Australia's Long-Term Plankton Observations: the Integrated Marine Observing System National Reference Station Network

Total Page:16

File Type:pdf, Size:1020Kb

Australia's Long-Term Plankton Observations: the Integrated Marine Observing System National Reference Station Network fmars-06-00161 April 11, 2019 Time: 17:41 # 1 METHODS published: 12 April 2019 doi: 10.3389/fmars.2019.00161 Australia’s Long-Term Plankton Observations: The Integrated Marine Observing System National Reference Station Network Ruth S. Eriksen1,2*, Claire H. Davies1, Pru Bonham1, Frank E. Coman3, Steven Edgar3, Felicity R. McEnnulty1, David McLeod1, Margaret J. Miller3, Wayne Rochester3, Anita Slotwinski3, Mark L. Tonks3, Julian Uribe-Palomino3 and Anthony J. Richardson3,4 1 CSIRO Oceans and Atmosphere, Hobart, TAS, Australia, 2 Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia, 3 CSIRO Oceans and Atmosphere, Brisbane, QLD, Australia, 4 Centre for Applications in Natural Resource Mathematics (CARM), University of Queensland, St Lucia, QLD, Australia The Integrated Marine Observing System National Reference Station network provides unprecedented open access to species-level phytoplankton and zooplankton data Edited by: Jay S. Pearlman, for researchers, managers and policy makers interested in resource condition, and Institute of Electrical and Electronics detecting and understanding the magnitude and time-scales of change in our marine Engineers, France environment. We describe how to access spatial and temporal plankton data collected Reviewed by: from the seven reference stations located around the Australian coastline, and a Todd D. O’Brien, National Oceanic and Atmospheric summary of the associated physical and chemical parameters measured that help in Administration (NOAA), United States the interpretation of plankton data. Details on the rationale for site locations, sampling Patricia Miloslavich, University of Tasmania, Australia methodologies and laboratory analysis protocols are provided to assist with use of the *Correspondence: data, and design of complimentary investigations. Information on taxonomic entities Ruth S. Eriksen reported in the plankton database, and changes in taxonomic nomenclature and other [email protected] issues that may affect data interpretation, are included. Data from more than 1250 Specialty section: plankton samples are freely available via the Australian Ocean Data Network portal and This article was submitted to we encourage uptake and use of this continental-scale dataset, giving summaries of Ocean Observation, data currently available and some practical applications. The full methods manual that a section of the journal Frontiers in Marine Science includes sampling and analysis protocols for the Integrated Marine Observing System Received: 21 December 2018 Biogeochemical Operations can be found on-line. Accepted: 14 March 2019 Published: 12 April 2019 Keywords: phytoplankton, zooplankton, NRS, IMOS, monitoring, spatial, temporal, species Citation: Eriksen RS, Davies CH, Bonham P, Coman FE, Edgar S, 1. INTRODUCTION McEnnulty FR, McLeod D, Miller MJ, Rochester W, Slotwinski A, Tonks ML, As impacts of global change on our oceans intensify, the value of long-term biological and Uribe-Palomino J and Richardson AJ oceanographic observations program for monitoring, understanding and predicting human (2019) Australia’s Long-Term Plankton impacts is increasingly recognised (Edwards et al., 2010; Hofman et al., 2013; Lynch et al., 2014). Observations: The Integrated Marine The Global Ocean Observing System (GOOS) recommends sustained, routine and high-quality Observing System National Reference multi-disciplinary observations at a range of spatial and temporal scales that support scientific Station Network. Front. Mar. Sci. 6:161. understanding, and management decisions about resource condition and sustainable use of our doi: 10.3389/fmars.2019.00161 marine and coastal systems (Palacz et al., 2017). Whilst physical and chemical data collection Frontiers in Marine Science| www.frontiersin.org 1 April 2019| Volume 6| Article 161 fmars-06-00161 April 11, 2019 Time: 17:41 # 2 Eriksen et al. Using IMOS NRS Plankton Data and distribution has benefitted enormously from advances in the timing of seasonal blooms (Edwards and Richardson, 2004). technology (Marcelli et al., 2012), and international collaborative Long-term records are thus critical for detecting shifting program (Hood, 2009; Palacz et al., 2017), biological datasets or uncharacteristic temporal and spatial plankton cycles with sufficient taxonomic resolution to detect change are (Thompson et al., 2009; Johnson et al., 2011; Ajani et al., 2014). still relatively sparse, especially in the Southern Hemisphere. There are a number of unique challenges in the routine Australia in particular has had few sustained (>10 years) collection and analysis of biological samples compared with data biological monitoring program (Lynch et al., 2014), which from sensor or laboratory measurements of physico-chemical capture the wide range of ecosystems present (tropical, sub- parameters. These include issues around quantitative sampling tropical, temperate, sub-Antarctic) and the influence of the of patchy communities whose individuals can exhibit different different water masses on species diversity and abundance. behaviours over space and time, and representative preservation Such datasets are critical for development of knowledge of biological material for later analysis. As each species has a and understanding in a range of areas, including but not unique environmental niche, many of the questions associated limited to: establishing baselines for assessment of regional and with global change require that organisms are identified to global change, testing of ecological theory, supporting marine the lowest possible taxonomic level, preferably to species. management and research, and provision of data for ecosystem Microscopic analysis can be time-consuming, with a need assessments of resource condition, biodiversity, climate change for a high level of training of specialist taxonomists and impacts and other anthropogenic drivers of change. para-taxonomists to consistently and accurately identify and quantify taxa from diverse biological communities. These unique challenges to sampling biology have contributed to the sparsity of 1.1 Rationale for Australia’s National long-term plankton records, despite their acknowledged value for Reference Station Network ocean observation systems (Edwards et al., 2010). The Australian Integrated Marine Observing System (IMOS) Nine NRS formed the original continental-scale observation commenced in 2007 (Hill et al., 2010; Lynch et al., 2011) and network in IMOS (Table 1). The core of the NRS network are includes the establishment of the National Reference Stations the three historical physico-chemical coastal stations that have (NRS) – see Figure 1 for locations. The NRS are part of the been sampled monthly since the 1940s and 1950s: Port Hacking Australian National Mooring Network, a long-term network of (PHB, New South Wales), Maria Island (MAI, Tasmania) and sites at the continental scale providing high-quality physical, Rottnest Island (ROT, Western Australia) (Lynch et al., 2014). chemical, and biological observations, with the aim of capturing In 2009, IMOS added six “new” NRS sites to this existing change in Australian coastal waters (Lara-Lopez et al., 2016). network: vis. Kangaroo Island (KAI, South Australia), Esperance, Details of site locations, mooring design, sensors, calibration and Ningaloo (ESP, NIN, Western Australia), Darwin (DAR, protocols, and water sampling regimes are described in Northern Territory), Yongala and North Stradbroke Island Lynch et al.(2014); details of the phytoplankton and zooplankton (YON, NSI, Queensland) (Figure 1 and Table 1). These “new” methodology and associated data are the focus of this paper. NRS were identified based on the principal ocean currents The IMOS NRS biological dataset provides species-level and associated marine environments of the Australian coastal information for both phytoplankton and zooplankton, as region, the strong latitudinal gradients observed in plankton well as related physical and chemical parameters. Data on communities, the identified phytoplankton provinces, the phytoplankton and zooplankton community composition location of National Marine Reserves and IMOS research is critical for assessing lower trophic level and ecosystem themes, and identified priority regions (Hayes et al., 2005). responses to environmental change (Edwards et al., 2010), and Unfortunately, both Ningaloo and Esperance NRS were plankton are well established indicators for estuarine (Paerl discontinued in 2013 because these sites are the most remote et al., 2007), coastal (Klaiss et al., 2015) and oceanic systems from capital cities (>1,100 and >700 km, respectively) and thus (Richardson et al., 2006; Racault et al., 2014). Phytoplankton difficult to routinely service, leaving a network of seven sites. are sensitive to variations in the surrounding environment, as Even with the accepted value of the NRS network, maintaining they have specific temperature and light regimes (Miller, 2003; long-term monitoring sites through political and science funding Valdes-Weaver et al., 2006), and their high surface area to cycles is challenging. volume ratio enables rapid response to nutrient availability. Many phytoplankton have fast growth rates, resulting in often spectacular increases in biomass under favourable conditions 2. NATIONAL REFERENCE STATION (Smayda, 1990). Deviations from typical patterns of species BIOLOGICAL SAMPLE PROGRAM dominance and biomass through space and time can be used to detect anomalous conditions, range expansions and Protocols
Recommended publications
  • Atlas of the Copepods (Class Crustacea: Subclass Copepoda: Orders Calanoida, Cyclopoida, and Harpacticoida)
    Taxonomic Atlas of the Copepods (Class Crustacea: Subclass Copepoda: Orders Calanoida, Cyclopoida, and Harpacticoida) Recorded at the Old Woman Creek National Estuarine Research Reserve and State Nature Preserve, Ohio by Jakob A. Boehler and Kenneth A. Krieger National Center for Water Quality Research Heidelberg University Tiffin, Ohio, USA 44883 August 2012 Atlas of the Copepods, (Class Crustacea: Subclass Copepoda) Recorded at the Old Woman Creek National Estuarine Research Reserve and State Nature Preserve, Ohio Acknowledgments The authors are grateful for the funding for this project provided by Dr. David Klarer, Old Woman Creek National Estuarine Research Reserve. We appreciate the critical reviews of a draft of this atlas provided by David Klarer and Dr. Janet Reid. This work was funded under contract to Heidelberg University by the Ohio Department of Natural Resources. This publication was supported in part by Grant Number H50/CCH524266 from the Centers for Disease Control and Prevention. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of Centers for Disease Control and Prevention. The Old Woman Creek National Estuarine Research Reserve in Ohio is part of the National Estuarine Research Reserve System (NERRS), established by Section 315 of the Coastal Zone Management Act, as amended. Additional information about the system can be obtained from the Estuarine Reserves Division, Office of Ocean and Coastal Resource Management, National Oceanic and Atmospheric Administration, U.S. Department of Commerce, 1305 East West Highway – N/ORM5, Silver Spring, MD 20910. Financial support for this publication was provided by a grant under the Federal Coastal Zone Management Act, administered by the Office of Ocean and Coastal Resource Management, National Oceanic and Atmospheric Administration, Silver Spring, MD.
    [Show full text]
  • A Systematic and Experimental Analysis of Their Genes, Genomes, Mrnas and Proteins; and Perspective to Next Generation Sequencing
    Crustaceana 92 (10) 1169-1205 CRUSTACEAN VITELLOGENIN: A SYSTEMATIC AND EXPERIMENTAL ANALYSIS OF THEIR GENES, GENOMES, MRNAS AND PROTEINS; AND PERSPECTIVE TO NEXT GENERATION SEQUENCING BY STEPHANIE JIMENEZ-GUTIERREZ1), CRISTIAN E. CADENA-CABALLERO2), CARLOS BARRIOS-HERNANDEZ3), RAUL PEREZ-GONZALEZ1), FRANCISCO MARTINEZ-PEREZ2,3) and LAURA R. JIMENEZ-GUTIERREZ1,5) 1) Sea Science Faculty, Sinaloa Autonomous University, Mazatlan, Sinaloa, 82000, Mexico 2) Coelomate Genomic Laboratory, Microbiology and Genetics Group, Industrial University of Santander, Bucaramanga, 680007, Colombia 3) Advanced Computing and a Large Scale Group, Industrial University of Santander, Bucaramanga, 680007, Colombia 4) Catedra-CONACYT, National Council for Science and Technology, CDMX, 03940, Mexico ABSTRACT Crustacean vitellogenesis is a process that involves Vitellin, produced via endoproteolysis of its precursor, which is designated as Vitellogenin (Vtg). The Vtg gene, mRNA and protein regulation involve several environmental factors and physiological processes, including gonadal maturation and moult stages, among others. Once the Vtg gene, mRNAs and protein are obtained, it is possible to establish the relationship between the elements that participate in their regulation, which could either be species-specific, or tissue-specific. This work is a systematic analysis that compares the similarities and differences of Vtg genes, mRNA and Vtg between the crustacean species reported in databases with respect to that obtained from the transcriptome of Callinectes arcuatus, C. toxotes, Penaeus stylirostris and P. vannamei obtained with MiSeq sequencing technology from Illumina. Those analyses confirm that the Vtg obtained from selected species will serve to understand the process of vitellogenesis in crustaceans that is important for fisheries and aquaculture. RESUMEN La vitelogénesis de los crustáceos es un proceso que involucra la vitelina, producida a través de la endoproteólisis de su precursor llamado Vitelogenina (Vtg).
    [Show full text]
  • Species of the Genera Temora and Tortanus from Indonesian Coastal Waters
    Berk. Penel. Hayati: 14 (125–135), 2009 SPECIES OF THE GENERA TEMORA AND TORTANUS FROM INDONESIAN COASTAL WATERS Mulyadi Division of Zoology, Research Center for Biology, Indonesian Institute of Sciences Jl. Raya Bogor Km. 46 Cibinong 16911, Indonesia E-mail: [email protected] ABSTRACT During taxonomic studies on the pelagic copepods of Indonesian waters, three species of Temora, T. discaudata Giesbrecht, 1882, T. discaudata n. var. and T. turbinata (Dana, 1849), and three species of Tortanus, T. (Tortanus) barbatus, T. (Tortanus) forcipatus and T. (Tortanus) gracilis were described and figured on specimens collected from 8 sites along Indonesian coastal waters. Descriptions, measurements and figures are given for those species, along with a review of their distribution over the world oceans, and with taxonomic remarks, ecological notes, and restricted synonymies. Key words: taxonomy, Temora, Tortanus, Indonesian waters INTRODUCTION MATERIALS AND METHODS Family Temoridae Giesbrecht, 1893 comprises of The present plankton samples were obtained from 8 35 species from four genera, Epischura Forbes, 1882; sites during 1994–2007 (Figure 1). Sampling was done Eurytemora Giesbrecht, 1881; Heterocope Sars, 1863; and by surface and vertical hauls (10 m and 20 m depth to the Temora Baird, 1850. The genus Temora presently comprises surface) with plankton net (0.33 mm mesh size, 0.45 m of five species (Boxshall & Halsey, 2004). Among them two mouth diameter). The samples were fixed and preserved species, T. discaudata Giesbrecht, 1882 and T. turbinata in 5% buffered formaldehyde/sea water solution. As far (Dana, 1849) have been reported from Indonesian waters as possible, the specimens were identified to species level.
    [Show full text]
  • Associations Between North Pacific Right Whales and Their Zooplanktonic Prey in the Southeastern Bering Sea
    Vol. 490: 267–284, 2013 MARINE ECOLOGY PROGRESS SERIES Published September 17 doi: 10.3354/meps10457 Mar Ecol Prog Ser FREEREE ACCESSCCESS Associations between North Pacific right whales and their zooplanktonic prey in the southeastern Bering Sea Mark F. Baumgartner1,*, Nadine S. J. Lysiak1, H. Carter Esch1, Alexandre N. Zerbini2, Catherine L. Berchok2, Phillip J. Clapham2 1Biology Department, Woods Hole Oceanographic Institution, 266 Woods Hole Road, MS #33, Woods Hole, Massachusetts 02543, USA 2National Marine Mammal Laboratory, Alaska Fisheries Science Center, 7600 Sand Point Way NE, Seattle, Washington 98115, USA ABSTRACT: Due to the seriously endangered status of North Pacific right whales Eubalaena japonica, an improved understanding of the environmental factors that influence the species’ distribution and occurrence is needed to better assess the effects of climate change and industrial activities on the population. Associations among right whales, zooplankton, and the physical envi- ronment were examined in the southeastern Bering Sea during the summers of 2008 and 2009. Sampling with nets, an optical plankton counter, and a video plankton recorder in proximity to whales as well as along cross-isobath surveys indicated that the copepod Calanus marshallae is the primary prey of right whales in this region. Acoustic detections of right whales from sonobuoys deployed during the cross-isobath surveys were strongly associated with C. marshallae abun- dance, and peak abundance estimates of C. marshallae in 2.5 m depth strata near a tagged right whale ranged as high as 106 copepods m−3. The smaller Pseudocalanus spp. was higher in abun- dance than C. marshallae in proximity to right whales, but significantly lower in biomass.
    [Show full text]
  • A Comparison of Copepoda (Order: Calanoida, Cyclopoida, Poecilostomatoida) Density in the Florida Current Off Fort Lauderdale, Florida
    Nova Southeastern University NSUWorks HCNSO Student Theses and Dissertations HCNSO Student Work 6-1-2010 A Comparison of Copepoda (Order: Calanoida, Cyclopoida, Poecilostomatoida) Density in the Florida Current Off orF t Lauderdale, Florida Jessica L. Bostock Nova Southeastern University, [email protected] Follow this and additional works at: https://nsuworks.nova.edu/occ_stuetd Part of the Marine Biology Commons, and the Oceanography and Atmospheric Sciences and Meteorology Commons Share Feedback About This Item NSUWorks Citation Jessica L. Bostock. 2010. A Comparison of Copepoda (Order: Calanoida, Cyclopoida, Poecilostomatoida) Density in the Florida Current Off Fort Lauderdale, Florida. Master's thesis. Nova Southeastern University. Retrieved from NSUWorks, Oceanographic Center. (92) https://nsuworks.nova.edu/occ_stuetd/92. This Thesis is brought to you by the HCNSO Student Work at NSUWorks. It has been accepted for inclusion in HCNSO Student Theses and Dissertations by an authorized administrator of NSUWorks. For more information, please contact [email protected]. Nova Southeastern University Oceanographic Center A Comparison of Copepoda (Order: Calanoida, Cyclopoida, Poecilostomatoida) Density in the Florida Current off Fort Lauderdale, Florida By Jessica L. Bostock Submitted to the Faculty of Nova Southeastern University Oceanographic Center in partial fulfillment of the requirements for the degree of Master of Science with a specialty in: Marine Biology Nova Southeastern University June 2010 1 Thesis of Jessica L. Bostock Submitted in Partial Fulfillment of the Requirements for the Degree of Masters of Science: Marine Biology Nova Southeastern University Oceanographic Center June 2010 Approved: Thesis Committee Major Professor :______________________________ Amy C. Hirons, Ph.D. Committee Member :___________________________ Alexander Soloviev, Ph.D.
    [Show full text]
  • Kenai National Wildlife Refuge Species List, Version 2018-07-24
    Kenai National Wildlife Refuge Species List, version 2018-07-24 Kenai National Wildlife Refuge biology staff July 24, 2018 2 Cover image: map of 16,213 georeferenced occurrence records included in the checklist. Contents Contents 3 Introduction 5 Purpose............................................................ 5 About the list......................................................... 5 Acknowledgments....................................................... 5 Native species 7 Vertebrates .......................................................... 7 Invertebrates ......................................................... 55 Vascular Plants........................................................ 91 Bryophytes ..........................................................164 Other Plants .........................................................171 Chromista...........................................................171 Fungi .............................................................173 Protozoans ..........................................................186 Non-native species 187 Vertebrates ..........................................................187 Invertebrates .........................................................187 Vascular Plants........................................................190 Extirpated species 207 Vertebrates ..........................................................207 Vascular Plants........................................................207 Change log 211 References 213 Index 215 3 Introduction Purpose to avoid implying
    [Show full text]
  • Temora Baird, 1850
    Temora Baird, 1850 Iole Di Capua Leaflet No. 195 I April 2021 ICES IDENTIFICATION LEAFLETS FOR PLANKTON FICHES D’IDENTIFICATION DU ZOOPLANCTON ICES INTERNATIONAL COUNCIL FOR THE EXPLORATION OF THE SEA CIEM CONSEIL INTERNATIONAL POUR L’EXPLORATION DE LA MER International Council for the Exploration of the Sea Conseil International pour l’Exploration de la Mer H. C. Andersens Boulevard 44–46 DK-1553 Copenhagen V Denmark Telephone (+45) 33 38 67 00 Telefax (+45) 33 93 42 15 www.ices.dk [email protected] Series editor: Antonina dos Santos and Lidia Yebra Prepared under the auspices of the ICES Working Group on Zooplankton Ecology (WGZE) This leaflet has undergone a formal external peer-review process Recommended format for purpose of citation: Di Capua, I. 2021. Temora Baird, 1850. ICES Identification Leaflets for Plankton No. 195. 17 pp. http://doi.org/10.17895/ices.pub.7719 ISBN number: 978-87-7482-580-7 ISSN number: 2707-675X Cover Image: Inês M. Dias and Lígia F. de Sousa for ICES ID Plankton Leaflets This document has been produced under the auspices of an ICES Expert Group. The contents therein do not necessarily represent the view of the Council. © 2021 International Council for the Exploration of the Sea. This work is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). For citation of datasets or conditions for use of data to be included in other databases, please refer to ICES data policy. i | ICES Identification Leaflets for Plankton 195 Contents 1 Summary ......................................................................................................................... 1 2 Introduction .................................................................................................................... 1 3 Distribution ....................................................................................................................
    [Show full text]
  • Calanus Helgolandicus (Copepoda, Calanoida) Along the Iberian and Moroccan Slope S
    ............. HEL-G;L~NDERM--EiIES UN17~RSU JH U NG E N .......... Helgol~nder Meeresunters. 50 457-475 (1996) Population structure and reproduction of Calanus helgolandicus (Copepoda, Calanoida) along the Iberian and Moroccan slope S. St6hr*, K. Schulz 1. & H.-Ch. John* Zoologisches Institut und Museum der Universit~t Hamburg; Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany ABSTRACT: During three cruises, carried out in March 1991, October 1991, and January 1992 off the Iberian Peninsula and Morocco, the abundant calanoid copepod Calanus helgolandicus (Claus) was collected from a depth of 1000 m to the surface. Differences in depth preference were correla- ted with the life stage and geographically differing vertical salinity structures. In autumn and win- ter, only stage V copepodids (CV) and adults were found, in spring also younger copepodid stages. Within the range of the Mediterranean outflow water (MOW), a sharp decline of abundances of all stages was evident during all cruises. In autumn 1991, the bulk of the population was recorded south of the MOW; in winter 1992 north of it. During winter, numbers had declined by 70 %, supporting the idea that winter individuals represent the same generation as was encountered in autumn, and that they had been transported northwards. CV stages preferred the depth layer 400-800 m, in autumn and winter. Adults were found in autumn at the same depth south of the MOW, while they preferred the 0-400 m layers north of it. In winter, the abundance of adults increased, males prefer- red the 400-600 m depth layer, while females stayed at 200-400 m.
    [Show full text]
  • AGUIDE to Frle DEVELOPMENTAL STAGES of COMMON COASTAL
    A GUIDE TO frlE DEVELOPMENTAL STAGES OF COMMON COASTAL, GeORGES BANK AND GULF OF MAINE COPEPODS BY Janet A. Murphy and Rosalind E. Cohen National Marine Fisheries Service Northeast Fisheries Center Woods Hole Laboratory Woods Hole, MA 02543 Laboratory Reference No. 78-53 Table of Contents List of Plates i,,;i,i;i Introduction '. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1 Acarti a cl aus; .. 2 Aca rtia ton sa .. 3 Aca rtia danae .. 4 Acartia long; rem; s co e"" 5 Aetidi us artllatus .. 6 A1teutha depr-e-s-s-a· .. 7 Calanu5 finmarchicus .............•............................ 8 Calanus helgolandicus ~ 9 Calanus hyperboreus 10 Calanus tenuicornis .......................•................... 11 Cal oca 1anus pavo .....................•....•....•.............. 12 Candaci a armata Ii II .. .. .. .. .. .. .. .. .. .. 13 Centropages bradyi............................................ 14 Centropages hama tus .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 15 ~ Centropages typi cus " .. " 0 16 Clausocalanus arcuicornis ..............................•..•... 17 Clytemnestra rostra~ta ................................•.•........ 18 Corycaeus speciosus........................................... 19 Eucalanus elongatu5 20 Euchaeta mar; na " . 21 Euchaeta norveg; ca III co .. 22 Euchirel1a rostrata . 23 Eurytemora ameri cana .......................................•.. 24 Eurytemora herdmani , . 25 Eurytemora hi rundoi des . 26 Halithalestris croni ..................•......................
    [Show full text]
  • S41598-020-66730-2.Pdf
    www.nature.com/scientificreports OPEN Passenger for millenniums: association between stenothermic microcrustacean and suctorian epibiont - the case of Eurytemora lacustris and Tokophyra sp Łukasz Sługocki1,2 ✉ , Maciej Karpowicz3, Agnieszka Kaczmarczyk-Ziemba4, Joanna Kozłowska3, Ingvar Spikkeland5 & Jens Petter Nilssen6 Epibionts often colonize the exoskeleton of crustaceans, which sometimes results in the development of a long-term relationship between them. Our present work confrmed that a specifc epibiont is closely associated with the pelagic calanoid copepod Eurytemora lacustris, regardless of the region, which suggests a preserved interaction between these species. Molecular analyses revealed that the epibiont belongs to the genus Tokophrya. We also found that the level of basibiont colonization is related to its size and identifed that the most intensely inhabited body parts are those located near the center of the copepod body. We hypothesize that the relationship between Eurytemora (basibiont) and Tokophrya (epibiont) was established during the Quaternary period, following which these two populations were fragmented into lakes where they survived in close interaction. In addition, we suppose that the close relationship between the two species indicates the coevolution of stenotherms. Further studies on the interactions between Eurytemora lacustris and Tokophrya are required in order to gain insight into the long-term relationship between the copepods and the epibionts. Protozoan epibionts have ofen been reported to colonize the exoskeleton of crustaceans1,2. In addition, epibi- onts can afect the host communities by modulating the interaction between a host and the environment3. Te colonization of a basibiont by an epibiont also leads to a signifcant change in the body surface of the former.
    [Show full text]
  • Download Date 23/09/2021 09:50:15
    Growth Rates Of Calanoid Copepods In The Northern Gulf Of Alaska, And Their Relationships To Temperature, Chlorophyll And Body Size Item Type Thesis Authors Liu, Hui Download date 23/09/2021 09:50:15 Link to Item http://hdl.handle.net/11122/8914 GROWTH RATES OF CALANOID COPEPODS IN THE NORTHERN GULF OF ALASKA, AND THEIR RELATIONSHIPS TO TEMPERATURE, CHLOROPHYLL AND BODY SIZE A DISSERTATION Presented to the Faculty of the University of Alaska Fairbanks in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY By Hui Liu, B.S., M.S. Fairbanks, Alaska December 2006 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 3251426 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. ® UMI UMI Microform 3251426 Copyright 2007 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, Ml 48106-1346 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. GROWTH RATES OF CALANOID COPEPODS IN THE NORTHERN GULF OF ALASKA, AND THEIR RELATIONSHIPS TO TEMPERATURE, CHLOROPHYLL AND BODY SIZE By Hui Liu RECOMMENDED: Advisory1 Head, ProgramffiMajine Sciences and Limnology APPROVED: s .
    [Show full text]
  • Cf2b3bcc90c4a72dbe90569a6fd
    A peer-reviewed open-access journal ZooKeys 846:A 1–18new (2019)species of Bestiolina from coastal waters of the Colombian Pacific, including... 1 doi: 10.3897/zookeys.846.31497 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research A new species of Bestiolina (Crustacea, Copepoda, Calanoida, Paracalanidae) from coastal waters of the Colombian Pacific, including a worldwide key for the identification of the species John Dorado-Roncancio1, Santiago Gaviria2, Luis Bernal-De La Torre3, Michael J. Ahrens1 1 Universidad de Bogota Jorge Tadeo Lozano, Facultad de Ciencias Naturales e Ingeniería, Programa de Cien- cias Biológicas y Ambientales, Laboratorio de Limnología, Cra 4 No 22-61, Módulo 5, Piso 8, Bogotá, Co- lombia 2 University of Vienna, Dept of Limnology and Bio-Oceanography and Technisches Büro für Biologie, Fred-Raymond-Gasse 19/2/4, A-1220, Vienna, Austria 3 Pontificia Universidad Javeriana, Facultad de estu- dios ambientales y rurales. Transversal 4° No 42-00, Bogotá, Colombia Corresponding author: John Dorado-Roncancio ([email protected]) Academic editor: D. Defaye | Received 9 November 2018 | Accepted 6 February 2019 | Published 16 May 2019 http://zoobank.org/E665C532-92E3-4482-B8AD-436953D4133F Citation: Dorado-Roncancio J, Gaviria S, Bernal-De La Torre L, Ahrens MJ (2019) A new species of Bestiolina (Crustacea, Copepoda, Calanoida, Paracalanidae) from coastal waters of the Colombian Pacific, including a worldwide key for the identification of the species. ZooKeys 846: 1–18.https://doi.org/10.3897/zookeys.846.31497 Abstract Plankton samples obtained from estuarine waters of the Colombian Pacific yielded adults specimens of an undescribed species of a paracalanid copepod of the genus Bestiolina.
    [Show full text]