How to Use Existing Technology Roadmaps to Evaluate Early-Stage Breakthrough Innovations? Development and Testing of a Workshop-Based Toolkit

Total Page:16

File Type:pdf, Size:1020Kb

How to Use Existing Technology Roadmaps to Evaluate Early-Stage Breakthrough Innovations? Development and Testing of a Workshop-Based Toolkit How to use existing technology roadmaps to evaluate early-stage breakthrough innovations? Development and testing of a workshop-based toolkit Carl Brinkmann Darwin College University of Cambridge Supervisor: Dr. Rob Phaal This dissertation is submitted for the degree of Master of Philosophy in Industrial Systems, Manufacture and Management September 2017 ii Abstract Purpose – This research aims to understand how to evaluate early-stage breakthrough innovations using existing strategy plans. Technology roadmapping is already widely used to identify and evaluate new opportunities. However, the potential of using existing roadmaps to evaluate and scope new ideas on a continuous basis remains largely unexploited. This mainly relates to the challenges of keeping roadmaps up to date. This research focuses on the first step of a continuous process to overcome the identified challenges. Approach – A case-based action research is performed to design and test a workshop-based toolkit. The design incorporates existing methods & tools, company considerations and consultant feedback. The workshop-based toolkit is then tested in company settings to respond to the research question and further develop the process. Design – The workshop is performed during the pre-selection step and uses a market-pull approach. The toolkit is based on a linking grid to help visualise synergies between ideas, relevant roadmap information and the selection factors. Scorings related to priority and information quality are added to the linking grid in order to give a dimension of importance to each driver/product/technology. Findings – The workshop-based toolkit was effective at evaluating early-stage ideas using existing roadmaps. Participants used “synergies” and “gaps” within each roadmap layer in order to evaluate each selection factor. For some selection factors, “unknown” information was missing from the roadmaps, thereby hindering the evaluation process. Roadmaps therefore need to include this missing information in order to become useful at evaluating new ideas. Research limitations – The workshop-based toolkit should be further validated in different situations and its wider applicability should be investigated. In order to validate the complete continuous process, future research should extend the approach by considering the development of new project plans and their integration into the innovation strategy. Theoretical implications – This research provided theoretical contribution by developing and testing methods & tools for evaluating new ideas using existing roadmaps. Practical implications – Practicing innovation managers are provided with a workshop- based toolkit to ensure that selected innovations are consistent with strategic goals and future company developments. iii Acknowledgements My sincerest gratitude goes to my supervisor Dr. Rob Phaal for guiding me through this exciting dissertation project. I would also like to thank the interview participants that kindly took their time to provide insightful inputs to my research. The workshop would not have been possible without the help from the host company, workshop participants and the facilitator. Lastly, I would like to express my gratitude to researchers and staff, directly or indirectly involved in providing support to enable the success of the project. iv Statement of Original Authorship This dissertation is submitted for the award of Master of Philosophy in Industrial Systems, Manufacture and Management. I hereby certify that this dissertation is entirely my own work, written by myself and any work from others used is referenced to the best of my knowledge. The length of this dissertation does not exceed 15,000 words. Total number of words: 14,994 Carl Brinkmann v Table of Contents 1. Introduction & Motivation ....................................................................... 1 2. Literature Review ..................................................................................... 2 2.1. Innovation management ...................................................................................... 3 2.2. Evaluating early-stage innovations ....................................................................... 7 2.3. Innovation strategy planning ............................................................................. 12 2.4. Research gap ...................................................................................................... 22 3. Research Methodology .......................................................................... 23 3.1. Research Focus .................................................................................................. 23 3.2. Research Objectives ........................................................................................... 24 3.3. Philosophical considerations .............................................................................. 25 3.4. Research method ............................................................................................... 25 3.5. Conclusion ......................................................................................................... 34 4. Interview Results ................................................................................... 35 4.1. Innovation types and strategy models ................................................................ 35 4.2. Innovation processes ......................................................................................... 35 4.3. Requirements related to people, time and tools ................................................ 37 4.4. Workshop limitations and opportunities ............................................................ 41 4.5. Interview conclusions ........................................................................................ 42 5. Toolkit and Workshop Design ................................................................ 44 5.1. Design considerations ........................................................................................ 44 5.2. Toolkit design .................................................................................................... 45 5.3. Workshop design ............................................................................................... 48 6. Workshop results ................................................................................... 59 6.1. Workshop feedback ........................................................................................... 59 6.2. Potential of the toolkit to evaluate new ideas .................................................... 61 vi 7. Conclusion and Future Research ............................................................ 63 7.1. Conclusion ......................................................................................................... 63 7.2. Research Limitations .......................................................................................... 65 7.3. Opportunities for Future Research ..................................................................... 66 7.4. Theoretical implications ..................................................................................... 66 7.5. Practical implications ......................................................................................... 67 8. References ............................................................................................. 69 9. Appendices ............................................................................................ 74 9.1. Feedback questionnaire ..................................................................................... 74 9.2. Tool templates ................................................................................................... 77 9.3. Workshop schedule ............................................................................................ 80 vii 1. Introduction & Motivation The globalisation and increasing pace of technological change have forced multinational organisations to bring innovation management at the heart of corporate decision-making. Companies rely on innovation strategy plans to ensure the development of technologies and products that match high-level strategic goals. Technology roadmaps have been developed for that purpose, by representing relations among technologies and resources as they evolve toward practical product applications and markets (Kostoff et al., 2001). One of the objectives of developing a technology roadmap is to identify and evaluate new opportunities within all layers of the organisation (Phaal et al., 2001). Similarly, the developed roadmaps could help evaluate and scope new ideas on an on-going basis, thereby ensuring consistency with future company goals and developments. This is especially useful for early-stage and breakthrough innovations, in order to reduce the high assumption uncertainties (Dissel et al., 2006). However, this potential remains largely unexploited due to the challenges of keeping roadmaps up-to-date with new developments (Vatananan et al., 2012). In order to respond to the identified challenges, a process framework is proposed to evaluate new ideas and update roadmaps on a continuous basis. This research aims at validating the first step of the proposed process by answering to the following research question: How to use existing technology roadmaps to evaluate early-stage breakthrough innovations? The research question is addressed through the development and testing of a workshop-based toolkit. The approach follows a case-based action
Recommended publications
  • Chapter 3: Internet of Things (Iot)
    2020 Edition Chapter 3: Internet of Things (IoT) http://eps.ieee.org/hir The HIR is devised and intended for technology assessment only and is without regard to any commercial considerations pertaining to individual products or equipment. We acknowledge with gratitude the use of material and figures in this Roadmap that are excerpted from original sources. Figures & tables should be re-used only with the permission of the original source. December 2020 Table of Contents Table of Contents Chapter 1: Heterogeneous Integration Roadmap: Driving Force and Enabling Technology for Systems of the Future1 Chapter 2: High Performance Computing and Data Centers1 Chapter 3: Heterogeneous Integration for the Internet of Things (IoT)1 Executive Summary ............................................................................................................................................. 1 1. Introduction ...................................................................................................................................................... 1 2. Benefits of IoT ................................................................................................................................................. 3 3. Challenges for IoT ........................................................................................................................................... 4 4. Difficult Technical issues ................................................................................................................................ 5 5. Convergence
    [Show full text]
  • Technology Roadmap
    Technology Roadmap 1st of February, 2018 Contents 1 Introduction ........................................................................................................................... 3 2 Technology Roadmap structure ............................................................................................. 4 3 Industrial challenges, gaps, barriers and bottlenecks to be solved........................................ 5 3.1 Aeronautic Sector .......................................................................................................... 5 3.1.1 Grand Challenge .................................................................................................... 5 3.1.2 Gaps, Barriers and Bottlenecks to be solved ......................................................... 5 3.2 Automotive Sector ......................................................................................................... 7 3.2.1 Grand Challenge .................................................................................................... 7 3.2.2 Gaps, Barriers and Bottlenecks to be solved ......................................................... 7 3.3 Consumer Goods Sector ................................................................................................ 9 3.3.1 Grand Challenge .................................................................................................... 9 3.3.2 Gaps, Barriers and Bottlenecks to be solved ......................................................... 9 3.4 Capital Goods Sector ..................................................................................................
    [Show full text]
  • Annexes-A-4-Artificial-Intelligence-And-Data-And-Blockchain Full-Report.Pdf
    The Future of Services ANNEXES A-4 ARTIFICIAL INTELLIGENCE & DATA, AND BLOCKCHAIN Workgroup 4 Report: AI & Data, and Blockchain CONTENTS 1 INTRODUCTION & OVERVIEW ...................................................................................................... 3 2 MARKET STUDY ............................................................................................................................. 4 2.1 GLOBAL MARKET POTENTIAL OF AI ........................................................................................... 4 2.2 SINGAPORE MARKET POTENTIAL OF AI ..................................................................................... 4 2.3 GLOBAL MARKET POTENTIAL OF BLOCKCHAIN (INCLUDES OTHER DISTRIBUTED LEDGER TECHNOLOGIES) .................................................................................................................................. 5 2.4 SINGAPORE MARKET POTENTIAL OF BLOCKCHAIN ..................................................................... 5 3 TECHNOLOGY STUDY ................................................................................................................... 7 3.1 ARTIFICIAL INTELLIGENCE ......................................................................................................... 7 3.2 BLOCKCHAIN .......................................................................................................................... 18 3.3 CONVERGENCE OF AI AND DATA, AND BLOCKCHAIN ................................................................. 31 3.4 AI, DATA AND BLOCKCHAIN
    [Show full text]
  • From Internet to Robotics
    May 21, 2009 A Roadmap for US Robotics From Internet to Robotics Organized by Georgia Institute of Technology University of Southern California Johns Hopkins University University of Pennsylvania University of California, Berkeley Rensselaer Polytechnic Institute University of Massachusetts, Amherst University of Utah Carnegie Mellon University Tech Collaborative Sponsored by Table of Contents Overview Robotics as a Key Economic Enabler 1 Roadmap Results: Summary of Major Findings 2 Market Specific Conclusions 3 Further information 5 Chapter 1 Robotics and Automation Research Priorities for U.S. Manufacturing 7 Executive Summary 7 1. Introduction 8 2. Strategic Importance of Robotics in Manufacturing 9 2.1. Economic Impetus 9 2.2. Growth Areas 10 2.3. A Vision for Manufacturing 11 3. Research Roadmap 12 3.1. The Process 12 3.2. Robotics and Manufacturing Vignettes 12 3.3. Critical Capabilities for Manufacturing 13 4. Research and Development: Promising Directions 17 4.1. Learning and Adaptation 17 4.2. Modeling, Analysis, Simulation, and Control 18 4.3. Formal Methods 18 4.4. Control and Planning 18 4.5. Perception 19 4.6. Novel Mechanisms and High-Performance Actuators 19 4.7. Human-Robot Interaction 19 4.8. Architecture and Representations 19 5. References 20 6. Contributors 21 Table of Contents i Chapter 2 A Research Roadmap for Medical and Healthcare Robotics 23 Executive Summary 23 Motivation and Scope 23 Participants 24 Workshop Findings 24 1. Introduction 24 1.1. Definition of the Field/Domain 24 1.2. Societal Drivers 25 2. Strategic Findings 27 2.1. Surgical and Interventional Robotics 27 2.2. Robotic Replacement of Diminished/Lost Function 28 2.3.
    [Show full text]
  • Technology Roadmapping—A Planning Framework for Evolution and Revolution
    Available online at www.sciencedirect.com SCIENCE ^DIRECT* Technological Forecasting & Social Change 71 (2004) 5-26 Technology roadmapping—A planning framework for evolution and revolution Robert Phaal*, Clare J.P. Farrukh, David R. Probert Department of Engineering, University of Cambridge, Mill Lane, Cambridge, CB2 1RX, UK Received 9 May 2003; received in revised form 20 May 2003; accepted 26 May 2003 Abstract Technology roadmapping is a flexible technique that is widely used within industry to support strategic and long-range planning. The approach provides a structured (and often graphical) means for exploring and communicating the relationships between evolving and developing markets, products and technologies over time. It is proposed that the roadmapping technique can help companies survive in turbulent environments by providing a focus for scanning the environment and a means of tracking the performance of individual, including potentially disruptive, technologies. Technology roadmaps are deceptively simple in terms of format, but their development poses significant challenges. In particular the scope is generally broad, covering a number of complex conceptual and human interactions. This paper provides an overview of the origins of technology roadmapping, by means of a brief review of the technology and knowledge management foundations of the technique in the context of the fields of technology strategy and technology transitions. The rapidly increasing literature on roadmapping itself is presented in terms of a taxonomy for classifying roadmaps, in terms of both organizational purpose and graphical format. This illustrates the flexibility of the approach but highlights a key gap—a robust process for technology roadmapping. A fast-start method for technology roadmapping developed by the authors is introduced and described.
    [Show full text]
  • Technology Roadmapping: Linking Technology Resources to Business Objectives, University of Cambridge, 14/11/01
    Technology roadmapping: linking technology resources to business objectives, University of Cambridge, 14/11/01 Technology Roadmapping: linking technology resources to business objectives Robert Phaal, Clare Farrukh and David Probert Centre for Technology Management, University of Cambridge Institute for Manufacturing, Mill Lane, Cambridge, CB2 1RX, UK email: rp108@eng.cam.ac.uk url: http://www-mmd.eng.cam.ac.uk/ctm/ 1. Introduction Many managers are aware of the strategic importance of technology in delivering value and competitive advantage to their companies. These issues are becoming more critical as the cost, complexity and rate of technology change increase, and competition and sources of technology globalise. The management of technology for business benefit requires effective processes and systems to be put in place to ensure that the technological resources within the organisation are aligned with its needs, now and in the future. Following on from a brief introduction to the topic of technology management, this paper focuses on ‘technology roadmapping’, an approach that is being increasingly applied within industry to support the development, communication and implementation of technology and business strategy. Roadmapping is a very flexible approach, and the various aims that it can support are reviewed, together with the different formats that roadmaps take. Also important is the process that is required to develop a good roadmap, and the paper describes a method for rapid initiation of roadmapping in the business strategy1, together with some of the characteristics of good roadmaps and the systems needed for supporting their application. 1.1 Technology and the management of technology There are many published definitions of ‘technology’ (for example, Floyd 1997, Whipp 1991, Steele 1989).
    [Show full text]
  • Whole Brain Emulation a Roadmap
    Whole Brain Emulation A Roadmap (2008) Technical Report #2008‐3 Anders Sandberg* Nick Bostrom Future of Humanity Institute Faculty of Philosophy & James Martin 21st Century School Oxford University CITE: Sandberg, A. & Bostrom, N. (2008): Whole Brain Emulation: A Roadmap, Technical Report #2008‐3, Future of Humanity Institute, Oxford University URL: www.fhi.ox.ac.uk/reports/2008‐3.pdf (*) Corresponding author: anders.sandberg@philosophy.ox.ac.uk In memoriam: Bruce H. McCormick (1930 – 2007) 2 Contents Whole Brain Emulation............................................................................................................................1 A Roadmap ................................................................................................................................................1 In memoriam: Bruce H. McCormick (1930 – 2007)...........................................................................2 Contents..................................................................................................................................................3 Introduction ...........................................................................................................................................5 Thanks to............................................................................................................................................6 The concept of brain emulation..........................................................................................................7 Emulation and simulation...............................................................................................................7
    [Show full text]
  • 2018 Bioelectronic Medicine Roadmap Message from the Editorial Team
    2018 BioElectronic Medicine Roadmap Message from the Editorial Team We are delighted to introduce the 1st Edition of the Bioelectronic Medicine (BEM) Technology Roadmap, a collective work by many dedicated contributors from industry, academia and government. It can be argued that innovation explosions often occur at the intersection of scientific disciplines, and BEM is an excellent example of this. The BEM Roadmap is intended to catalyze rapid technological advances that provide new capabilities for the benefit of humankind. Editorial Team Renée St. Amant Victor Zhirnov Staff Research Engineer (Arm) Chief Scientist (SRC) Ken Hansen Daniel (Rašić) Rasic President and CEO (SRC) Research Scientist (SRC) i Table of Contents Acronym Definitions . 1 Introduction . 2 Chapter 1 BEM Roadmap Overview . 3 Chapter 2 Platform Functionality. 7 Chapter 3 Instrumentation Capabilities. .15 Chapter 4 Modeling and Simulation . .25 Chapter 5 Neural Interfaces . .29 Chapter 6 Biocompatible Packaging . .35 Chapter 7 Clinical Translation and Pharmacological Intervention . .41 Chapter 8 Minimum Viable Products . .49 Chapter 9 Workforce Development . .52 Acknowledgements . .52 ii Acronym Definitions 1D One-Dimensional IDE Investigational Device Exemption 2D Two-Dimensional I/O Input/Output 3D Three-Dimensional IPG Implantable Pulse Generators A/D Analog-to-Digital ISM band Industrial, Scientific and Medical radio bands ADC Analog-to-Digital Converter JFET Junction Gate Field-Effect Transistor AFE Analog Front-End LUT Lookup Table AI Artificial Intelligence MIPS
    [Show full text]
  • Whole Brain Emulation a Roadmap
    Whole Brain Emulation A Roadmap (2008) Technical Report #2008‐3 Anders Sandberg* Nick Bostrom Future of Humanity Institute Faculty of Philosophy & James Martin 21st Century School Oxford University CITE: Sandberg, A. & Bostrom, N. (2008): Whole Brain Emulation: A Roadmap, Technical Report #2008‐3, Future of Humanity Institute, Oxford University URL: www.fhi.ox.ac.uk/reports/2008‐3.pdf (*) Corresponding author: anders.sandberg@philosophy.ox.ac.uk In memoriam: Bruce H. McCormick (1930 – 2007) 2 Contents Whole Brain Emulation............................................................................................................................1 A Roadmap ................................................................................................................................................1 In memoriam: Bruce H. McCormick (1930 – 2007)...........................................................................2 Contents..................................................................................................................................................3 Introduction ...........................................................................................................................................5 Thanks to............................................................................................................................................6 The concept of brain emulation..........................................................................................................7 Emulation and simulation...............................................................................................................7
    [Show full text]
  • Technology Roadmap for Nanoelectronics
    European Commission IST programme Future and Emerging Technologies Technology Roadmap for Nanoelectronics Second Edition, November 2000 Editor: R. Compañó Technology Roadmap for Nanoelectronics Foreword The IT revolution is based on an “exponential” rate of technological progress. For example, internet traffic doubles every 6 months, wireless capacity doubles every 9, optical capacity doubles every 12, magnetic information storage doubles every 15, etc. The most famous example is “Moore’s law” which indicates that the performance of semiconductor devices doubles every 18 months. Moore’s observation has been valid for three decades and has been a fundamental tool for business planning in the semiconductor industry. Fundamental laws of physics limit the shrinkage of CMOS on which Moore’s Law is based, at least on current approaches. Even before these physical limits are reached there are strong indications that severe engineering pro- blems, as well as the need for huge investment, may slow down the growth in inte- grated circuit performance. The continuation of the IT revolution is predicated on new ideas for information storage or processing, leading to future applications. One option is to look for mechanisms that operate at the nanoscale and exploit quantum effects. The objective of this document is to monitor device concepts currently under investigation, to discuss the feasibility of their large scale integration and of ways to fabricate them. Giving a description of the state of the art in a field is an exercise which is commonly undertaken with success; extrapolating into the future is not so obvious. Making predictions in an emergent field is even more difficult.
    [Show full text]
  • Roadmapping As a Method Enhancing Regional Development
    ZARZĄDZANIE PUBLICZNE 2(26)/2014, s. 229–238 doi:10.4467/20843968ZP.14.019.2353 www.ejournals.eu/Zarzadzanie-Publiczne/ Anna Kononiuk Bialystok University of Technology ROADMAPPING AS A METHOD ENHANCING REGIONAL DEVELOPMENT Abstract The aim of the article is to present roadmapping as method enhancing regional development. The idea of the method manifests itself in integration of science and technology with business practice. In the article, there have been presented a short description of the method, the exem- plary characteristics of the roadmapping process and its visualisation for the chosen priority technology groups defined for the Podlaskie region in the project entitled NT FOR Podlaskie 2020. Regional strategy of nanotechnology development. The project was granted financial sup port from the EU Operational Programme “Innovative Economy 2007–2013”. An interest- ing element of the roadmapping process in the Polish foresight practice, presented in the article, is the application of the Watson’s concept for the time zones visualisation to the graphical presentation of the method. The roadmapping methodology applied to the project has allowed to prepare seven roadmaps of the priority technologies that might contribute to creating a competiti- ve advantage of the region. In the article, there have been used critical literature review, survey research, the method of logical analysis and construction and a case study. Key words: roadmapping, regional development, NT FOR Podlaskie 2020. Regional strategy of nanotechnology development Introduction Technology roadmapping is a strategic decision process framework that supports innovation activities. The method has attracted the interest of an increasing num- ber of academics and practitioners and has been applied in many different indus- trial sectors and organizations [Lee, Kim, Phaal, 2013, p.
    [Show full text]
  • Roadmaps for Science: Nanoscience + Nanotechnologies
    ROADMAPS forSCIENCE What is a Roadmap? This is one of a series of Roadmaps for Science , designed to guide New Zealand s science and research activity. Roadmaps are a type of strategy, providing broad context and high level directions on a particular area of science from a New Zealand perspective. Roadmaps represent the Government s position on the science, noting how our science capabilities should develop to best meet New Zealand s future needs. These are not technological roadmaps, with milestones, targets or detailed research plans. Those details need to be decided by those with the responsibility for funding particular pieces of research, in conjunction with the end-users of research. These Roadmaps set the context for the detailed work of the Foundation for Research, Science and Technology and the Health Research Council. The Foundation, for example, will work with relevant stakeholders to identify the key research questions at a level of detail below each Roadmap. By producing these Roadmaps the Ministry of Research, Science and Technology is ensuring that the strategic research investment that makes up a significant part of Vote RS&T goes to those areas that will make the most difference for New Zealand over the long term. The Roadmaps also set the scene for better co-ordination across government. The directions in each Roadmap not only highlight the areas of science we need to build but also the future skills and connections we need to make. Ministry of Research, Science and Technology ISBN : 0-478-06147-1 Publication date : December
    [Show full text]