Improving Health Through International Cardiovascular Research

Total Page:16

File Type:pdf, Size:1020Kb

Improving Health Through International Cardiovascular Research 2014 NEWSLETTER Improving health through international 6 cardiovascular research Volume NEW TRANSATLANTIC NETWORKS P 2 Four new TNEs in 2014 and four TNEs in 2013 will increase the knowledge and improve the treatment of cardiovascular and neurovascular diseases. SCIENTIFIC ADVISORY COMMITTEE DEPARTURES AND ARRIVALS P 7 Three new members join the Scientific Advisory Committee in 2014 CALL FOR APPLICATION CYCLE 2014-2015 P 7 Due date is Friday, September 5, 2014, 11:59 pm Paris time LEDUCQ SYMPOSIUM 2015 P 7 The fifth Fondation Leducq Symposium will be held in Paris on April 16th, 2015. Sylviane Leducq (1925-2013) LEDUCQ FOUNDATION The Fondation Leducq mourns the passing of its founder and president, Sylviane Leducq, who TO BEGIN TO CONNECT along with her late husband Jean, inspired and NETWORKS supported so many in cardiovascular and neuro- P 7 Will set up vascular research. The FONDATION LEDUCQ NEWSLETTER is published once a year. Publication Director: David TANCREDI Editor: Sylvie LORAND-HULOT 1, rue Laurent Pichat • 75116 Paris • France Tel: +33 (0)1 45 00 59 65 • Fax: +33 (0)1 45 00 07 88 www.flcq.org ISSN 2103-7094 and brain, the proposed experiments and blood brain barrier permeability, genetically engineered mice. If successful will concentrate on genetic targeting network members propose specifically this group could help to launch a entirely 2014 of receptors and related pathways. to identify the cell types responsive new platform for the treatment of Building on a strong body of literature to SIP-mediated BBB regulation in neurovascular disease. implicating S1P in vascular regulation large part by the use of a variety of FONDATION LEDUCQ ANNOUNCES 2014 TRANSATLANTIC 3 Molecular Genetics, Pathogenesis and Protein-Replacement Therapy in NETWORKS OF EXCELLENCE AWARDS Arrhythmogenic Cardiomyopathy Four new Transatlantic Networks (TNE) received in September 2013, representing platform, which was introduced in the Ali Marian, The University of Texas, Houston, US and were selected by the Scientific a 30% increase in the number of cycle 2013-2014. William McKenna, University College of London , UK Advisory Committee (SAC) at its April LOIs received over the previous year. The networks awarded funding in 2014 2014 meeting in Napa Valley. These Submission now proceeds through a are : programs were chosen from among user-friendly online application service This network is designed to delineate normal structure and function and as the sharing expertise will have access to a 118 Letters of Intent (LOI) that were through the Altum proposalCENTRAL the molecular genetics, genomics, and disease progresses, there is ventricular well phenotyped AC patient popu- pathogenesis of arrhythmogenic cardio- dilation, dysfunction and aneurysm lation. They will continue searching 1 Deciphering the Genomic Topology of Atrial Fibrillation myopathy (AC). The classic right-dominant formation. Clinical heart failure is a late for new genes and new mutations, form of AC, known as arrhythmogenic manifestation. A switch in the fate and but most important of all, they will Patrick Ellinor, MGH, Boston, US and right ventricular cardiomyopathy, is a differentiation of a subset of cardiac investigate protein replacement in Vincent Christoffels, Academic Medical Center, Amsterdam, The Netherlands leading cause of sudden cardiac death resident cells to fibro-adipocyte is transgenic mouse models to attempt in young people. The burden of AC the pathological hallmark of AC. The to reverse the phenotype. The syner- is almost certainly underestimated, present challenge lies in elucidating gistic interactions between clinicians Atrial fibrillation (AF) affects over 3 have only a limited understanding the electrical rhythm of the heart? however, owing to frequent missed the intervening steps - from mutation and scientists in this network will million individuals in the US and 4.5 of mechanisms through which these Filling the gap of our understanding of diagnoses and under-recognition of the to pathologically overt disease - and ultimately improve the quality of life million individuals in Europe. Currently, genetic variants lead to AF. By combi- the molecular pathways underlying the left-dominant and biventricular subtypes. identifying therapeutic targets therein. and survival of AC patients. both medical and interventional ning deep insights into GWAS-signals, arrhythmia should ultimately provide Initially in this disease, the heart has a This network pooling resources and therapies for AF are only partially knowledge of the 3D topology of the new diagnostic tools and therapeutic effective, and are associated with human genome, and expertise in the strategies to reduce the unacceptable substantial morbidity. Although recent translation of genetic changes, the burden of stroke, death, and hospita- genome-wide association studies members of this network will address lizations associated with this common (GWAS) have identified over a dozen the major question in AF genetics: arrhythmia. 4 Programming the failing heart to a regenerative state genetic loci associated with AF, we how do the genetic mutations affect Richard Lee, Brigham & Women Hospital, Cambridge, US and Mauro Giacca, ICGEB, Trieste, Italy 2 SphingoNet - Sphingosine 1-Phosphate in Neurovascular Biology and Disease Given the global burden of heart fate in vitro and in vivo, improving of repair mechanisms, they will define disease and its increasing prevalence cardiac function and reducing adverse and optimize methods for enhancing Timothy Hla, Cornell University, New York, US and in aging populations, one of the most ventricular remodeling, this network function of injured mammalian hearts, Christer Betsholtz, Uppsala University, Sweden important challenges of modern will use a combination of factors, and will extend these studies to a large medecine is the development of including microRNAs, to reprogram animal model to bring this know- strategies to regenerate the human adult human fibroblasts into cardio- ledge toward translation, in mini-pigs, Understanding the control and system function to focus on the central and has been found to be effective in heart. This network is focused on myocyte-like cells. The members of non-human primates and human regulation of the BBB is of significant role of sphingosine 1-phosphate (S1P) multiple sclerosis. The network project promoting the regenerative poten- this network will collaboratively develop engineered myocardium. This line of clinical importance because the BBB in the development and regulation will further characterize the role of tial of endogenous cells of the heart a series of interrelated strategies to research should provide new therapeutic remains one of the major obstacles of the neurovascular unit and blood S1P in ischemia. When dysregulated, a different strategy from that found enhance cardiac regeneration and approaches to enhance the limited in the delivery of drugs to the central brain barrier (BBB) in health and S1P signaling causes neuroinflammation in many stem cell programs where repair by the reprogramming of capacity of the heart to regenerate, nervous system. The transatlantic disease. This is a novel approach to the and neurovascular disease. As very exogenous cells are added to produce non-cardiac cells, like macrophages, having applications in diverse cardiac network led by Christer Betsholtz and investigation of the neurovascular unit little is known about S1P and its receptor a therapeutic effect. Building on the into cardiomyocytes and by promoting disorders, including both genetic and Timothy Hla brings together experts in prompted by the discovery of a drug systems that are expressed on multiple finding that mouse fibroblasts can be the homing of cardiac regenerating acquired forms of heart disease. blood vessels, immunology and nervous that influences sphingosine signaling cell types and tissues in vessels reprogrammed toward a cardiac cell cells. Through activation and stimulation 2 3 disease, which may provide additional vascular diseases. With the finding that clinically relevant, large animal models prognostic information over what can newly-discovered non-coding RNAs as a pathway to first-in-man clinical 2014 be gained from established risk factors are associated with vascularization, trials to treat human disease. and co-morbidities. atherosclerosis and aneurysm formation, The diverse and synergistic talents of Surprisingly, the cellular source and researchers now believe that vascular the investigative team will provide an functional significance of circulating miRNAs are central targets for thera- unprecedented, comprehensive approach miRNAs in vascular disease are still peutic manipulation. The network will towards understanding the biological unknown. Determining the importance focus on new and previously identified role and therapeutic potential of FONDATION LEDUCQ 2013 TRANSATLANTIC NETWORKS of miRNAs as novel cell/cell communi- candidate miRNAs as potential therapies miRNAs. This networking and training cators may allow for the development for these three vascular disease areas strategy on vascular miRNAs will signi- OF EXCELLENCE AWARDS of biomarker profiles based on circulating using genetically modified animal models ficantly contribute to future diagnostic mi-RNAs. The central aim of this and pharmacologic strategies. and therapeutic benefits for patients Four Transatlantic Networks (TNE) were selected by the Scientific Advisory Committee (SAC) at its April 2013 meeting in Nice. project, however, is to
Recommended publications
  • C.V. De Margaret Buckingham, Membre De L'académie Des Sciences
    Margaret Buckingham Élue Membre le 29 novembre 2005 dans la section Biologie intégrative Directeur de recherche au CNRS, Professeur à l'Institut Pasteur Œuvre scientifique Margaret Buckingham, de nationalités française et britannique, née en 1945, est diplômée (B.A., M.A., D. Phil.) de l’université d’Oxford. Depuis 1971, elle a mené sa carrière scientifique en France, d’abord dans le laboratoire de François Gros, puis à partir de 1987, en tant que chef de l’Unité de génétique moléculaire du développement, puis Professeur à l’Institut Pasteur où elle a été directrice du Département de biologie du développement. Elle est directeur de recherche au CNRS. Elle a présidé la section de Biologie du développement et de la reproduction au CNRS de 2001 à 2004 et la Société Française de Biologie du Développement de 2008 à 2011. Elle est actuellement membre du Comité Consultatif National d’Ethique (CCNE). Les recherches de Margaret Buckingham portent sur les mécanismes qui conduisent une cellule naïve à entrer dans un programme de différenciation tissulaire pendant le développement de l’organisme. Elle étudie les gènes qui régulent la formation et la régénération du muscle de squelette, ainsi que les populations cellulaires qui forment le cœur. Margaret Buckingham a effectué des études pionnières sur l’organisation des gènes du muscle et leurs différents modes d’expression pendant le développement. Parmi les gènes des facteurs de régulation myogénique, de la famille MyoD, l’expression de Myf5 précède la myogenèse chez l’embryon. En son absence, les cellules adoptent d’autres destins cellulaires, démontrant ainsi le rôle de Myf5 comme facteur de détermination myogénique.
    [Show full text]
  • Female Fellows of the Royal Society
    Female Fellows of the Royal Society Professor Jan Anderson FRS [1996] Professor Ruth Lynden-Bell FRS [2006] Professor Judith Armitage FRS [2013] Dr Mary Lyon FRS [1973] Professor Frances Ashcroft FMedSci FRS [1999] Professor Georgina Mace CBE FRS [2002] Professor Gillian Bates FMedSci FRS [2007] Professor Trudy Mackay FRS [2006] Professor Jean Beggs CBE FRS [1998] Professor Enid MacRobbie FRS [1991] Dame Jocelyn Bell Burnell DBE FRS [2003] Dr Philippa Marrack FMedSci FRS [1997] Dame Valerie Beral DBE FMedSci FRS [2006] Professor Dusa McDuff FRS [1994] Dr Mariann Bienz FMedSci FRS [2003] Professor Angela McLean FRS [2009] Professor Elizabeth Blackburn AC FRS [1992] Professor Anne Mills FMedSci FRS [2013] Professor Andrea Brand FMedSci FRS [2010] Professor Brenda Milner CC FRS [1979] Professor Eleanor Burbidge FRS [1964] Dr Anne O'Garra FMedSci FRS [2008] Professor Eleanor Campbell FRS [2010] Dame Bridget Ogilvie AC DBE FMedSci FRS [2003] Professor Doreen Cantrell FMedSci FRS [2011] Baroness Onora O'Neill * CBE FBA FMedSci FRS [2007] Professor Lorna Casselton CBE FRS [1999] Dame Linda Partridge DBE FMedSci FRS [1996] Professor Deborah Charlesworth FRS [2005] Dr Barbara Pearse FRS [1988] Professor Jennifer Clack FRS [2009] Professor Fiona Powrie FRS [2011] Professor Nicola Clayton FRS [2010] Professor Susan Rees FRS [2002] Professor Suzanne Cory AC FRS [1992] Professor Daniela Rhodes FRS [2007] Dame Kay Davies DBE FMedSci FRS [2003] Professor Elizabeth Robertson FRS [2003] Professor Caroline Dean OBE FRS [2004] Dame Carol Robinson DBE FMedSci
    [Show full text]
  • EMBO Conference Takes to the Sea Life Sciences in Portugal
    SUMMER 2013 ISSUE 24 encounters page 3 page 7 Life sciences in Portugal The limits of privacy page 8 EMBO Conference takes to the sea EDITORIAL Maria Leptin, Director of EMBO, INTERVIEW EMBO Associate Member Tom SPOTLIGHT Read about how the EMBO discusses the San Francisco Declaration Cech shares his views on science in Europe and Courses & Workshops Programme funds on Research Assessment and some of the describes some recent productive collisions. meetings for life scientists in Europe. concerns about Journal Impact Factors. PAGE 2 PAGE 5 PAGE 9 www.embo.org COMMENTARY INSIDE SCIENTIFIC PUBLISHING panels have to evaluate more than a hundred The San Francisco Declaration on applicants to establish a short list for in-depth assessment, they cannot be expected to form their views by reading the original publications Research Assessment of all of the applicants. I believe that the quality of the journal in More than 7000 scientists and 250 science organizations have by now put which research is published can, in principle, their names to a joint statement called the San Francisco Declaration on be used for assessment because it reflects how the expert community who is most competent Research Assessment (DORA; am.ascb.org/dora). The declaration calls to judge it views the science. There has always on the world’s scientific community to avoid misusing the Journal Impact been a prestige factor associated with the publi- Factor in evaluating research for funding, hiring, promotion, or institutional cation of papers in certain journals even before the impact factor existed. This prestige is in many effectiveness.
    [Show full text]
  • Margaret Buckingham, Discoveries in Skeletal and Cardiac Muscle Development, Elected to the National Academy of Science Michael a Rudnicki*
    Rudnicki Skeletal Muscle 2012, 2:12 http://www.skeletalmusclejournal.com/content/2/1/12 Skeletal Muscle COMMENT Open Access Margaret Buckingham, discoveries in skeletal and cardiac muscle development, elected to the National Academy of Science Michael A Rudnicki* Abstract Margaret Buckingham was presented as a newly elected member to the National Academy of Sciences on 28 April 2012. Over the course of her career, Dr Buckingham made many seminal contributions to the understanding of skeletal muscle and cardiac development. Her studies on cardiac progenitor populations has provided insight into understanding heart malformations, while her work on skeletal muscle progenitors has elucidated their embryonic origins and the transcriptional hierarchies controlling their developmental progression. Keywords: National Academy of Sciences, Cardiac development, Skeletal muscle development Commentary Her work on cardiac progenitor populations is of clinical Dr Margaret Buckingham, a much-respected investigator importance in understanding heart malformations. who has made many significant contributions to our Dr Buckingham has also made major contributions to understanding of skeletal muscle and cardiac develop- the molecular genetic analysis of skeletal muscle devel- ment, was elected to the National Academy of Sciences in opment. She was the first to analyze expression of the 2011 and presented on 28 April, 2012. Dr Buckingham is myogenic regulatory factors of the MyoD family during Professor in the Department of Developmental Biology at mouse embryogenesis [9] and the behavior of cells in the the Pasteur Institute in Paris. She has been awarded many absence of Myf5 [10]. prestigious distinctions including that of Officier de la Lé- Her more recent work demonstrated that skeletal gion d’Honneur and Officier de l'Ordre National du Mér- muscle growth depends on a somite-derived population of ite, to name but two.
    [Show full text]
  • PROGRAMME & Book of Abstracts
    PROGRAMME & book of abstracts “. MOVING FORWARD TOGETHER” www.EDBC2019Alicante.com ORGANISED BY CONTENTS SPONSORS & COLLABORATORS ORGANIZATION .......................................................................... 4 GENERAL INFORMATION ......................................................... 5 INSTRUCTIONS FOR SPEAKERS AND AUTHORS ................ 8 CONGRESS TIMETABLE ............................................................ 9 SCIENTIFIC PROGRAMME WEDNESDAY 23 .................................................................... 12 THURSDAY 24 ........................................................................ 13 FRIDAY 25 ............................................................................... 16 SATURDAY 26 ........................................................................ 19 POSTER SESSIONS ................................................................... 21 EXHIBITORS AND SPONSORS ................................................ 48 ABSTRACTS ................................................................................ 51 AUTHORS’ INDEX ...................................................................... 263 4 EDBC2019 EDBC2019 5 ORGANIZATION GENERAL INFORMATION ORGANIZING COMMITTEE INVITED SPEAKERS VENUE Ángela Nieto. Alicante Enrique Amaya. Manchester Auditorio de la Diputación de Alicante - ADDA Víctor Borrell. Alicante Detlev Arendt. Heidelberg Paseo Campoamor, s/n Sergio Casas-Tintó. Madrid Laure Bally Cuif. Paris 03010 Alicante, Spain Pilar Cubas. Madrid Fernando Casares. Sevilla www.addaalicante.es
    [Show full text]
  • Cardiac Cell Lineages That Form the Heart
    This is a free sample of content from The Biology of Heart Disease. Click here for more information on how to buy the book. Cardiac Cell Lineages that Form the Heart Sigole` ne M. Meilhac1, Fabienne Lescroart2,Ce´ dric Blanpain2,3, and Margaret E. Buckingham1 1Institut Pasteur, Department of Developmental and Stem Cell Biology, CNRS URA2578, 75015 Paris, France 2Universite´ Libre de Bruxelles, IRIBHM, Brussels B-1070, Belgium 3WELBIO, Universite´ Libre de Bruxelles, Brussels B-1070, Belgium Correspondence: [email protected]; [email protected] Myocardial cells ensure the contractility of the heart, which also depends on other meso- dermal cell types for its function. Embryological experiments had identified the sources of cardiac precursorcells. With the advent of genetic engineering, novel tools have been used to reconstruct the lineage tree of cardiac cells that contribute to different parts of the heart, map the development of cardiac regions, and characterize their genetic signature. Such knowl- edge is of fundamental importance for our understanding of cardiogenesis and also for the diagnosis and treatment of heart malformations. he sources of cells that form the different tracing experiments based on the engineered Tparts of the heart and their relationships to temporal and spatial expression of a reporter each other are of major fundamental interest gene in different cardiac progenitors and their for understanding cardiogenesis. They are also descendants, with the mouse as the principal of biomedical significance in the context of model system. congenital heart malformations and for future therapeutic approaches to cardiac malfunction SOURCES OF CARDIAC CELLS IN THE based on stem cell therapies.
    [Show full text]
  • Smutty Alchemy
    University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2021-01-18 Smutty Alchemy Smith, Mallory E. Land Smith, M. E. L. (2021). Smutty Alchemy (Unpublished doctoral thesis). University of Calgary, Calgary, AB. http://hdl.handle.net/1880/113019 doctoral thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Smutty Alchemy by Mallory E. Land Smith A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY GRADUATE PROGRAM IN ENGLISH CALGARY, ALBERTA JANUARY, 2021 © Mallory E. Land Smith 2021 MELS ii Abstract Sina Queyras, in the essay “Lyric Conceptualism: A Manifesto in Progress,” describes the Lyric Conceptualist as a poet capable of recognizing the effects of disparate movements and employing a variety of lyric, conceptual, and language poetry techniques to continue to innovate in poetry without dismissing the work of other schools of poetic thought. Queyras sees the lyric conceptualist as an artistic curator who collects, modifies, selects, synthesizes, and adapts, to create verse that is both conceptual and accessible, using relevant materials and techniques from the past and present. This dissertation responds to Queyras’s idea with a collection of original poems in the lyric conceptualist mode, supported by a critical exegesis of that work.
    [Show full text]
  • CLARIFY Executive Committee
    CLARIFY Executive Committee Philippe Gabriel STEG – Chairman of the Executive Committee Director, Coronary Care Unit, Cardiology Department, Hopital Bichat-Claude Bernard, Paris Professor of Cardiology, Université Paris 7 Denis Diderot, Paris Head of the Research Team “Clinical Research in Atherothrombosis”, INSERM U-698, Paris France Professor Steg has been a Professor of Cardiology in Université Paris 7 - Denis Diderot, since 1994. He works as interventional cardiologist and is director of the Coronary Care Unit of Hôpital Bichat-Claude Bernard in Paris, France. He is also director of the research team “Clinical Research in Atherothrombosis”, in INSERM U-698, Paris. Professor Steg’s research interests are in the field of coronary artery disease. He is involved in studies of mechanical and pharmacologic intervention in acute coronary syndromes, but has also recently turned his attention to secondary prevention, long-term risk assessment and management of atherothrombosis. He is a former president of the Thrombosis Working Group of the French Society of Cardiology and belongs to the nucleus of the Thrombosis Working Group of the European Society of Cardiology. He is a member of the Institut Universitaire de France, a fellow of the European Society of Cardiology, American College of Cardiology, and a American College of Chest Physicians and a co-chair of the subcommittee for Research of the European Relations committee of the European Society of Cardiology. He is currently scientific secretary of the French Society of Cardiology. Professor Steg participated in the steering or executive committees of trials or registries such as CHARISMA, OASIS-5, 6 and 7, PLATO, BEAUTIFUL and STABILITY and is leading several investigator-driven or industry-sponsored clinical trials and registries such as REACH, RUBY-1, OASIS 8/FUTURA, EURIKA, VIVIFY and REALIZE-AF.
    [Show full text]
  • Muscle Coding Sequences and Their Regulation During Myogenesis : Cloning of Muscle Actin Cdna Probes A
    Muscle coding sequences and their regulation during myogenesis : cloning of muscle actin cDNA probes A. Minty, M. Caravatti, B. Robert, Arlette Cohen, P. Daubas, A. Weydert, F. Gros, Margaret Buckingham To cite this version: A. Minty, M. Caravatti, B. Robert, Arlette Cohen, P. Daubas, et al.. Muscle coding sequences and their regulation during myogenesis : cloning of muscle actin cDNA probes. Reproduction Nutrition Développement, 1981, 21 (2), pp.247-255. hal-00897814 HAL Id: hal-00897814 https://hal.archives-ouvertes.fr/hal-00897814 Submitted on 1 Jan 1981 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Muscle coding sequences and their regulation during myogenesis : cloning of muscle actin cDNA probes A. MINTY M. CARAVATTI, B. ROBERT, Arlette COHEN P. DAUBAS A. WEY- DERT F. GROS Margaret BUCKINGHAM Département de Biologie moléculaire, Institut Pasteur 25, rue du Dr. Roux, 75724 Paris Cedex. Summary. For a number of years our group has been mainly interested in the regulation of muscle gene expression during myogenesis. Using primary cultures and cell lines we have tried to find out whether the coding sequences for muscle proteins are already present in an unexpressed form or if there is a transcriptional switch at the onset of differentiation.
    [Show full text]
  • Directory 2016/17 the Royal Society of Edinburgh
    cover_cover2013 19/04/2016 16:52 Page 1 The Royal Society of Edinburgh T h e R o Directory 2016/17 y a l S o c i e t y o f E d i n b u r g h D i r e c t o r y 2 0 1 6 / 1 7 Printed in Great Britain by Henry Ling Limited, Dorchester, DT1 1HD ISSN 1476-4334 THE ROYAL SOCIETY OF EDINBURGH DIRECTORY 2016/2017 PUBLISHED BY THE RSE SCOTLAND FOUNDATION ISSN 1476-4334 The Royal Society of Edinburgh 22-26 George Street Edinburgh EH2 2PQ Telephone : 0131 240 5000 Fax : 0131 240 5024 email: [email protected] web: www.royalsoced.org.uk Scottish Charity No. SC 000470 Printed in Great Britain by Henry Ling Limited CONTENTS THE ORIGINS AND DEVELOPMENT OF THE ROYAL SOCIETY OF EDINBURGH .....................................................3 COUNCIL OF THE SOCIETY ..............................................................5 EXECUTIVE COMMITTEE ..................................................................6 THE RSE SCOTLAND FOUNDATION ..................................................7 THE RSE SCOTLAND SCIO ................................................................8 RSE STAFF ........................................................................................9 LAWS OF THE SOCIETY (revised October 2014) ..............................13 STANDING COMMITTEES OF COUNCIL ..........................................27 SECTIONAL COMMITTEES AND THE ELECTORAL PROCESS ............37 DEATHS REPORTED 26 March 2014 - 06 April 2016 .....................................................43 FELLOWS ELECTED March 2015 ...................................................................................45
    [Show full text]
  • Muscle Satellite Cells Are Primed for Myogenesis but Maintain Quiescence with Sequestration of Myf5 Mrna Targeted by Microrna-31 in Mrnp Granules
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Cell Stem Cell Short Article Muscle Satellite Cells Are Primed for Myogenesis but Maintain Quiescence with Sequestration of Myf5 mRNA Targeted by microRNA-31 in mRNP Granules Colin G. Crist,1,2 Didier Montarras,1 and Margaret Buckingham1,* 1CNRS URA 2578, Department of Developmental Biology, Institut Pasteur, 25 Rue du Dr. Roux, 75724 Paris Cedex 15, France 2Present address: Lady Davis Institute for Medical Research and Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada *Correspondence: [email protected] http://dx.doi.org/10.1016/j.stem.2012.03.011 SUMMARY Pax3 in many muscles (Relaix et al., 2006); however, unlike their embryonic counterparts, more than 95% have already activated Regeneration of adult tissues depends on stem cells the Myf5 gene in the course of their history (Kuang et al., 2007), that are primed to enter a differentiation program, indicating that they had entered the myogenic program. Further- while remaining quiescent. How these two character- more, the majority of quiescent satellite cells maintain Myf5 tran- istics can be reconciled is exemplified by skeletal scription (Beauchamp et al., 2000; Pallafacchina et al., 2010). muscle in which the majority of quiescent satellite Here, we examine the posttranscriptional mechanisms that cells transcribe the myogenic determination gene function to repress the translation of Myf5 mRNA, thereby holding quiescent satellite cells poised to enter the myogenic Myf5, without activating the myogenic program. We program. show that Myf5 mRNA, together with microRNA-31, which regulates its translation, is sequestered in RESULTS mRNP granules present in the quiescent satellite cell.
    [Show full text]
  • Mitral Valve Disease–Morphology and Mechanisms Robert A
    Mitral valve disease–morphology and mechanisms Robert A. Levine, Albert A. Hagége, Daniel P. Judge, Muralidhar Padala, Jacob P. Dal-Bianco, Elena Aikawa, Jonathan Beaudoin, Joyce Bischoff, Nabila Bouatia-Naji, Patrick Bruneval, et al. To cite this version: Robert A. Levine, Albert A. Hagége, Daniel P. Judge, Muralidhar Padala, Jacob P. Dal-Bianco, et al.. Mitral valve disease–morphology and mechanisms. Nature Reviews Cardiology, Nature Publishing Group, 2015, 12 (12), pp.689–710. 10.1038/nrcardio.2015.161. hal-01830969 HAL Id: hal-01830969 https://hal.archives-ouvertes.fr/hal-01830969 Submitted on 13 Jul 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. HHS Public Access Author manuscript Author Manuscript Author ManuscriptNat Rev Author ManuscriptCardiol. Author Author Manuscript manuscript; available in PMC 2016 March 23. Published in final edited form as: Nat Rev Cardiol. 2015 December ; 12(12): 689–710. doi:10.1038/nrcardio.2015.161. Mitral valve disease—morphology and mechanisms Robert A. Levine*, Albert A. Hagége*, Daniel P. Judge*, Muralidhar Padala‡, Jacob P. Dal- Bianco‡, Elena Aikawa, Jonathan Beaudoin, Joyce Bischoff, Nabila Bouatia-Naji, Patrick Bruneval, Jonathan T. Butcher, Alain Carpentier, Miguel Chaput, Adrian H.
    [Show full text]