Agenda Item I.3.A EWG Report 1 March 2021 ECOSYSTEM

Total Page:16

File Type:pdf, Size:1020Kb

Agenda Item I.3.A EWG Report 1 March 2021 ECOSYSTEM Agenda Item I.3.a EWG Report 1 March 2021 ECOSYSTEM WORKGROUP REPORT ON THE FISHERY ECOSYSTEM PLAN UPDATE At the September 2020 meeting, the Pacific Fishery Management Council (Council) reviewed a first draft of the Fishery Ecosystem Plan’s (FEP’s) Chapter 3, an overview of the California Current Ecosystem (CCE). For this March 2021 meeting, the Council asked the Ecosystem Workgroup (EWG) to further update Chapter 3, and to provide a first draft of Chapter 4, Environmental Change, Human Activities, and Social-Ecological Dynamics in the CCE. The Council also asked the EWG to excerpt Chapter 5, Council Policy Priorities for Ocean Resource Management, from the FEP and submit it to this meeting as an outline for a stand-alone Council guidance document. An extended outline of that document is provided in EWG Report 2 for this agenda item. The EWG held a public meeting on January 5, 2020, to discuss revisions to Chapters 3 and 4, and to receive public input on the revision process. In revising and updating Chapter 3 for this meeting, the EWG was not able to incorporate all of the September 2020 suggestions from the Council’s advisory bodies, but we will continue to track and include those as we are able. To prevent potential confusion for readers of this report’s draft Chapters 3 and 4, we note that: • This version of Chapter 3 includes revisions suggested by the Groundfish Management Team (GMT) in September 2020, although we have largely re-drafted Section 3.4.2, Current Fisheries, including revising this section in keeping with suggestions from the GMT and the Coastal Pelagic Species Advisory Subpanel in September 2020. Chapter 3 also includes revisions provided by the Coastal Pelagic Species Management Team from their public meeting on February 2-4, 2021. Within the Current Fisheries section, we particularly anticipate having to revise the recreational fisheries section before the September 2021 meeting. • Section 3.5, Fishing Communities, includes ideas suggested by the Ecosystem Advisory Subpanel, the Scientific and Statistical Committee, and by the suite of social scientists who consulted with the EWG at our September 2021 meeting. • Chapter 4 was presented only in outline form in September 2020 and is entirely new for this meeting. While we continue to welcome comments on Chapter 3, we are now most in need of comments and guidance on the contents of Chapter 4. For this March 2021 meeting, the EWG recommends that the Council: • Review and provide guidance on the contents of Chapters 3 and 4; • Review and provide guidance on the outline for the offshore activities guidance document provided as a draft in EWG Report 2 for this agenda item; • Provide guidance on a final chapter for the FEP, tentatively titled, Cross-FMP and Ecosystem Science in the Council Process. The EWG will discuss this final chapter at its February 22-23, 2021 meeting, and intends to provide a supplemental briefing book report on an outline for that final chapter. Pacific Coast Fishery Ecosystem Plan Chapters 3 and 4 Table of Contents Chapter 3 California Current Ecosystem Overview .................................................................................. 3 3.1 Major Bio-Geographic Sub-Regions of the CCE .......................................................................... 4 3.1.1 Northern sub-region: Strait of Juan de Fuca, WA to Cape Blanco, OR................................ 4 3.1.2 Central sub-region: Cape Blanco to Point Conception, CA .................................................. 5 3.1.3 Southern sub-region: Point Conception to U.S. - Mexico border ......................................... 6 3.2 Oceanographic and Geological Features of the CCE .................................................................... 6 3.2.1 Oceanographic Features of the CCE ..................................................................................... 6 3.2.2 Geological Features of the CCE ............................................................................................ 9 3.2.3 Habitat Classification .......................................................................................................... 10 3.3 Biological Components of the CCE ............................................................................................ 12 3.3.1 Vegetation, Plants and Structure-Forming Invertebrates .................................................... 12 3.3.1.1 Phytoplankton and microalgal blooms ............................................................................ 12 3.3.1.2 Seagrasses ....................................................................................................................... 13 3.3.1.3 Macro-algal (kelp) beds .................................................................................................. 14 3.3.1.4 Structure-Forming Invertebrates ..................................................................................... 15 3.3.2 Low Trophic Level Species ................................................................................................ 16 3.3.3 Mid- to High Trophic Level Fishes and Invertebrates [mostly FMP species] .................... 18 3.3.4 High Trophic Non-fish Species: Mammals, Birds, and Reptiles of the CCE ..................... 23 3.3.5 Importance of Trophic Interactions in the CCE .................................................................. 25 3.4 Fisheries of the CCE ................................................................................................................... 26 3.4.1 Historical CCE Fisheries ..................................................................................................... 26 3.4.2 Current Fisheries ................................................................................................................. 29 3.4.2.1 Commercial Fisheries ..................................................................................................... 30 3.4.2.2 Recreational Fisheries ..................................................................................................... 36 3.4.2.3 Tribal Fisheries Other Than Commercial ....................................................................... 38 3.4.3 Fishing Communities .......................................................................................................... 38 3.4.3.1 Communities in the Northern CCE ................................................................................. 43 3.4.3.2 Fishing Communities in the Central CCE ....................................................................... 45 3.4.3.3 Fishing Communities in the Southern CCE .................................................................... 47 3.4.3.4 First Receivers and Processors ........................................................................................ 51 3.5 Fisheries and Natural Resource Management in the CCE .......................................................... 53 3.5.1 Council Fisheries Management ........................................................................................... 54 Fishery Ecosystem Plan 1 March 2021 3.5.2 Ecosystem-Based Management Measures within FMPs .................................................... 55 3.5.2.1 CPS FMP ........................................................................................................................ 55 3.5.2.2 Groundfish FMP ............................................................................................................. 57 3.5.2.3 HMS FMP ....................................................................................................................... 58 3.5.2.4 Salmon FMP ................................................................................................................... 58 3.5.3 CCE Species Managed Under the ESA, MMPA, and MBTA ............................................ 59 3.5.4 Tribal and State Fisheries Management .............................................................................. 62 3.5.4.1 Northwest Tribes’ Fisheries Management (**2013 FEP**) ........................................... 63 3.5.4.2 California Tribes in the Council Process (**2013 FEP**) ............................................. 64 3.5.4.3 Washington Fisheries Management ................................................................................ 65 3.5.4.4 Oregon Fisheries Management ....................................................................................... 67 3.5.4.5 California Fisheries Management ................................................................................... 69 3.5.4.6 Idaho Fisheries Management .......................................................................................... 71 3.5.5 Multi-State, Multi-Tribe, and State-Tribe Entities .............................................................. 73 3.5.6 International Science and Management Entities ................................................................. 73 3.6 References ................................................................................................................................... 74 Chapter 4 Environmental Change, Human Activities, and Social-Ecological Dynamics in the California Current Ecosystem Overview ..................................................................................................................... 92 4.1 Effects of Climate Variability and Change on the CCE ............................................................. 93 4.2 Species’ Abundance and Distribution and their Ecological Relationships
Recommended publications
  • Lobsters-Identification, World Distribution, and U.S. Trade
    Lobsters-Identification, World Distribution, and U.S. Trade AUSTIN B. WILLIAMS Introduction tons to pounds to conform with US. tinents and islands, shoal platforms, and fishery statistics). This total includes certain seamounts (Fig. 1 and 2). More­ Lobsters are valued throughout the clawed lobsters, spiny and flat lobsters, over, the world distribution of these world as prime seafood items wherever and squat lobsters or langostinos (Tables animals can also be divided rougWy into they are caught, sold, or consumed. 1 and 2). temperate, subtropical, and tropical Basically, three kinds are marketed for Fisheries for these animals are de­ temperature zones. From such partition­ food, the clawed lobsters (superfamily cidedly concentrated in certain areas of ing, the following facts regarding lob­ Nephropoidea), the squat lobsters the world because of species distribu­ ster fisheries emerge. (family Galatheidae), and the spiny or tion, and this can be recognized by Clawed lobster fisheries (superfamily nonclawed lobsters (superfamily noting regional and species catches. The Nephropoidea) are concentrated in the Palinuroidea) . Food and Agriculture Organization of temperate North Atlantic region, al­ The US. market in clawed lobsters is the United Nations (FAO) has divided though there is minor fishing for them dominated by whole living American the world into 27 major fishing areas for in cooler waters at the edge of the con­ lobsters, Homarus americanus, caught the purpose of reporting fishery statis­ tinental platform in the Gul f of Mexico, off the northeastern United States and tics. Nineteen of these are marine fish­ Caribbean Sea (Roe, 1966), western southeastern Canada, but certain ing areas, but lobster distribution is South Atlantic along the coast of Brazil, smaller species of clawed lobsters from restricted to only 14 of them, i.e.
    [Show full text]
  • A Time Series of California Spiny Lobster (Panulirus Interruptus) Phyllosoma from 1951 to 2008 Links Abundance to Warm Oceanogr
    KOSLOW ET AL.: LOBSTER PHYLLOSOMA ABUNDANCE LINKED TO WARM CONDITIONS CalCOFI Rep., Vol. 53, 2012 A TIME SERIES OF CALIFORNIA SPINY LOBSTER (PANULIRUS INTERRUPTUS) PHYLLOSOMA FROM 1951 TO 2008 LINKS ABUNDANCE TO WARM OCEANOGRAPHIC CONDITIONS IN SOUTHERN CALIFORNIA J. ANTHONY KOSLOW LauRA ROGERS-BENNETT DOUGLAS J. NEILSON Scripps Institution of Oceanography California Department of Fish and Game California Department of Fish and Game University of California, S.D. Bodega Marine Laboratory 4949 Viewridge Avenue La Jolla, CA 92093-0218 UC Davis, 2099 Westside Rd. San Diego, CA 92123 ph: (858) 534-7284 Bodega Bay, CA 94923-0247 [email protected] ABSTRACT The California spiny lobster (Panulirus interruptus) population is the basis for a valuable commercial and recreational fishery off southern California, yet little is known about its population dynamics. Studies based on CalCOFI sampling in the 1950s indicated that the abun- dance of phyllosoma larvae may be sensitive to ocean- ographic conditions such as El Niño events. To further study the potential influence of environmental variabil- ity and the fishery on lobster productivity, we developed a 60-year time series of the abundance of lobster phyl- losoma from the historical CalCOFI sample collection. Phyllosoma were removed from the midsummer cruises when the early-stage larvae are most abundant in the plankton nearshore. We found that the abundance of the early-stage phyllosoma displayed considerable inter- annual variability but was significantly positively corre- Figure 1. Commercial (solid circles), recreational (open triangles), and total lated with El Niño events, mean sea-surface temperature, landings (solid line) of spiny lobster off southern California.
    [Show full text]
  • A Metapopulation Model for Whale-Fall Specialists: the Largest Whales Are Essential to Prevent Species Extinctions
    THE SEA: THE CURRENT AND FUTURE OCEAN Journal of Marine Research, 77, Supplement, 283–302, 2019 A metapopulation model for whale-fall specialists: The largest whales are essential to prevent species extinctions by Craig R. Smith,1,2 Joe Roman,3 and J. B. Nation4 ABSTRACT The sunken carcasses of great whales (i.e., whale falls) provide an important deep-sea habitat for more than 100 species that may be considered whale-fall specialists. Commercial whaling has reduced the abundance and size of whales, and thus whale-fall habitats, as great whales were hunted and removed from the oceans, often to near extinction. In this article, we use a metapopulation modeling approach to explore the consequences of whaling to the abundance and persistence of whale-fall habitats in the deep sea and to the potential for extinction of whale-fall specialists. Our modeling indicates that the persistence of metapopulations of whale-fall specialists is linearly related to the abundance of whales, and extremely sensitive (to the fourth power) to the mean size of whales. Thus, whaling-induced declines in the mean size of whales are likely to have been as important as declines in whale abundance to extinction pressure on whale-fall specialists. Our modeling also indicates that commercial whaling, even under proposed sustainable yield scenarios, has the potential to yield substantial extinction of whale-fall specialists. The loss of whale-fall habitat is likely to have had the greatest impact on the diversity of whale-fall specialists in areas where whales have been hunted for centuries, allowing extinctions to proceed to completion.
    [Show full text]
  • Role of Cetaceans in Ecosystem Functioning
    WORKSHOP REPORT Role of Cetaceans in Ecosystem Functioning: Defining Marine Conservation Policies in the 21st Century 28th International Congress for Conservation Biology Society for Conservation Biology Workshop Report Role of Cetaceans in Ecosystem Functioning: Defining Marine Conservation Policies in the 21st Century 28th International Congress for Conservation Biology Society for Conservation Biology 26 July 2017, Cartagena, Colombia Room Barahona 1, Cartagena Convention Center www.ccc-chile.org www.icb.org.ar www.whales.org www.oceancare.org www.hsi.org csiwhalesalive.org www.nrdc.org www.minrel.gob.cl www.belgium.be For centuries, the great whales (baleen whales and the scientists, but to ecological economists (who ascribe finan- sperm whale) and other cetaceans1 (small whales, dolphins cial values to ecological functions) and to and porpoises) were valued almost exclusively for their oil policymakers concerned with conserving biodiversity. and meat. Widespread commercial hunting reduced great These services confirm what the public, since the early whale numbers by as much as 90 percent, with some ‘Save the Whale’ movement in the 1970s, has always un- populations being hunted to extinction. derstood; cetaceans are special. In recent decades, changing attitudes toward protecting The global implications of the significant contributions of wildlife and the natural world and the growth of ecotourism cetaceans “to ecosystem functioning that are beneficial for provided new cultural and non-extractive economic values the natural environment and people” were first formally for these marine mammals. acknowledged in 2016 when the International Whaling Commission (IWC) adopted a resolution on Cetaceans and Today, whale watching is worth more than $2 billion annu- Their Contributions to Ecosystem Functioning2.
    [Show full text]
  • Deep-Sea Biology
    Deep-Sea Biology (OCN430) - Syllabus Fall 2017 Instructors: Jeff Drazen, office MSB605, [email protected], 956-6567 Craig Smith, office MSB617, [email protected], 956-7776 T TH 12:00-1:15 POST708 Syllabus schedule subject to change Course Goals – The deep sea is the largest living space on the planet. Its inhabitants are varied and its communities are often complex, adapted to the particular characteristics of their habitat. This course will cover the major topics in the field, such as bentho-pelagic coupling, depth zonation, energetics, diversity, ecosystem function, adaptations, and the ecology of major habitats. The last portion of the course will deal with anthropogenic threats such as deep-sea fisheries, mining and global climate change. Its goal is to provide you with a basic understanding of what we know (and don’t know) about the biology, ecology and biodiversity of deep-sea ecosystems, the methods used in the field, and it will create a forum for discussion of the major current questions and recent exciting discoveries. Course Structure – After each lecture (or pair of lectures) students will lead a discussion session. The lectures will present the basics of the topics. The discussions will be based on assigned readings (primarily current scientific papers), allowing the class to explore the controversies, implications of recent findings, and highlight future directions for research. Student Learning Outcomes – At the end of this course you will be able to: 1) Describe the co-varying effects of temperature, pressure, oxygen and light levels on the adaptations of deep-sea organisms. 2) Evaluate the influence of variables co-varying with depth on communities, populations, and species.
    [Show full text]
  • Large Spiny Lobsters Reduce the Catchability of Small Conspecifics
    Vol. 666: 99–113, 2021 MARINE ECOLOGY PROGRESS SERIES Published May 20 https://doi.org/10.3354/meps13695 Mar Ecol Prog Ser OPEN ACCESS Size matters: large spiny lobsters reduce the catchability of small conspecifics Emma-Jade Tuffley1,2,3,*, Simon de Lestang2, Jason How2, Tim Langlois1,3 1School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia 2Aquatic Science and Assessment, Department of Primary Industries and Regional Development, 39 Northside Drive, Hillarys, WA 6025, Australia 3The UWA Oceans Institute, Indian Ocean Marine Research Centre, Cnr. of Fairway and Service Road 4, Crawley, WA 6009, Australia ABSTRACT: Indices of lobster abundance and population demography are often derived from pot catch rate data and rely upon constant catchability. However, there is evidence in clawed lobsters, and some spiny lobsters, that catchability is affected by conspecifics present in pots, and that this effect is sex- and size-dependent. For the first time, this study investigated this effect in Panulirus cyg nus, an economically important spiny lobster species endemic to Western Australia. Three studies: (1) aquaria trials, (2) pot seeding experiments, and (3) field surveys, were used to investi- gate how the presence of large male and female conspecifics influence catchability in smaller, immature P. cygnus. Large P. cygnus generally reduced the catchability of small conspecifics; large males by 26−33% and large females by 14−27%. The effect of large females was complex and varied seasonally, dependent on the sex of the small lobster. Conspecific-related catchability should be a vital consideration when interpreting the results of pot-based surveys, especially if population demo graphy changes.
    [Show full text]
  • A New Pathogenic Virus in the Caribbean Spiny Lobster Panulirus Argus from the Florida Keys
    DISEASES OF AQUATIC ORGANISMS Vol. 59: 109–118, 2004 Published May 5 Dis Aquat Org A new pathogenic virus in the Caribbean spiny lobster Panulirus argus from the Florida Keys Jeffrey D. Shields1,*, Donald C. Behringer Jr2 1Virginia Institute of Marine Science, The College of William & Mary, Gloucester Point, Virginia 23062, USA 2Department of Biological Sciences, Old Dominion University, Norfolk, Virginia 23529, USA ABSTRACT: A pathogenic virus was diagnosed from juvenile Caribbean spiny lobsters Panulirus argus from the Florida Keys. Moribund lobsters had characteristically milky hemolymph that did not clot. Altered hyalinocytes and semigranulocytes, but not granulocytes, were observed with light microscopy. Infected hemocytes had emarginated, condensed chromatin, hypertrophied nuclei and faint eosinophilic Cowdry-type-A inclusions. In some cases, infected cells were observed in soft con- nective tissues. With electron microscopy, unenveloped, nonoccluded, icosahedral virions (182 ± 9 nm SD) were diffusely spread around the inner periphery of the nuclear envelope. Virions also occurred in loose aggregates in the cytoplasm or were free in the hemolymph. Assembly of the nucleocapsid occurred entirely within the nucleus of the infected cells. Within the virogenic stroma, blunt rod-like structures or whorls of electron-dense granular material were apparently associated with viral assembly. The prevalence of overt infections, defined as lethargic animals with milky hemolymph, ranged from 6 to 8% with certain foci reaching prevalences of 37%. The disease was transmissible to uninfected lobsters using inoculations of raw hemolymph from infected animals. Inoculated animals became moribund 5 to 7 d before dying and they began dying after 30 to 80 d post-exposure.
    [Show full text]
  • Marine Region 2016 Year in Review
    MARINE REGION 2016 YEAR IN REVIEW Cavanaugh Gulch, near Elk in northern California photo by K. Joe A Message From Craig Shuman, Marine Region Manager Most of us have experienced déjà vu – that strong feeling on the beach by the hundreds of thousands and reports of familiarity with an experience or event, as though we of sea turtles more at home off the Galapagos. State have already experienced it in the past. For Marine Region record-sized tuna continued to be logged into the books staff, many of the events in 2016 had that same strong by anglers and spear fishermen, besting old records by as feeling of familiarity. much as 80 pounds or more. Elevated levels of domoic acid As the offshore environment continued to impact California’s continued to experience rapid wildlife and fisheries, keeping Marine Region Mission: change, Marine Region staff were commercial crabbers tied to the To protect, maintain, enhance, there monitoring, meeting with the dock for part of the season and public, and developing strategies recreational razor clammers off the and restore California’s to help better understand how beaches of northern California for marine ecosystems for their the changes would affect the much of the year. The commercial ecological values and their marine environment and our sardine fishery remained closed fisheries. Statewide, our biologists for its second year and the use and enjoyment by the and analysts were busy studying, combined effects of drought and public through good science monitoring, and assessing fish and poor ocean conditions impacted and effective communication. shellfish populations, including recreational and commercial abalone, halibut (California and salmon catches.
    [Show full text]
  • 4. CALIFORNIA SPINY LOBSTER Overview of the Fishery In
    4. CALIFORNIA SPINY LOBSTER Overview of the Fishery In California waters, the spiny lobster, Panulirus interruptus, occurs in shallow, rocky coastal areas from Point Conception (Santa Barbara County) to the U.S.-Mexico border, and off southern California islands and banks. Lobster fishing season runs from early October to mid-March. More lobster is taken by the commercial and sport fisheries in October than in any other month. Effort and landings drop sharply in January, and continue to decline through mid-March when the season ends. Currently, most of the lobsters landed in the commercial fishery weigh between 1.25 and 2.0 lb. Lobsters in this weight range produce the tail size desired by the export market and restaurant trade. Lobster fishermen are paid between $6.75 and $8.00 per lb for their catch, most of which is exported to French and Asian markets. However, depressed markets overseas have resulted in efforts to re-establish domestic markets. Southern California has supported a spiny lobster fishery since the late 1800s. At that time, spiny lobsters weighed between 3.5 and 4 lb on average, and were so abundant that a single person could catch 500 lb in just two hours. By 1900, legislation was enacted to protect dwindling spiny lobster stocks. A closed season and a size limit were instituted, and take of egg-bearing females was prohibited. Despite legislation, abundance continued to decline. As a result, the fishery was closed for two years (1909 and 1910). When the fishery re-opened in 1911, spiny lobsters were once again abundant.
    [Show full text]
  • SDP PICOC Template
    Environmental Studies Program: Ongoing Study Title Bowhead Whale Migration Patterns along the Alaskan Beaufort Shelf During a Period of Rapid Environmental Change (AK-21-04) Administered by Alaska Regional Office BOEM Contact(s) TBD Conducting Organization(s) TBD Total BOEM Cost TBD Performance Period FY 2021–2024 Final Report Due TBD Date Revised August 19, 2021 PICOC Summary Problem Evolving environmental conditions on the Beaufort Shelf appear to be changing the utilization of the shelf by bowhead whales and the bowhead whale migration path may be shifting farther offshore. Very few bowheads were seen on the Beaufort Shelf during the 2019 fall migration and only one whale was landed during the 2019 fall bowhead hunt at Utqiaġvik, Alaska, prompting community concern. However, the lack of contemporary measurements of hydrographic and whale prey conditions create challenges for diagnosing the changes near Pt. Barrow and across the Beaufort Shelf that may have influenced the bowhead whale migration. Intervention This study would renew and geographically expand annual hydrographic and plankton sampling conducted under the “BOWFEST” study (Shelden and Mocklin 2013). Comparison Collected data will be examined in the context of an 11-year (2005-2015) record of late August-early September biophysical (hydrography, currents, zooplankton) conditions in the NE Chukchi and western Beaufort seas. Outcome This project will provide new basic information on hydrography, circulation, and zooplankton prey fields encountered by migrating bowhead whales to improve understanding of the recent behavioral changes of the whales. Results from this effort also will provide context for assessing ongoing changes to the ecosystem and establish a baseline for the “new normal” that is currently being observed.
    [Show full text]
  • Caribbean Spiny Lobster Brazil Pots
    Caribbean spiny lobster Panulirus argus ©Scandinavian Fishing Yearbook/www.scandposters.com Brazil Pots December 19, 2018 Seafood Watch Consulting Researcher Disclaimer Seafood Watch® strives to have all Seafood Reports reviewed for accuracy and completeness by external scientists with expertise in ecology, fisheries science and aquaculture. Scientific review, however, does not constitute an endorsement of the Seafood Watch program or its recommendations on the part of the reviewing scientists. Seafood Watch is solely responsible for the conclusions reached in this report. Seafood Watch Standard used in this assessment: Standard for Fisheries vF3 Table of Contents About. Seafood. .Watch . 3. Guiding. .Principles . 4. Summary. 5. Final. Seafood. .Recommendations . 7. Introduction. 8. Assessment. 12. Criterion. 1:. .Impacts . on. the. Species. Under. Assessment. .12 . Criterion. 2:. .Impacts . on. Other. Species. .19 . Criterion. 3:. .Management . Effectiveness. .25 . Criterion. 4:. .Impacts . on. the. Habitat. .and . Ecosystem. .30 . Acknowledgements. 34. References. 35. Appendix. A:. Extra. .By . Catch. .Species . 41. 2 About Seafood Watch Monterey Bay Aquarium’s Seafood Watch program evaluates the ecological sustainability of wild-caught and farmed seafood commonly found in the United States marketplace. Seafood Watch defines sustainable seafood as originating from sources, whether wild-caught or farmed, which can maintain or increase production in the long-term without jeopardizing the structure or function of affected ecosystems. Seafood Watch makes its science-based recommendations available to the public in the form of regional pocket guides that can be downloaded from www.seafoodwatch.org. The program’s goals are to raise awareness of important ocean conservation issues and empower seafood consumers and businesses to make choices for healthy oceans.
    [Show full text]
  • Articles and Detrital Matter
    Biogeosciences, 7, 2851–2899, 2010 www.biogeosciences.net/7/2851/2010/ Biogeosciences doi:10.5194/bg-7-2851-2010 © Author(s) 2010. CC Attribution 3.0 License. Deep, diverse and definitely different: unique attributes of the world’s largest ecosystem E. Ramirez-Llodra1, A. Brandt2, R. Danovaro3, B. De Mol4, E. Escobar5, C. R. German6, L. A. Levin7, P. Martinez Arbizu8, L. Menot9, P. Buhl-Mortensen10, B. E. Narayanaswamy11, C. R. Smith12, D. P. Tittensor13, P. A. Tyler14, A. Vanreusel15, and M. Vecchione16 1Institut de Ciencies` del Mar, CSIC. Passeig Mar´ıtim de la Barceloneta 37-49, 08003 Barcelona, Spain 2Biocentrum Grindel and Zoological Museum, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany 3Department of Marine Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy 4GRC Geociencies` Marines, Parc Cient´ıfic de Barcelona, Universitat de Barcelona, Adolf Florensa 8, 08028 Barcelona, Spain 5Universidad Nacional Autonoma´ de Mexico,´ Instituto de Ciencias del Mar y Limnolog´ıa, A.P. 70-305 Ciudad Universitaria, 04510 Mexico,` Mexico´ 6Woods Hole Oceanographic Institution, MS #24, Woods Hole, MA 02543, USA 7Integrative Oceanography Division, Scripps Institution of Oceanography, La Jolla, CA 92093-0218, USA 8Deutsches Zentrum fur¨ Marine Biodiversitatsforschung,¨ Sudstrand¨ 44, 26382 Wilhelmshaven, Germany 9Ifremer Brest, DEEP/LEP, BP 70, 29280 Plouzane, France 10Institute of Marine Research, P.O. Box 1870, Nordnes, 5817 Bergen, Norway 11Scottish Association for Marine Science, Scottish Marine Institute, Oban,
    [Show full text]