WO 2017/087708 Al 26 May 2017 (26.05.2017) P O P C T
Total Page:16
File Type:pdf, Size:1020Kb
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/087708 Al 26 May 2017 (26.05.2017) P O P C T (51) International Patent Classification: (72) Inventors: KUCHROO, Vijay K.; 30 Fairhaven Road, A61K 38/17 (2006.01) A61P 17/00 (2006.01) Newton, Massachusetts 02459 (US). WANG, Chao; 6 A61K 38/20 (2006.01) Canal Park, Unit 302, Cambridge, Massachusetts 02141 (US). REGEV, Aviv; 15a Ellsworth Ave, Cambridge, (21) International Application Number: Massachusetts 02139 (US). SHEKHAR, Karthik; 415 PCT/US2016/062592 Main Street, Cambridge, Massachusetts 02142 (US). (22) International Filing Date: (74) Agents: TALAPATRA, Sunk et al; Foley & Lardner 17 November 2016 (17.1 1.2016) LLP, 3000 K Street, Suite 600, Washington, District of (25) Filing Language: English Columbia 20007 (US). (26) Publication Language: English (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, (30) Priority Data: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, 62/257,589 1 November 2015 (19. 11.2015) US BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, (71) Applicants: THE BRIGHAM AND WOMEN'S HOS¬ DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PITAL, INC. [US/US]; 75 Francis Street, Boston, M as HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, sachusetts 021 15 (US). THE BROAD INSTITUTE, INC. KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, [US/US]; 415 Main Street, Cambridge, Massachusetts MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 02142 (US). MASSACHUSETTS INSTITUTE OF OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, TECHNOLOGY [US/US]; 77 Massachusetts Avenue, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, Cambridge, Massachusetts 02139 (US). TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, [Continued on nextpage] (54) Title: LYMPHOCYTE ANTIGEN CD5-LIKE (CD5L)-INTERLEUKIN 12B (P40) HETERODIMERS IN IMMUNITY (57) Abstract: Described herein are methods for sup pressing an immune response in a subject, e.g., a sub n = 106 {DE out of 312: nanostring) ject with an autoimmune disease, by administering to the subject a therapeutically effective amount of re combinant CD5L, CD5L homodimers and/or a CD5L:p40 heterodimers, or nucleic acids encoding o ό any of these. Also described are methods for enhan Reversal cing an immune response in a subject, e.g., a subject Q Novel (soluble) U with cancer, infection, or an immune deficiency, by administering to the subject a therapeutically effective Opposite amount of an antibody or antigen-binding fragment thereof that binds specifically to CD5L, D5L homodi Novel (intrinsic) mers and/or CD5L:p40 heterodimers, and inhibits their binding to the IL-23 receptor, or inhibits forma tion of the CD5L homodimer and/or CD5L:p40 het- erodimer, or inhibitory nucleic acids that target CD5L and/or p40. o00 l o00 FIG. 1 o w o 2017/087708 AI II II II I III IIII II III I II II III I III II I II DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, ΓΓ, LT, before the expiration of the time limit for amending the LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, claims and to be republished in the event of receipt of SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, amendments (Rule 48.2(h)) GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG). Published: Lymphocyte Antigen CD5-Like (CD5L)-Interleukin 12B p40 Heterodimers in Immunity FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT This invention was made with Government support under Grant Nos. POl AI056299, POl AI039671, POl AI073748, and 5P01 AI045757 awarded by the National Institutes of Health. The Government has certain rights in the invention. TECHNICAL FIELD Described herein are methods for suppressing or enhancing an immune response in a subject. BACKGROUND The cytokine environment influences immune cell differentiation, function and plasticity. IL-23 has been identified as key player in inflammatory diseases, contributing largely to mucosal inflammation. It was discovered as a susceptibility gene in GWAS and is widely implicated in autoimmune diseases and cancer such as melanoma and colorectal carcinoma (Burkett et al., 2015; Cho and Feldman, 2015; Teng et al., 2015; Wang and Karin, 2015). SUMMARY The present invention is based, at least in part, on the discovery that CD5L and p40 form heterodimers in vivo, and that these heterodimers modulate the immune response. CD5L exists as a monomer, and is also able to form dimers; both forms may also serve as immunomodulators. Some embodiments comprise methods for modulating an immune response or suppressing an immune response (e.g., an inflammatory immune response) in a subject, the method comprising administering to the subject a therapeutically effective amount of recombinant soluble CD5L, a CD5L:CD5L homodimer, a CD5L:p40 heterodimer, or one or more nucleic acids encoding the same. In some embodiments, the subject has an autoimmune disease, e.g., Multiple Sclerosis (MS), Irritable Bowel Disease (IBD), Crohn's disease, spondyloarthritides, Systemic Lupus Erythematosus (SLE), Vitiligo, rheumatoid arthritis, psoriasis, Sjogren's syndrome, or diabetes. In some embodiments, the subject has an inflammation-related cancer, e.g., colorectal cancer, carcinogen-induced skin papilloma, fibrosarcoma, or mammary carcinomas. Some embodiments comprise methods of suppressing an immune response in a subject, the method comprising administering to the subject a therapeutically effective amount of one or more of: a recombinant soluble CD5L and/or a nucleic acid encoding CD5L; a recombinant soluble CD5L:CD5L homodimer and/or a nucleic acid encoding a CD5L homodimer; and a recombinant soluble CD5L:p40 heterodimer and/or nucleic acids encoding CD5L and p40. In some embodiments the subject has an autoimmune disease, such as Multiple Sclerosis (MS), Irritable Bowel Disease (IBD), Crohn's disease, spondyloarthritides, Systemic Lupus Erythematosus (SLE), Vitiligo, rheumatoid arthritis, psoriasis, Sjogren's syndrome, or diabetes. In some embodiments, subject has an inflammation-related cancer, such as colorectal cancer, carcinogen-induced skin papilloma, fibrosarcoma, or mammary carcinomas. Some embodiments comprise administering the CD4L:p40 heterodimer. Some embodiments comprise administering the CD5L:CD5L homodimer. Some embodiments relate to methods of enhancing an immune response in a subject, the method comprising administering to the subject a therapeutically effective amount of an agent that: (a) inhibits CD5L, a CD5L:CD5L homodimer, and/or a CD5L:p40 heterodimer from binding to an IL-23 receptor; and/or (b) inhibits formation of the CD5L:CD5L homodimer and/or the CD5L:p40 heterodimer. In some embodiments, the agent comprises an antibody, or an antigen binding fragment thereof, that binds to one or more of the CD5L, the CD5L homodimer, or the CD5L:p40 heterodimer. In some embodiments, the agent comprises inhibitory nucleic acids that target the CD5L and/or the p40. In some embodiments, the subject has cancer that is not inflammation related. Some embodiments comprise administering an anti-cancer immunotherapy to the subject, such as checkpoint inhibitors, PD-l/PDL-1, anti-cancer vaccines, adoptive T cell therapy, and/or combination of two or more thereof. In embodiments that comprise administering inhibitory nucleic acids, the nucleic acids can include small interfering RNAs (e.g., shRNA), antisense oligonucleutides (e.g. antisense RNAs), and/or CRISPR-Cas. In some embodiments, the subject has an immune deficiency, e.g., a primary or secondary immune deficiency. In some embodiments, the subject has an infection with a pathogen, e.g., viral, bacterial, or fungal pathogen. Some embodiments comprised methods of modulating CD8+ T cell exhaustion in a subject in need thereof, the method comprising administering to the subject a therapeutically effective amount of an agent that: (a) inhibits CD5L, a CD5L:CD5L homodimer, and/or a CD5L:p40 heterodimer from binding to an IL-23 receptor; and/or (b) inhibits formation of the CD5L:CD5L homodimer and/or the CD5L:p40 heterodimer. In some embodiments, said administering reduces CD8+ T cell exhaustion. In some embodiments the subject has cancer, such as a non-inflammatory cancer. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Methods and materials are described herein for use in the present invention; other, suitable methods and materials known in the art can also be used. The materials, methods, and examples are illustrative only and not intended to be limiting. All publications, patent applications, patents, sequences, database entries, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. Other features and advantages of the invention will be apparent from the following detailed description and figures, and from the claims. DESCRIPTION OF DRAWINGS The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee. Figure 1. Soluble CD5L can regulate T cell function, largely reversing CD5L deficiency-induced gene expression pattern in T cells. WT or CD5L-/- naive T cells were sorted and activated under ThO condition and treated with either PBS or soluble CD5L (50nM).