar 2D barrier, have their polarity unified. It is manifested in nonrandom distribution of glucose transporters which facilitates the oriented tran- sepithelial sugar transport [21]. In plants the polar distribution of the auxin influx (AUX) and efflux (PIN) carriers in plasma membrane results in polar transport of the hormone between the cells [22]. In L1 layer of SAM auxin is transported 2 Mirror Symmetry of Life DOI: http://dx.doi.org/10.5772/intechopen.96507 acropetally, whereas inside of the plant body, in the provascular tissues and later in cambium, the hormone transport is basipetal. Change in the distribution of carriers and thus of the cell polarity redirects the transport, often affecting the directions of plant organ growth [23]. This, for instance, has been noted in gravitropic response of the roots [24]. Many elements of the cell ultrastructure are spectacularly chiral. In some green algae exemplified by multicellular filamentous Spirogyra or unicellular Spirotaenia and Chlamydomonas spirogyroides the chloroplasts are of considerable length, flat and ribbon-like. They assume helical course in the cortical cytoplasm of the cell. Not much is known about the chiral configurations of their coiling. Images available in various data bases suggest that in Spirogyra both configurations may be present in different filaments [25], in different cells of the same filament or even within the same cell [26]. However, the error resulting from improper focusing during microscopic observations cannot be excluded. The sample taken for analysis from the aquarium of the Botanical Garden of Wrocław showed under light microscope hundreds of cells of the same S configuration of chloroplasts coiling from the right to the left (Figure 1). Mechanisms by which the configuration is regulated remain undiscovered. Another clearly chiral component of the cell is basal body. In eukaryotic, plant and animal cells some identical structures bear different names although they look the same. Two centrioles of the centrosome, basal bodies or kinetosomes in the motile or ciliary epithelial cells have the same architecture. Composed of 9 triplets of microtubules (MT), overlapping on all available images either CW or CCW, they resemble a pinwheel toy. It is unclear, however, whether both configurations, being a mirror-image of one another, are indeed present in all different types of the cells. Transmission electron micrographs (TEM) of tangentially sectioned cell surface show that in a particular cell all basal bodies underlying cilia are of the same chiral- ity [27]. However, unless it is clearly stated like in [28], it is not known whether Figure 1. The same filament of Spirogyra photographed under fluorescent microscope at different optical levels: at its upper surface (left) and well below, close to its opposite side (right). S helix of the chloroplast, visualized here by the red autofuorescence of chlorophyll, may be falsely interpreted as Z, when due to the changing focus is watched from the inside of the cell. 3 Current Topics in Chirality - From Chemistry to Biology basal body is seen on TEM from the surface of the cell or from its inside. This is the reason for chiral configurations of basal bodies being uncertain. The image of Paramaecium micronucleatum by Dennis Kunkel [27] shows CCW overlapping triplets, whereas in Paramecium tetraurelia [29] the triplets overlap CW. In flagellar apparatus of Chlamydomonas or Acrosiphonia
Recommended publications
  • Spirogyra and Mougeotia Zornitza G
    Volatile Components of the Freshwater AlgaeSpirogyra and Mougeotia Zornitza G. Kamenarska3, Stefka D. Dimitrova-Konaklievab, Christina Nikolovac, Athanas II. Kujumgievd, Kamen L. Stefanov3, Simeon S. Popov3 * a Institute of Organic Chemistry with Centre of Phytochemistry. Bulgarian Academy of Sciences, Sofia 1113. Bulgaria. Fax: ++3592/700225. E-mail: [email protected] b Faculty of Pharmacy, Medical University, Sofia 1000, Bulgaria c Institute of Soil Sciences and Agroecology, “N. Pushkarov”, Sofia 1080, Bulgaria d Institute of Microbiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria * Author for correspondence and reprint requests Z. Naturforsch. 55c, 495-499 (2000); received February 4/March 13, 2000 Antibacterial Activity, Mougeotia, Spirogyra, Volatile Compounds Several species of freshwater green algae belonging to the order ZygnematalesSpirogyra ( crassa (Ktz.) Czurda, S. longata (Vauch.) Ktz., and Mougeotia viridis (Ktz.) Wittr.) were found to have a specific composition of the volatile fraction, which confirms an earlier pro­ posal for the existence of two groups in the genusSpirogyra. Antibacterial activity was found in volatiles from S. longata. Introduction and Hentschel, 1966). Tannins (Nishizawa et al., 1985; Nakabayashi and Hada, 1954) and fatty acids While the chemical composition and biological (Pettko and Szotyori, 1967) were also found in activity of marine algae have been studied in Spyrogyra sp. Evidently, research on chemical depth, freshwater algae have been investigated composition of Spirogyra and Mougeotia species less intensively, especially those belonging to Zyg- is very limited, especially on their secondary me­ nemaceae (order Zygnematales). The most nu­ tabolites, which often possess biological activity. merous representatives of this family in the Bul­ The volatile constituents of Zygnemaceae algae garian flora are generaSpirogyra, Mougeotia and are of interest, because such compounds often Zygnema, which inhabit rivers and ponds.
    [Show full text]
  • Induction of Conjugation and Zygospore Cell Wall Characteristics
    plants Article Induction of Conjugation and Zygospore Cell Wall Characteristics in the Alpine Spirogyra mirabilis (Zygnematophyceae, Charophyta): Advantage under Climate Change Scenarios? Charlotte Permann 1 , Klaus Herburger 2 , Martin Felhofer 3 , Notburga Gierlinger 3 , Louise A. Lewis 4 and Andreas Holzinger 1,* 1 Department of Botany, Functional Plant Biology, University of Innsbruck, 6020 Innsbruck, Austria; [email protected] 2 Section for Plant Glycobiology, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark; [email protected] 3 Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria; [email protected] (M.F.); [email protected] (N.G.) 4 Department of Ecology and Evolutionary Biology, University of Conneticut, Storrs, CT 06269-3043, USA; [email protected] * Correspondence: [email protected] Abstract: Extreme environments, such as alpine habitats at high elevation, are increasingly exposed to man-made climate change. Zygnematophyceae thriving in these regions possess a special means Citation: Permann, C.; Herburger, K.; of sexual reproduction, termed conjugation, leading to the formation of resistant zygospores. A field Felhofer, M.; Gierlinger, N.; Lewis, sample of Spirogyra with numerous conjugating stages was isolated and characterized by molec- L.A.; Holzinger, A. Induction of ular phylogeny. We successfully induced sexual reproduction under laboratory conditions by a Conjugation and Zygospore Cell Wall transfer to artificial pond water and increasing the light intensity to 184 µmol photons m−2 s−1. Characteristics in the Alpine Spirogyra This, however was only possible in early spring, suggesting that the isolated cultures had an inter- mirabilis (Zygnematophyceae, nal rhythm.
    [Show full text]
  • The Chloroplast Rpl23 Gene Cluster of Spirogyra Maxima (Charophyceae) Shares Many Similarities with the Angiosperm Rpl23 Operon
    Algae Volume 17(1): 59-68, 2002 The Chloroplast rpl23 Gene Cluster of Spirogyra maxima (Charophyceae) Shares Many Similarities with the Angiosperm rpl23 Operon Jungho Lee* and James R. Manhart Department of Biology, Texas A&M University, College Station, TX, 77843-3258, U.S.A. A phylogenetic affinity between charophytes and embryophytes (land plants) has been explained by a few chloro- plast genomic characters including gene and intron (Manhart and Palmer 1990; Baldauf et al. 1990; Lew and Manhart 1993). Here we show that a charophyte, Spirogyra maxima, has the largest operon of angiosperm chloroplast genomes, rpl23 operon (trnI-rpl23-rpl2-rps19-rpl22-rps3-rpl16-rpl14-rps8-infA-rpl36-rps11-rpoA) containing both embryophyte introns, rpl16.i and rpl2.i. The rpl23 gene cluster of Spirogyra contains a distinct eubacterial promoter sequence upstream of rpl23, which is the first gene of the green algal rpl23 gene cluster. This sequence is completely absent in angiosperms but is present in non-flowering plants. The results imply that, in the rpl23 gene cluster, early charophytes had at least two promoters, one upstream of trnI and another upstream of rpl23, which partially or completely lost its function in land plants. A comparison of gene clusters of prokaryotes, algal chloroplast DNAs and land plant cpDNAs indicated a loss of numerous genes in chlorophyll a+b eukaryotes. A phylogenetic analysis using presence/absence of genes and introns as characters produced trees with a strongly supported clade contain- ing chlorophyll a+b eukaryotes. Spirogyra and embryophytes formed a clade characterized by the loss of rpl5 and rps9 and the gain of trnI (CAU) and introns in rpl2 and rpl16.
    [Show full text]
  • Evolutionary History of Floral Key Innovations in Angiosperms Elisabeth Reyes
    Evolutionary history of floral key innovations in angiosperms Elisabeth Reyes To cite this version: Elisabeth Reyes. Evolutionary history of floral key innovations in angiosperms. Botanics. Université Paris Saclay (COmUE), 2016. English. NNT : 2016SACLS489. tel-01443353 HAL Id: tel-01443353 https://tel.archives-ouvertes.fr/tel-01443353 Submitted on 23 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLS489 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY, préparée à l’Université Paris-Sud ÉCOLE DOCTORALE N° 567 Sciences du Végétal : du Gène à l’Ecosystème Spécialité de Doctorat : Biologie Par Mme Elisabeth Reyes Evolutionary history of floral key innovations in angiosperms Thèse présentée et soutenue à Orsay, le 13 décembre 2016 : Composition du Jury : M. Ronse de Craene, Louis Directeur de recherche aux Jardins Rapporteur Botaniques Royaux d’Édimbourg M. Forest, Félix Directeur de recherche aux Jardins Rapporteur Botaniques Royaux de Kew Mme. Damerval, Catherine Directrice de recherche au Moulon Président du jury M. Lowry, Porter Curateur en chef aux Jardins Examinateur Botaniques du Missouri M. Haevermans, Thomas Maître de conférences au MNHN Examinateur Mme. Nadot, Sophie Professeur à l’Université Paris-Sud Directeur de thèse M.
    [Show full text]
  • Checklist and Bibliography of the Marine Benthic Algae Within Chuuk, Pohnpei, and Kosrae States, Federated States of Micronesia
    Checklist and Bibliography of the Marine Benthic Algae Within Chuuk, Pohnpei, and Kosrae States, Federated States of Micronesia Roy T. Tsuda Pacific Biological Survey Bishop Museum January 2006 Checklist and Bibliography of the Marine Benthic Algae Within Chuuk, Pohnpei, and Kosrae States, Federated States of Micronesia Prepared for: Marine Introduced Species Workshop in Chuuk, Pohnpei, and Kosrae States, Federated States of Micronesia Roy T. Tsuda Department of Natural Sciences Bishop Museum Bishop Museum Pacific Biological Survey Bishop Museum Technical Report No. 34 Honolulu, Hawai‘i January 2006 2 Published by Bishop Museum Press 1525 Bernice Street Honolulu, Hawai‘i Copyright © 2006 Bishop Museum All Rights Reserved Printed in the United States of America LOGO ISSN 1085-455X Contribution No. 2006-001 to the Pacific Biological Survey 3 TABLE OF CONTENTS Page INTRODUCTION 6 SPECIES AND REFERENCES 8 Division Cyanophyta 8 Class Cyanophyceae 8 Order Chroococcales 8 Family Entophysalidaceae Family Microcystaceae Order Oscillatoriales 8 Family Oscillatoriaceae Family Phormidiaceae Family Pseudanabaenaceae Family Schizothrichaceae Order Nostocales 10 Family Nostocaceae Family Rivulariaceae Family Scytonemataceae Order Stigonematales 10 Family Nostochopsidaceae Division Chlorophyta 11 Class Chlorophyceae 11 Order Ulotrichales 11 Family Ulotrichaceae Order Ctenocladales 11 Family Ulvellaceae Order Ulvales 11 Family Ulvaceae Order Cladophorales 11 Family Anadyomenaceae Family Cladophoraceae Family Siphonocladaceae Family Valoniaceae 4 Page Order
    [Show full text]
  • 2004 University of Connecticut Storrs, CT
    Welcome Note and Information from the Co-Conveners We hope you will enjoy the NEAS 2004 meeting at the scenic Avery Point Campus of the University of Connecticut in Groton, CT. The last time that we assembled at The University of Connecticut was during the formative years of NEAS (12th Northeast Algal Symposium in 1973). Both NEAS and The University have come along way. These meetings will offer oral and poster presentations by students and faculty on a wide variety of phycological topics, as well as student poster and paper awards. We extend a warm welcome to all of our student members. The Executive Committee of NEAS has extended dormitory lodging at Project Oceanology gratis to all student members of the Society. We believe this shows NEAS members’ pride in and our commitment to our student members. This year we will be honoring Professor Arthur C. Mathieson as the Honorary Chair of the 43rd Northeast Algal Symposium. Art arrived with his wife, Myla, at the University of New Hampshire in 1965 from California. Art is a Professor of Botany and a Faculty in Residence at the Jackson Estuarine Laboratory of the University of New Hampshire. He received his Bachelor of Science and Master’s Degrees at the University of California, Los Angeles. In 1965 he received his doctoral degree from the University of British Columbia, Vancouver, Canada. Over a 43-year career Art has supervised many undergraduate and graduate students studying the ecology, systematics and mariculture of benthic marine algae. He has been an aquanaut-scientist for the Tektite II and also for the FLARE submersible programs.
    [Show full text]
  • Ulvella Tongshanensis (Ulvellaceae, Chlorophyta), a New Freshwater Species from China, and an Emended Morphological Circumscription of the Genus Ulvella
    Fottea, Olomouc, 15(1): 95–104, 2015 95 Ulvella tongshanensis (Ulvellaceae, Chlorophyta), a new freshwater species from China, and an emended morphological circumscription of the genus Ulvella Huan ZHU1, 2, Frederik LELIAERT3, Zhi–Juan ZHAO1, 2, Shuang XIA4, Zheng–Yu HU5, Guo–Xiang LIU1* 1 Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China; *Corresponding author e–mail: [email protected] 2University of Chinese Academy of Sciences, Beijing 100049, P. R. China 3Marine Biology Research Group, Department of Biology, Ghent University, Krijgslaan 281–S8, 9000 Ghent, Belgium 4College of Life Sciences, South–central University for Nationalities, Wuhan, 430074, P. R. China 5State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China Abstract: A new freshwater species of Ulvella, U. tongshanensis H. ZHU et G. LIU, is described from material collected from rocks under small waterfalls in Hubei Province, China. This unusual species differs from other species in the genus by the macroscopic and upright parenchymatous thalli, and by the particular habitat (most Ulvella species occur in marine environments). Phylogenetic analyses of plastid encoded rbcL and tufA, and nuclear 18S rDNA sequences, pointed towards the generic placement of U. tongshanensis and also showed a close relationship with two other freshwater species, Ulvella bullata (Jao) H. ZHU et G. LIU, comb. nov. and Ulvella prasina (Jao) H. ZHU et G. LIU, comb. nov. The latter two were previously placed in the genus Jaoa and are characterized by disc–shaped to vesicular morphology. Our study once again shows that traditionally used morphological characters are poor indicators for phylogenetic relatedness in morphologically simple algae like the Ulvellaceae.
    [Show full text]
  • How Does Genome Size Affect the Evolution of Pollen Tube Growth Rate, a Haploid Performance Trait?
    Manuscript bioRxiv preprint doi: https://doi.org/10.1101/462663; this version postedClick April here18, 2019. to The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv aaccess/download;Manuscript;PTGR.genome.evolution.15April20 license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Effects of genome size on pollen performance 2 3 4 5 How does genome size affect the evolution of pollen tube growth rate, a haploid 6 performance trait? 7 8 9 10 11 John B. Reese1,2 and Joseph H. Williams2 12 Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 13 37996, U.S.A. 14 15 16 17 1Author for correspondence: 18 John B. Reese 19 Tel: 865 974 9371 20 Email: [email protected] 21 1 bioRxiv preprint doi: https://doi.org/10.1101/462663; this version posted April 18, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 22 ABSTRACT 23 Premise of the Study – Male gametophytes of most seed plants deliver sperm to eggs via a 24 pollen tube. Pollen tube growth rates (PTGRs) of angiosperms are exceptionally rapid, a pattern 25 attributed to more effective haploid selection under stronger pollen competition. Paradoxically, 26 whole genome duplication (WGD) has been common in angiosperms but rare in gymnosperms.
    [Show full text]
  • Controlling Anagallis Arvensis and Malva Parviflora Associated Wheat Using Some Essential Oils
    Journal of Materials and J. Mater. Environ. Sci., 2019, Volume 10, Issue 9, Page 891-897 Environmental Sciences ISSN : 2028-2508 CODEN : JMESCN http://www.jmaterenvironsci.com Copyright © 2019, University of Mohammed Premier Oujda Morocco Controlling Anagallis arvensis and Malva parviflora Associated Wheat Using Some Essential Oils. I- Using Citrus sinensis Peel Oil K. G. El-Rokiek 1, S. A. Saad El-Din 1, S. A. El-Sawi 2, M. E. Ibrahim 3 1Botany Dept., 2Pharmacognosy Dept., 3Research of Medicinal and Aromatic Plants Dept, National Research Center, Dokki, 12622, Cairo, Egypt Received 30 Aug. 2019, Abstract Revised 16 Sept. 2019, In this study, allelopathic effects of essential oil of Citrus sinensis peel were investigated Accepted 17 Sept. 2019 against the two broad leaf weeds Anagalis arvensis and Malva parviflora that infested with Keywords wheat (Triticum aestivum L.) in pot experiment. This investigation was carried out in the Citrus Sinensis L; greenhouse of National Research Centre, Dokki Egypt in the two successive winter seasons, Essential oil, 2017/2018 and 2018/2019. The pots were sprayed with Citrus sinensis peel essential oil at Allelopathic effect concentrations,1, 2, 3, 4 and 5%. The results revealed inhibitory effects of essential oil on Anagallis arvensi, the two weeds Anagalis arvensis and Malva parviflora with more inhibitory action on Malva parviflora Anagalis arvensis. The essential oil of Citrus sinensis peel showed a high inhibitory effect weed growth, against the two weeds at high concentrations. On the other hand, weed growth inhibitions wheat. were accompanied by an increase in wheat growth as well as yield and yield components.
    [Show full text]
  • Molecular Identification and Phylogenetic Relationship of Green Algae, Spirogyra Ellipsospora (Chlorophyta) Using ISSR and Rbcl
    Saudi Journal of Biological Sciences (2014) xxx, xxx–xxx King Saud University Saudi Journal of Biological Sciences www.ksu.edu.sa www.sciencedirect.com ORIGINAL ARTICLE Molecular identification and phylogenetic relationship of green algae, Spirogyra ellipsospora (Chlorophyta) using ISSR and rbcL markers Pheravut Wongsawad *, Yuwadee Peerapornpisal Department of Biology, Faculty of Science, Chiang Mai University, Mueang 50200, Thailand Received 9 November 2013; revised 7 January 2014; accepted 14 January 2014 KEYWORDS Abstract Spirogyra is found in a wide range of habitats, including small stagnant water bodies, Spirogyra ellipsospora; rivers, and streams. Spirogyra ellipsospora is common in northern Thailand. Species identification rbcL; of the Spirogyra species based only on morphological characteristics can be difficult. A reliable ISSR markers; and accurate method is required to evaluate genetic variations. This study aims to apply molecular Molecular identification approaches for the identification of S. ellipsospora using microsatellites and rbcL markers. Based on DNA sequencing, the rbcL gene was sequenced and the data was analyzed using the BLAST (Basic Local Alignment Search Tool) program in the NCBI (National Center for Biotechnology Informa- tion) database. The sequence of S. ellipsospora from this study revealed definitive identity matches in the range of 99% for the consensus sequences of S. ellipsospora. The 10 primers of ISSR could be amplified by 92 amplification fragments. The DNA fragments and the rbcL sequence data grouped the Spirogyra specimens into two distinct clusters. ª 2014 Production and hosting by Elsevier B.V. on behalf of King Saud University. 1. Introduction grows longer through normal cell division. There are more than 400 species of Spirogyra in the world.
    [Show full text]
  • "Phycology". In: Encyclopedia of Life Science
    Phycology Introductory article Ralph A Lewin, University of California, La Jolla, California, USA Article Contents Michael A Borowitzka, Murdoch University, Perth, Australia . General Features . Uses The study of algae is generally called ‘phycology’, from the Greek word phykos meaning . Noxious Algae ‘seaweed’. Just what algae are is difficult to define, because they belong to many different . Classification and unrelated classes including both prokaryotic and eukaryotic representatives. Broadly . Evolution speaking, the algae comprise all, mainly aquatic, plants that can use light energy to fix carbon from atmospheric CO2 and evolve oxygen, but which are not specialized land doi: 10.1038/npg.els.0004234 plants like mosses, ferns, coniferous trees and flowering plants. This is a negative definition, but it serves its purpose. General Features Algae range in size from microscopic unicells less than 1 mm several species are also of economic importance. Some in diameter to kelps as long as 60 m. They can be found in kinds are consumed as food by humans. These include almost all aqueous or moist habitats; in marine and fresh- the red alga Porphyra (also known as nori or laver), an water environments they are the main photosynthetic or- important ingredient of Japanese foods such as sushi. ganisms. They are also common in soils, salt lakes and hot Other algae commonly eaten in the Orient are the brown springs, and some can grow in snow and on rocks and the algae Laminaria and Undaria and the green algae Caulerpa bark of trees. Most algae normally require light, but some and Monostroma. The new science of molecular biology species can also grow in the dark if a suitable organic carbon has depended largely on the use of algal polysaccharides, source is available for nutrition.
    [Show full text]
  • Taxons Modifiés
    Taxons modifiés Migration du référentiel TAXREF version 4.0 (12/10/2011) à la version 6.0 (08/04/2013) (source: http://inpn.mnhn.fr/programme/referentiel-taxonomique-taxref) TAXREF v.4.0 TAXREF v.6.0 R: Plantae Plantae E: Chlorophycota Charophyta C: Charophyceae Charophyceae O: Charales Charales F: Characeae Characeae - Chara aculeolata - Chara aculeolata - Chara aspera - Chara aspera - Chara baltica - Chara baltica - Chara braunii - Chara braunii - Chara canescens - Chara canescens - Chara connivens - Chara connivens - Chara contraria - Chara contraria - Chara crinita - Chara crinita - Chara delicatula - Chara delicatula - Chara foetida crassicaulis - Chara crassicaulis - Chara fragifera - Chara fragifera - Chara galioides - Chara galioides - Chara globularis - Chara globularis - Chara hispida - Chara hispida - Chara major - Chara major - Chara polyacantha - Chara polyacantha - Chara vulgaris - Chara vulgaris - Lamprothamnium alopecuroides - Lamprothamnium alopecuroides - Lamprothamnium papulosum - Lamprothamnium papulosum - Nitella batrachosperma - Nitella batrachosperma - Nitella brebissonii - Nitella brebissonii - Nitella capillaris - Nitella capillaris - Nitella capitata - Nitella capitata - Nitella chevaliery - Nitella chevaliery - Nitella confervacea - Nitella confervacea - Nitella flexilis - Nitella flexilis - Nitella gracilis - Nitella gracilis - Nitella hyalina - Nitella hyalina - Nitella mucronata - Nitella mucronata - Nitella neyrautii - Nitella neyrautii - Nitella opaca - Nitella opaca - Nitella ornithopoda - Nitella ornithopoda
    [Show full text]