LECTURE 11: INTRODUCTION to HIGHER CATEGORIES Last Time, We Met the Definition of a Quasi-Category As a Simpicial Set Satisfying

Total Page:16

File Type:pdf, Size:1020Kb

LECTURE 11: INTRODUCTION to HIGHER CATEGORIES Last Time, We Met the Definition of a Quasi-Category As a Simpicial Set Satisfying LECTURE 11: INTRODUCTION TO HIGHER CATEGORIES Last time, we met the definition of a quasi-category as a simpicial set satisfying a certain lifting property. While this definition is rather direct and simple, it lacks to provide any interpretation as a model for a higher category. In this lecture, we hope to give a broad picture of higher categories, and to relate more intuitive approaches to that of quasi- categories. If a category is like a set with arrows between the elements of the set, we should inductively think of a 2-category as a category with arrows between the morphisms of C. Thus, what we mean by \higher category" is a category in which one can speak of arrows between arrows, and so on. 1. The idea of enrichment Let K⊗ be a (unital) monoidal category. A category enriched in K is a category C together such that for all X; Y 2 C the morphism sets HomC(X; Y ) are objects of K. One must also prescribe the data of identities and compositions in the appropriate way. For instance, the composition rule cXYZ : HomC(Y; Z) ⊗ HomC(X; Y ) ! HomC(X; Z) must be a morphism in the category K. Example 1.1. There are many examples of enriched categories. For instance, the category dg of dg vector spaces Vectk is enriched in itself. The category of topological spaces also admits a natural enrichment. Indeed, one can speak of \mapping spaces", which gives Top an enrichment over itself as well. Note that when we say category, what we really mean is a category enriched in Set. Following this logic, the idea of enrichment gives a natural first guess of what a higher category is. Definition 1.2. A strict 2-category is a category enriched over the category of categories Cat. Remark 1.3. When we say the category of categories Cat we mean the (large) category whose objects are categories and morphisms are functors between categories. Concretely, this definition means that for any two objects X; Y of a 2-category C(2) there is a morphism category HomC(2) (X; Y ). Within this morphism category, we can then talk about \morphisms between morphisms" in a rigorous way. 1 Why have we called such 2-categories strict? This comes from thinking about associa- tivity of the composition rule (which is now a functor) cXYZ : HomC(2) (Y; Z) ◦ HomC(2) (X; Y ) ! HomC(2) (X; Z): By the definition of enrichment, associativity says that we have an equality of functors cXZW ◦ (cXYZ × id) = cXYW ◦ (id × cYZW ) for all X; Y; Z; W 2 C(2). It is generally not good practice to ask for two functors to be equal. Indeed, it is more natural to ask for the data of a natural isomorphism ηXYZW : cXZW ◦ (cXYZ × id) =) cXYW ◦ (id × cYZW ): Asking for such data leads one to the definition of a (weak = non-strict) 2-category. Remark 1.4. It turns out that weak and strict 2-categories are equivalent, but this should be thought of as a happy accident. When we go higher up the chain, strict n-categories are not at all the same as weaker definitions one can come up with. When we say \higher category" we are referring to a category in which one has mor- phisms of arbitrary level. 2. Fluffy morphisms In practice we will still only be concerned with results at the 1-categorical level. Really, we will use the theory of higher categories as a robust model for the concept of \homotopy equivalence". This means that we will only ever care about higher categories in which all the higher morphisms are quite boring. Definition 2.1. An (1; n)-category is a higher category in which all k-morphisms are invertible for k > n. We will simply refer to a (1; 1)-category as an 1-category. Example 2.2. An intuitive example of higher categories comes from topology. Let X be a topological space. Define the category π≤1(X) whose objects are the points of X and morphisms are paths. Note that to every path, we can invert time to obtain an inverse. Thus, this is a category in which all morphisms are invertible. Hence π≤1(X) is a groupoid called the \fundamental groupoid" of X. Going further, we can define the 2-category π≤2(X) whose objects and morphisms are the same as π≤1(X). The 2-morphisms are the homotopies between paths. This is what one might call a \2-groupoid", since it is a 2-category in which all 1; 2-morphisms are invertible. One can inductively define a higher category π≤∞(X), whose morphsims of all levels are invertible. This is a particular example of a (1; 0)-category, which we might as well refer to as an 1-groupoid. We will soon see why one should think of all 1-groupoids as arising in this way. Thus, \1-groupoid" is just a fancy way of saying \topological space". 2 Using the motivating perspective of 2-categories as categories enriched in 1-categories, we arrive at the following model for an (1; 1)-category: it is a category enriched in (1; 0)- categories. That is, a topological category. Definition 2.3. A topological category is a category enriched over the category of topological spaces Top. That is, a category C in which the set of morphisms between any two objects HomC(X; Y ) 2 Top is a topological space. We will refer to the category of topological categories by CatTop. 3. Simplicial categories For many purposes, topological spaces are not as well-behaved as their combinatorial cousin: simplicial sets. For similar reasons, it is often better to consider a simplicial analog of a topological category as a model for an 1-category. Definition 3.1. A simplicial category is a category enriched in simplicial sets. That is, a category C in which the set of morphisms between any two objects HomC(X; Y ) 2 Set∆ is a simplicial set. Denote the category of simplicial categories by Cat∆. Simplicial categories are related to topological categories in a similar way to how sim- plicial sets are related to topological spaces. Namely, the geometric realization / singular- ization adjunction |−| Set∆ Top: Sing determines an adjunction |−| Cat∆ CatTop: Sing by applying the original adjunction to the morphism spaces. For instance, if C is a sim- plicial category, we define the topological category jCj in the following way: • its objects are the same as C; • if X; Y 2 C, define HomjCj = jHomC(X; Y )j: Composition is defined by functoriality of realization. The standard realization / singular adjunction between simplicial sets and topological spaces enhances to a Quillen equivalence of model categories. In particular, it determines an equivalence of categories between the homotopy category of simplicial sets and the homotopy category of spaces. 3 We will see there is a similar statement of equivalences at the level of simplicial and topological categories. For this, we need to define the notion of \homotopy" at the cate- gorical level. 4. The homotopy category Note that there is a functor π0 : Top ! Set which takes a topological space X to its path components π0X. Definition 4.1. Let C be a topological category. Define its homotopy category ho C to be the (ordinary) category whose objects are the same as that of C and whose morphisms are Homho C(X; Y ) = π0HomC(X; Y ): Remark 4.2. The set π0HomC(X; Y ) is precisely the set of homotopy classes of maps X ! Y and is sometimes written as [X; Y ]. We use geometric realization to define the concept from simplicial categories. Definition 4.3. Let C be a simplicial category and jCj the realized topological category. The homotopy category of C is ho C := ho jCj. By construction, we see that the adjunction between simplicial and topological cat- egories becomes an equivalence at the level of homotopy categories. That is, if C is a simplicial category, then the unit induces a functor of simplicial categories C ! SingjCj which is an equivalence at the level of homotopy categories. Similarly, if D is a topological category, the counit induces a functor of topological categories jSingDj ! D which is an equivalence on homotopy categories. 4.
Recommended publications
  • Simplicial Sets, Nerves of Categories, Kan Complexes, Etc
    SIMPLICIAL SETS, NERVES OF CATEGORIES, KAN COMPLEXES, ETC FOLING ZOU These notes are taken from Peter May's classes in REU 2018. Some notations may be changed to the note taker's preference and some detailed definitions may be skipped and can be found in other good notes such as [2] or [3]. The note taker is responsible for any mistakes. 1. simplicial approach to defining homology Defnition 1. A simplical set/group/object K is a sequence of sets/groups/objects Kn for each n ≥ 0 with face maps: di : Kn ! Kn−1; 0 ≤ i ≤ n and degeneracy maps: si : Kn ! Kn+1; 0 ≤ i ≤ n satisfying certain commutation equalities. Images of degeneracy maps are said to be degenerate. We can define a functor: ordered abstract simplicial complex ! sSet; K 7! Ks; where s Kn = fv0 ≤ · · · ≤ vnjfv0; ··· ; vng (may have repetition) is a simplex in Kg: s s Face maps: di : Kn ! Kn−1; 0 ≤ i ≤ n is by deleting vi; s s Degeneracy maps: si : Kn ! Kn+1; 0 ≤ i ≤ n is by repeating vi: In this way it is very straightforward to remember the equalities that face maps and degeneracy maps have to satisfy. The simplical viewpoint is helpful in establishing invariants and comparing different categories. For example, we are going to define the integral homology of a simplicial set, which will agree with the simplicial homology on a simplical complex, but have the virtue of avoiding the barycentric subdivision in showing functoriality and homotopy invariance of homology. This is an observation made by Samuel Eilenberg. To start, we construct functors: F C sSet sAb ChZ: The functor F is the free abelian group functor applied levelwise to a simplical set.
    [Show full text]
  • The Simplicial Parallel of Sheaf Theory Cahiers De Topologie Et Géométrie Différentielle Catégoriques, Tome 10, No 4 (1968), P
    CAHIERS DE TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES YUH-CHING CHEN Costacks - The simplicial parallel of sheaf theory Cahiers de topologie et géométrie différentielle catégoriques, tome 10, no 4 (1968), p. 449-473 <http://www.numdam.org/item?id=CTGDC_1968__10_4_449_0> © Andrée C. Ehresmann et les auteurs, 1968, tous droits réservés. L’accès aux archives de la revue « Cahiers de topologie et géométrie différentielle catégoriques » implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ CAHIERS DE TOPOLOGIE ET GEOMETRIE DIFFERENTIELLE COSTACKS - THE SIMPLICIAL PARALLEL OF SHEAF THEORY by YUH-CHING CHEN I NTRODUCTION Parallel to sheaf theory, costack theory is concerned with the study of the homology theory of simplicial sets with general coefficient systems. A coefficient system on a simplicial set K with values in an abe - . lian category 8 is a functor from K to Q (K is a category of simplexes) ; it is called a precostack; it is a simplicial parallel of the notion of a presheaf on a topological space X . A costack on K is a « normalized» precostack, as a set over a it is realized simplicial K/" it is simplicial « espace 8ta18 ». The theory developed here is functorial; it implies that all &#x3E;&#x3E; homo- logy theories are derived functors. Although the treatment is completely in- dependent of Topology, it is however almost completely parallel to the usual sheaf theory, and many of the same theorems will be found in it though the proofs are usually quite different.
    [Show full text]
  • Fields Lectures: Simplicial Presheaves
    Fields Lectures: Simplicial presheaves J.F. Jardine∗ January 31, 2007 This is a cleaned up and expanded version of the lecture notes for a short course that I gave at the Fields Institute in late January, 2007. I expect the cleanup and expansion processes to continue for a while yet, so the interested reader should check the web site http://www.math.uwo.ca/∼jardine periodi- cally for updates. Contents 1 Simplicial presheaves and sheaves 2 2 Local weak equivalences 4 3 First local model structure 6 4 Other model structures 12 5 Cocycle categories 13 6 Sheaf cohomology 16 7 Descent 22 8 Non-abelian cohomology 25 9 Presheaves of groupoids 28 10 Torsors and stacks 30 11 Simplicial groupoids 35 12 Cubical sets 43 13 Localization 48 ∗This research was supported by NSERC. 1 1 Simplicial presheaves and sheaves In all that follows, C will be a small Grothendieck site. Examples include the site op|X of open subsets and open covers of a topo- logical space X, the site Zar|S of Zariski open subschemes and open covers of a scheme S, or the ´etale site et|S, again of a scheme S. All of these sites have “big” analogues, like the big sites Topop,(Sch|S)Zar and (Sch|S)et of “all” topological spaces with open covers, and “all” S-schemes T → S with Zariski and ´etalecovers, respectivley. Of course, there are many more examples. Warning: All of the “big” sites in question have (infinite) cardinality bounds on the objects which define them so that the sites are small, and we don’t talk about these bounds.
    [Show full text]
  • A Few Points in Topos Theory
    A few points in topos theory Sam Zoghaib∗ Abstract This paper deals with two problems in topos theory; the construction of finite pseudo-limits and pseudo-colimits in appropriate sub-2-categories of the 2-category of toposes, and the definition and construction of the fundamental groupoid of a topos, in the context of the Galois theory of coverings; we will take results on the fundamental group of étale coverings in [1] as a starting example for the latter. We work in the more general context of bounded toposes over Set (instead of starting with an effec- tive descent morphism of schemes). Questions regarding the existence of limits and colimits of diagram of toposes arise while studying this prob- lem, but their general relevance makes it worth to study them separately. We expose mainly known constructions, but give some new insight on the assumptions and work out an explicit description of a functor in a coequalizer diagram which was as far as the author is aware unknown, which we believe can be generalised. This is essentially an overview of study and research conducted at dpmms, University of Cambridge, Great Britain, between March and Au- gust 2006, under the supervision of Martin Hyland. Contents 1 Introduction 2 2 General knowledge 3 3 On (co)limits of toposes 6 3.1 The construction of finite limits in BTop/S ............ 7 3.2 The construction of finite colimits in BTop/S ........... 9 4 The fundamental groupoid of a topos 12 4.1 The fundamental group of an atomic topos with a point . 13 4.2 The fundamental groupoid of an unpointed locally connected topos 15 5 Conclusion and future work 17 References 17 ∗e-mail: [email protected] 1 1 Introduction Toposes were first conceived ([2]) as kinds of “generalised spaces” which could serve as frameworks for cohomology theories; that is, mapping topological or geometrical invariants with an algebraic structure to topological spaces.
    [Show full text]
  • Picard Groupoids and $\Gamma $-Categories
    PICARD GROUPOIDS AND Γ-CATEGORIES AMIT SHARMA Abstract. In this paper we construct a symmetric monoidal closed model category of coherently commutative Picard groupoids. We construct another model category structure on the category of (small) permutative categories whose fibrant objects are (permutative) Picard groupoids. The main result is that the Segal’s nerve functor induces a Quillen equivalence between the two aforementioned model categories. Our main result implies the classical result that Picard groupoids model stable homotopy one-types. Contents 1. Introduction 2 2. The Setup 4 2.1. Review of Permutative categories 4 2.2. Review of Γ- categories 6 2.3. The model category structure of groupoids on Cat 7 3. Two model category structures on Perm 12 3.1. ThemodelcategorystructureofPermutativegroupoids 12 3.2. ThemodelcategoryofPicardgroupoids 15 4. The model category of coherently commutatve monoidal groupoids 20 4.1. The model category of coherently commutative monoidal groupoids 24 5. Coherently commutative Picard groupoids 27 6. The Quillen equivalences 30 7. Stable homotopy one-types 36 Appendix A. Some constructions on categories 40 AppendixB. Monoidalmodelcategories 42 Appendix C. Localization in model categories 43 Appendix D. Tranfer model structure on locally presentable categories 46 References 47 arXiv:2002.05811v2 [math.CT] 12 Mar 2020 Date: Dec. 14, 2019. 1 2 A. SHARMA 1. Introduction Picard groupoids are interesting objects both in topology and algebra. A major reason for interest in topology is because they classify stable homotopy 1-types which is a classical result appearing in various parts of the literature [JO12][Pat12][GK11]. The category of Picard groupoids is the archetype exam- ple of a 2-Abelian category, see [Dup08].
    [Show full text]
  • INTRODUCTION to ALGEBRAIC TOPOLOGY 1 Category And
    INTRODUCTION TO ALGEBRAIC TOPOLOGY (UPDATED June 2, 2020) SI LI AND YU QIU CONTENTS 1 Category and Functor 2 Fundamental Groupoid 3 Covering and fibration 4 Classification of covering 5 Limit and colimit 6 Seifert-van Kampen Theorem 7 A Convenient category of spaces 8 Group object and Loop space 9 Fiber homotopy and homotopy fiber 10 Exact Puppe sequence 11 Cofibration 12 CW complex 13 Whitehead Theorem and CW Approximation 14 Eilenberg-MacLane Space 15 Singular Homology 16 Exact homology sequence 17 Barycentric Subdivision and Excision 18 Cellular homology 19 Cohomology and Universal Coefficient Theorem 20 Hurewicz Theorem 21 Spectral sequence 22 Eilenberg-Zilber Theorem and Kunneth¨ formula 23 Cup and Cap product 24 Poincare´ duality 25 Lefschetz Fixed Point Theorem 1 1 CATEGORY AND FUNCTOR 1 CATEGORY AND FUNCTOR Category In category theory, we will encounter many presentations in terms of diagrams. Roughly speaking, a diagram is a collection of ‘objects’ denoted by A, B, C, X, Y, ··· , and ‘arrows‘ between them denoted by f , g, ··· , as in the examples f f1 A / B X / Y g g1 f2 h g2 C Z / W We will always have an operation ◦ to compose arrows. The diagram is called commutative if all the composite paths between two objects ultimately compose to give the same arrow. For the above examples, they are commutative if h = g ◦ f f2 ◦ f1 = g2 ◦ g1. Definition 1.1. A category C consists of 1◦. A class of objects: Obj(C) (a category is called small if its objects form a set). We will write both A 2 Obj(C) and A 2 C for an object A in C.
    [Show full text]
  • The 2-Category Theory of Quasi-Categories
    THE 2-CATEGORY THEORY OF QUASI-CATEGORIES EMILY RIEHL AND DOMINIC VERITY Abstract. In this paper we re-develop the foundations of the category theory of quasi- categories (also called 1-categories) using 2-category theory. We show that Joyal’s strict 2-category of quasi-categories admits certain weak 2-limits, among them weak comma objects. We use these comma quasi-categories to encode universal properties relevant to limits, colimits, and adjunctions and prove the expected theorems relating these notions. These universal properties have an alternate form as absolute lifting diagrams in the 2- category, which we show are determined pointwise by the existence of certain initial or terminal vertices, allowing for the easy production of examples. All the quasi-categorical notions introduced here are equivalent to the established ones but our proofs are independent and more “formal”. In particular, these results generalise immediately to model categories enriched over quasi-categories. Contents 1. Introduction 2 1.1. A generalisation 3 1.2. Outline 4 1.3. Acknowledgments 5 2. Background on quasi-categories 6 2.1. Some standard simplicial notation 6 2.2. Quasi-categories 8 2.3. Isomorphisms and marked simplicial sets 10 2.4. Join and slice 14 3. The 2-category of quasi-categories 19 3.1. Relating 2-categories and simplicially enriched categories 19 3.2. The 2-category of quasi-categories 21 3.3. Weak 2-limits 24 arXiv:1306.5144v4 [math.CT] 6 May 2015 3.4. Slices of the category of quasi-categories 33 3.5. A strongly universal characterisation of weak comma objects 37 4.
    [Show full text]
  • Quasicategories 1.1 Simplicial Sets
    Quasicategories 12 November 2018 1.1 Simplicial sets We denote by ∆ the category whose objects are the sets [n] = f0; 1; : : : ; ng for n ≥ 0 and whose morphisms are order-preserving functions [n] ! [m]. A simplicial set is a functor X : ∆op ! Set, where Set denotes the category of sets. A simplicial map f : X ! Y between simplicial sets is a natural transforma- op tion. The category of simplicial sets with simplicial maps is denoted by Set∆ or, more concisely, as sSet. For a simplicial set X, we normally write Xn instead of X[n], and call it the n set of n-simplices of X. There are injections δi :[n − 1] ! [n] forgetting i and n surjections σi :[n + 1] ! [n] repeating i for 0 ≤ i ≤ n that give rise to functions n n di : Xn −! Xn−1; si : Xn+1 −! Xn; called faces and degeneracies respectively. Since every order-preserving function [n] ! [m] is a composite of a surjection followed by an injection, the sets fXngn≥0 k ` together with the faces di and degeneracies sj determine uniquely a simplicial set X. Faces and degeneracies satisfy the simplicial identities: n−1 n n−1 n di ◦ dj = dj−1 ◦ di if i < j; 8 sn−1 ◦ dn if i < j; > j−1 i n+1 n < di ◦ sj = idXn if i = j or i = j + 1; :> n−1 n sj ◦ di−1 if i > j + 1; n+1 n n+1 n si ◦ sj = sj+1 ◦ si if i ≤ j: For n ≥ 0, the standard n-simplex is the simplicial set ∆[n] = ∆(−; [n]), that is, ∆[n]m = ∆([m]; [n]) for all m ≥ 0.
    [Show full text]
  • A Model Structure for Quasi-Categories
    A MODEL STRUCTURE FOR QUASI-CATEGORIES EMILY RIEHL DISCUSSED WITH J. P. MAY 1. Introduction Quasi-categories live at the intersection of homotopy theory with category theory. In particular, they serve as a model for (1; 1)-categories, that is, weak higher categories with n-cells for each natural number n that are invertible when n > 1. Alternatively, an (1; 1)-category is a category enriched in 1-groupoids, e.g., a topological space with points as 0-cells, paths as 1-cells, homotopies of paths as 2-cells, and homotopies of homotopies as 3-cells, and so forth. The basic data for a quasi-category is a simplicial set. A precise definition is given below. For now, a simplicial set X is given by a diagram in Set o o / X o X / X o ··· 0 o / 1 o / 2 o / o o / with certain relations on the arrows. Elements of Xn are called n-simplices, and the arrows di : Xn ! Xn−1 and si : Xn ! Xn+1 are called face and degeneracy maps, respectively. Intuition is provided by simplical complexes from topology. There is a functor τ1 from the category of simplicial sets to Cat that takes a simplicial set X to its fundamental category τ1X. The objects of τ1X are the elements of X0. Morphisms are generated by elements of X1 with the face maps defining the source and target and s0 : X0 ! X1 picking out the identities. Composition is freely generated by elements of X1 subject to relations given by elements of X2. More specifically, if x 2 X2, then we impose the relation that d1x = d0x ◦ d2x.
    [Show full text]
  • Lecture Notes on Simplicial Homotopy Theory
    Lectures on Homotopy Theory The links below are to pdf files, which comprise my lecture notes for a first course on Homotopy Theory. I last gave this course at the University of Western Ontario during the Winter term of 2018. The course material is widely applicable, in fields including Topology, Geometry, Number Theory, Mathematical Pysics, and some forms of data analysis. This collection of files is the basic source material for the course, and this page is an outline of the course contents. In practice, some of this is elective - I usually don't get much beyond proving the Hurewicz Theorem in classroom lectures. Also, despite the titles, each of the files covers much more material than one can usually present in a single lecture. More detail on topics covered here can be found in the Goerss-Jardine book Simplicial Homotopy Theory, which appears in the References. It would be quite helpful for a student to have a background in basic Algebraic Topology and/or Homological Algebra prior to working through this course. J.F. Jardine Office: Middlesex College 118 Phone: 519-661-2111 x86512 E-mail: [email protected] Homotopy theories Lecture 01: Homological algebra Section 1: Chain complexes Section 2: Ordinary chain complexes Section 3: Closed model categories Lecture 02: Spaces Section 4: Spaces and homotopy groups Section 5: Serre fibrations and a model structure for spaces Lecture 03: Homotopical algebra Section 6: Example: Chain homotopy Section 7: Homotopical algebra Section 8: The homotopy category Lecture 04: Simplicial sets Section 9:
    [Show full text]
  • Exposé I – Elements of Parametrized Higher Category Theory
    PARAMETRIZED HIGHER CATEGORY THEORY AND HIGHER ALGEBRA: EXPOSÉ I – ELEMENTS OF PARAMETRIZED HIGHER CATEGORY THEORY CLARK BARWICK, EMANUELE DOTTO, SAUL GLASMAN, DENIS NARDIN, AND JAY SHAH Abstract. We introduce the basic elements of the theory of parametrized ∞-categories and functors between them. These notions are defined as suitable fibrations of ∞-categories and functors between them. We give as many examples as we are able at this stage. Simple operations, such as the formation of opposites and the formation of functor ∞-categories, become slightly more involved in the parametrized setting, but we explain precisely how to perform these constructions. All of these constructions can be performed explicitly, without resorting to such acts of desperation as straightening. The key results of this Exposé are: (1) a universal characterization of the 푇-∞-category of 푇-objects in any ∞-category, (2) the existence of an internal Hom for 푇-∞-categories, and (3) a parametrized Yoneda lemma. Contents 1. Parametrized ∞-categories 1 2. Examples of parametrized ∞-categories 3 3. Parametrized opposites 7 4. Parametrized subcategories 7 5. Constructing 푇-∞-categories via pairings 8 6. A technical result: the strong pushforward 9 7. 푇-objects in ∞-categories 11 8. Parametrized fibrations 14 9. Parametrized functor categories 15 10. The parametrized Yoneda embedding 19 Appendix A. Notational glossary 20 References 21 1. Parametrized ∞-categories Suppose 퐺 a finite group. At a minimum, a 퐺-∞-category should consist of an ∞- category 퐶 along with a weak action 휌 of 퐺. In particular, for every element 푔 ∈ 퐺, one should have an equivalence 휌(푔)∶ 퐶 ∼ 퐶, and for every 푔, ℎ ∈ 퐺, one should have a natu- ral equivalence 휌(푔ℎ) ≃ 휌(푔) ∘ 휌(ℎ), and these natural equivalences should then in turn be constrained by an infinite family of homotopies that express the higher associativity of 휌.
    [Show full text]
  • Directed Homotopy Hypothesis'. (,1)-Categories
    Steps towards a `directed homotopy hypothesis'. (1; 1)-categories, directed spaces and perhaps rewriting Steps towards a `directed homotopy hypothesis'. (1; 1)-categories, directed spaces and perhaps rewriting Timothy Porter Emeritus Professor, University of Wales, Bangor June 12, 2015 Steps towards a `directed homotopy hypothesis'. (1; 1)-categories, directed spaces and perhaps rewriting 1 Introduction. Some history and background Grothendieck on 1-groupoids `Homotopy hypothesis' Dwyer-Kan loop groupoid 2 From directed spaces to S-categories and quasicategories A `dHH' for directed homotopy? Some reminders, terminology, notation, etc. Singular simplicial traces Suggestions on how to use T~ (X ) Models for (1; 1)-categories Quasi-categories 3 Back to d-spaces 4 Questions and `things to do' Steps towards a `directed homotopy hypothesis'. (1; 1)-categories, directed spaces and perhaps rewriting Introduction. Some history and background Some history (1; 0)-categories, spaces and rewriting. Letters from Grothendieck to Larry Breen (1975). Letter from AG to Quillen, [4], in 1983, forming the very first part of `Pursuing Stacks', [5], pages 13 to 17 of the original scanned file. Letter from TP to AG (16/06/1983). Steps towards a `directed homotopy hypothesis'. (1; 1)-categories, directed spaces and perhaps rewriting Introduction. Grothendieck on 1-groupoids Grothendieck on 1-groupoids (from PS) At first sight, it seemed to me that the Bangor group had indeed come to work out (quite independently) one basic intuition of the program I had envisaged in those letters to Larry Breen { namely the study of n-truncated homotopy types (of semi-simplicial sets, or of topological spaces) was essentially equivalent to the study of so-called n-groupoids (where n is a natural integer).
    [Show full text]